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Final-state interactions in the nuclear response at large momentum transfer
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The convolution approach, which is widely employed to describe final-state interactions in the response
of many-body systems, is derived from the expression of the nuclear response in the zeroth-order ladder
approximation. Within this framework, the folding function, accounting for the effects of interactions between
the struck particle and the spectator system, can be immediately related to the spectral function of particle states.
The role of nucleon-nucleon correlations in determining the energy dependence is analyzed.
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I. INTRODUCTION

In the impulse approximation (IA) regime, the response
of a many-body system to a probe delivering momentum q
and energy ω, S(q, ω), can be directly related to the spectral
function describing the energy and momentum distribution of
its constituents [1].

The IA is based on the premise that, because the space
resolution of the probe is ∼|q|−1, at large enough |q| (typically
|q| � 2π/d, with d being the average separation between
target constituents) the target is seen by the probe as a
collection of individual particles. In addition, final-state in-
teractions (FSI) between the hit constituent and the spectators
are assumed to be negligibly small.

Within the IA scenario, scattering off a many-body system
reduces to the incoherent sum of scattering processes involving
the target constituents, the energy and momentum of which are
distributed according to the spectral function.

The goal of extracting information on the target spectral
function from the measured cross sections has been pursued
in a variety of contexts. The momentum distribution of
liquid 4He, obtained from neutron scattering data, has been
extensively analyzed to determine the condensate fraction [2],
while a number of studies of the nuclear electromagnetic
response have been aimed at identifying high-momentum
components, induced by short-range nucleon-nucleon (NN)
correlations, in the target wave function. (For a recent review
of electron-nucleus scattering in the quasielastic sector, see
Ref. [3].)

Comparison between the results of theoretical calculations
and data has consistently shown that the IA scheme fails to
explain the measured cross sections at a fully quantitative level,
thus suggesting that FSI play a significant role [4–7]. Clear-cut
evidence of the persistence of FSI effects at large momentum
transfer has been also provided by theoretical studies of both
nuclear matter [8] and the Bose hard-sphere system [9].

In view of the fact that FSI may largely obscure the connec-
tion between the target response and the underlying energy and
momentum distribution, a quantitative understanding of their
effects must be regarded as a prerequisite for the extraction of
the relevant dynamical information from the data.

In the widely employed convolution approach, S(q, ω) is
written in the form [4,6]

S(q, ω) =
∫

dω′ S0(q, ω′)Fq(ω − ω′), (1)

where S0(q, ω) denotes the response in the absence of FSI, the
effects of which are described by the folding function Fq(ω).

This article is aimed at showing that Eq. (1), which is often
justified using heuristic arguments [10], can be obtained in a
consistent fashion within a more fundamental approach, based
on many-body theory and the spectral function formalism
[11,12]. The proposed interpretation turns out to significantly
affect the large-ω behavior of the folding function, which
in turn determines the tails of the measured inclusive cross
section [6].

The expression of the nuclear response in terms of spectral
functions is derived in Sec. II A, while Sec. II B is devoted
to the discussion of the eikonal approximation, which is
employed to obtain the folding function of Eq. (1). The
elements of the calculation of Fq(ω) are analyzed in Sec. III.
In order to illustrate the role of FSI in determining the
electromagnetic nuclear response at large momentum transfer,
in Sec. IV we report the results of theoretical calculations of
the inclusive electron scattering cross section at |q| � 2 GeV.
Finally, in Sec. V we summarize our findings and state the
conclusions.

II. FORMALISM

A. Folding function and particle spectral function

For simplicity, we will consider a scalar probe interacting
with uniform (i.e., translationally invariant) isospin-symmetric
nuclear matter. The generalization to the case of finite
nuclei and electromagnetic interactions does not involve any
additional conceptual difficulties.

The response of the system can be written in terms of
the imaginary part of the particle-hole propagator �(q, ω)
according to [11–13]

S(q, ω) = 1

π
Im �(q, ω), (2)

with

�(q, ω) = 〈0|ρ†
q

1

H − E0 − ω − iε
ρq|0〉 (3)

and ε = 0+. The operator

ρq =
∑

k

a
†
k+qak, (4)

024606-10556-2813/2013/87(2)/024606(8) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevC.87.024606


OMAR BENHAR PHYSICAL REVIEW C 87, 024606 (2013)

with a
†
k and ak being nucleon creation and annihilation

operators, respectively, describes the fluctuation of the target
density induced by the interaction with the probe, while the
target ground state satisfies the Schrödinger equation

H |0〉 = E0|0〉, (5)

where H denotes the nuclear Hamiltonian.
At large momentum transfer, the effects of long-range

correlations, arising from mixing of one-particle–one-hole
states and leading to the excitation of collective modes, are
expected to become negligible [14]. In this kinematical regime,
the particle-hole propagator can be written in terms of the
Green’s functions Gh(k, E) and Gp(k, E), describing the
propagation of a nucleon in a hole or particle state with
momentum k and energy E.

The resulting expression of the response, often referred to
as the zeroth-order ladder approximation [13,15], reads

S(q, ω) =
∫

d3k dE Ph(k, E)Pp(k + q, ω − E), (6)

where Ph and Pp denote the hole and particle spectral
functions, respectively, which are simply related to the cor-
responding Green’s functions through [13,15]

Ph(p)(k, E) = − 1

π
Im Gh(p)(k, E). (7)

The hole spectral function and the momentum distribution,
defined as

n(k) =
∫

dE Ph(k, E), (8)

can be obtained within the framework of nonrelativistic many-
body theory. Calculations of Ph in isospin-symmetric nuclear
matter at equilibrium density have been carried out by using
both correlated basis function (CBF) perturbation theory [16]
and the self-consistent Green’s function approach [17].

Within the IA scheme, in which FSI are disregarded, the
particle spectral function is approximated with that of the
noninteracting Fermi gas. The resulting response reads

S0(q, ω) =
∫

d3k dE Ph(k, E)θ (|k + q| − kF )

× δ(ω − E − Ek+q), (9)

where θ (x) is the Heaviside step function, kF is the Fermi
momentum, and Ek+q denotes the kinetic energy of a nucleon
carrying momentum k + q.

While providing an excellent description of the measured
nuclear cross sections in the region of the quasielastic peak,
the IA scheme leads to largely underestimate the data at lower
energy loss [3]. In the case of neutron scattering on liquid
4He, deviations from the IA predictions, occurring also at the
quasielastic peak, make it difficult to identify the delta function
singularity associated with the condensate.

In inclusive processes, as long as the set of available final
states is complete, FSI do not affect the total (i.e., ω-integrated)
cross section at fixed q. At large momentum transfer, their
main effect is a broadening of the δ function appearing in
Eq. (9), owing to the fact that the collisions between the struck
particle and the spectators couple the one-particle–one-hole

state produced at the primary interaction vertex to more
complex final states. As a result, the state describing the struck
particle acquires a finite lifetime τ ∼ 1/ρσ , where σ is the
total cross section and ρ is the target density.

The starting point of our derivation is the expression of
the response of Eq. (6), providing a link between the particle
spectral function and the folding function appearing in Eq. (1).
Substituting Eq. (9) into Eq. (1) and comparing the result to
the right-hand side of Eq. (6) we find

Pp(k + q, ω − E)

= θ (|k + q| − kF )
∫

dω′ Fq(ω − ω′)δ(ω′ − E − Ek+q).

(10)

At large momentum transfer (|q| � 2kF ∼ 500 MeV in
electron-nucleus scattering), the condition that the momentum
of the struck particle be larger than the Fermi momentum is
always satisfied and the θ function can be omitted. Hence, by
approximating k + q ≈ q, which in turn implies Ek+q ≈ Eq,
Eqs. (6) and (1) become equivalent if

Fq(ω) = Pp(q, ω + Eq). (11)

Note that the folding function is defined in such a way as
to peak at ω = 0, whereas the spectral function Pp(q, E) is
peaked at E = Eq. Furthermore, from Eq. (11) it follows
that, since the spectral function is a positive quantity [13],
the folding function Fq(ω) is also positive.

At moderate momentum transfer, the hole and particle
spectral functions can be consistently obtained using nonrel-
ativistic many-body theory [13]. However, in the kinematical
region of large momentum transfer the motion of the struck
nucleon in the final state can no longer be described using the
nonrelativistic formalism.

At the IA level, the above problem can be easily circum-
vented by replacing the nonrelativistic kinetic energy with its
relativistic counterpart in Eq. (9). On the other hand, inclusion
of FSI requires further approximations, needed to obtain the
particle spectral function, or, equivalently, the folding function
appearing in Eq. (1).

A theoretical approach to calculate the folding function,
based on a generalization of Glauber theory of high-energy
proton-nucleus scattering [18], has been developed in Ref. [6]
and extensively applied to the analysis of the measured
inclusive electron-nucleus cross sections [19,20].

To make a connection between the formalism of Ref. [6]
and the one based on spectral functions, in Sec. II B we will
outline the derivation of the Green’s function of particle states
within the eikonal approach.

B. The eikonal approximation

In order to keep contact with the formalism of nuclear
many-body theory, in this section we will use the nonrelativis-
tic formalism. The generalization to the case of relativistic
particles will be discussed at a later stage.
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Let us first consider a nucleon scattering from a potential
V . Its propagation is described by the Green’s function

G = (E − k2/2m − V + iε)−1, (12)

which can be obtained by solving the integral equation

G = G0 + G0V G, (13)

with the free-space Green’s function G0 being given by

G0 = (E − k2/2m + iε)−1. (14)

The eikonal approximation is based on the tenet that, at high
energy, the projectile particle travels along a straight trajectory
with constant speed. Under this assumption, one can write
E ≈ |p|2/2m, with p being the incident momentum, and the
momentum in the intermediate states in the form

k = p + �, |�| � |p|. (15)

By using the above relations and neglecting the term quadratic
in �, Eq. (14) can be cast in the form

G0 = [v(|p| − kz) + iε]−1, (16)

where v = |p|/m is the nucleon velocity and the z axis has
been chosen along the direction of p. Fourier transformation
to coordinate space yields

〈r′|G0|r〉 =
∫

d3k

(2π )3

eik·(r′−r)

v(|p| − kz) + iε

= − i

v
δ(b′ − b)θ (z′ − z) ei|p|(z′−z), (17)

where b is the projection of r on the plane perpendicular to the
momentum p.

Substituting the above equation in Eq. (13) and assuming
that the interaction V is local, one readily obtains the
coordinate-space Green’s function

〈r′|G|r〉 = 〈r′|G0|r〉 U (b, z′ − z),

with

U (b, z′ − z) = exp

[
− i

v

∫ z′−z

0
dζ V (b, z + ζ )

]
, (18)

describing the motion of a particle moving along the straight
trajectory r(t) = r + vt , constrained by the condition r(t) =
r′ ≡ (b, z′) at time t = (z′ − z)/v.

The above result can be used to obtain the scattering wave
function, ψp, from the equation

ψp = (1 + GV )φp, (19)

where φp is an eigenfunction of the free Hamiltonian, i.e., a
plane wave of momentum p. The resulting wave function can
be written in the form

ψp(b, z) = eipz

[
1 −

∫ z

−∞
dz′ �p(b, z′)

]
, (20)

with

�p(b, z) = V (b, z) exp

[
− i

v

∫ z

−∞
dz′ V (b, z′)

]
. (21)

Using the above expression of ψp and the definition of the
scattering amplitude at incident momentum p and momentum
transfer k = p − p′ (see, e.g., Ref. [21]),

fp(k) = − m

2π
〈φp′ |V |ψp〉, (22)

one finds that the quantity defined in Eq. (21) is trivially related
to fp(k) through Fourier transformation, i.e.,

�p(r) = −2π

m

∫
d3k

(2π )3
e−ik·rfp(k). (23)

In the case of a nucleon propagating through nuclear matter
in the aftermath of the interaction with an external probe, the
eikonal approximation must be supplemented with the further
assumption that the configuration of the spectator system be
frozen, i.e., do not change due to interactions with the fast
projectile particle.

The eikonal factor including all contributions arising from
collisions involving the projectile particle, labeled by the index
1, and the N − 1 target nucleons takes the form

exp

[
− i

v

∫ z

0
dζ

N∑
j=2

v1j (r1 + ẑζ − rj )

]
, (24)

where vij is the bare NN potential and ẑ denotes the unit vector
along the z axis.

Expanding the exponential appearing on the right-hand
side of Eq. (24), one obtains a series, the terms of which are
associated with processes involving an increasing number of
interactions between the projectile particle and the spectator
nucleons. The terms corresponding to repeated interactions
with the same spectator can be collected and summed up to
all orders by replacing the bare vij with the coordinate-space
scattering amplitude �p of Eq. (23).

Averaging over the nuclear matter ground state leads to the
final expression of the eikonal factor [compare to Eq. (18)]:

U (z) = exp

[
− i

v

∫ z

0
dζ V (ζ )

]
, (25)

with

V (ζ ) = 〈0|
N∑

j=2

�p(r1j + ẑζ )|0〉. (26)

Note that the right-hand side of the above equation involves an
average over the degrees of freedom of both the projectile
particle and the spectators. In general, averaging over the
position of the struck particle at t = 0, r1, amounts to a further
approximation. However, owing to translation invariance, in
uniform nuclear matter this is not the case.

The particle spectral function can be readily computed
using Eq. (7) and the Green’s function obtained within the
eikonal approximation (where, for simplicity, from now on
the subscript p, specifying the particle part of both the Green’s
function and the associated spectral function, will be omitted),

G(b, z) = − i

v
δ(b)θ (z)exp

[
ipz − i

v

∫ z

0
dζ V (ζ )

]
, (27)

with V (ζ ) given by Eq. (26).
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III. CALCULATION OF THE PARTICLE SPECTRAL
FUNCTION

A. NN scattering amplitude

At high incident momentum, p, the NN scattering amplitude
of Eq. (22) extracted from the measured cross sections is
usually written in terms of three parameters, in the form

fp(k) = p

4π
σp(αp + i) e−βpk2

, (28)

where k is the momentum transfer and σp is the total cross
section, while αp and βp describe the ratio between real and
imaginary parts and the slope, respectively. Note that the above
expression fulfills the optical theorem, stating that the forward
scattering amplitude satisfies the relation

Im fp(0) = p

4π
σp, (29)

by construction.
The main effect of FSI, i.e., the broadening of the δ function

appearing in Eq. (9), arises from the imaginary part of the
scattering amplitude, while the real part produces a shift of the
response of the order of 10 MeV at most. As we are focusing
on a kinematical region in which the typical scale of the energy
transfer is several hundred MeV, in the following the effect of
the real part of the scattering amplitude will be disregarded,
by setting αp = 0 in Eq. (28).

Medium modifications of the NN scattering cross section
are expected to be important and must be taken into account.
In Ref. [22], the relation between NN scattering in vacuum
and in nuclear matter has been analyzed under the assumption
that the nuclear medium mainly affects the flux of incoming
particles and the phase space available to final-state particles,
while leaving the transition probability unchanged.

The phase space of elastic NN collisions is reduced by
Pauli blocking, whereas the modification of the flux is due to
the fact that the nucleons involved in the scattering process are
bound and therefore off the mass shell. Within the approach
of Ref. [22], this feature is taken into account by replacing
the bare nucleon mass with a momentum-dependent effective
mass.

The numerical results reported in this article have been
obtained by using the parametrization of the NN scattering
amplitude of Eq. (28), with values of βp and σp taken from
the fit of Refs. [23,24]. The total cross sections have been
corrected for medium effects according to the generalization
of the procedure of Ref. [22] described in Ref. [25]. As shown
in Fig. 1, the resulting total cross sections are significantly
reduced, with respect to the free-space values. At beam
energies � 800 MeV the ratio between the proton-neutron
cross sections in the medium and in vacuum turns out to be
∼0.8, and it is largely energy independent.

B. Eikonal factor

Using the expression of the scattering amplitude discussed
in the previous section, one can compute the eikonal factor of
Eq. (25) with the interaction defined by Eq. (26). The ground-
state expectation value appearing on the right-hand side can

FIG. 1. (Color online) Total proton-neutron cross section as a
function of the projectile kinetic energy in the laboratory frame. The
dashed line shows the free-space cross section, while the solid line
has been obtained by including medium modifications according to
the procedure described in Refs. [22,25].

be cast in the form

V (ζ ) =
∫

d3r g(r)�p(r + ẑζ ), (30)

where g(r) is the pair distribution function, yielding the
probability of finding two nucleons separated by a distance
r in the nuclear matter ground state.

The behavior of g(r) is dictated by the strong dynamical
NN correlations induced by nuclear forces, as well as by
the weaker statistical correlations due to Pauli’s exclusion
principle. It the absence of all correlations g(r) ≡ 1. Realistic
calculations of the nuclear matter pair distribution function
have been carried out within the Fermi-hyper-netted-chain
(FHNC) approach [26]. Figure 2 shows a comparison between
the results of Ref. [26] and the pair distribution function of the
noninteracting Fermi gas.

Note that in the simple case of a zero-range coordinate-
space interaction, and with correlations neglected altogether,
Eq. (30) yields

Im V = − 1
2ρvσp, (31)

independent of ζ . Note, however, that Im V depends on density,
a feature that turns out to be very important in applications to
light nuclei.

C. Spectral function

By using the results of the previous sections, the particle
spectral function can be obtained from Eq. (7), yielding

P (p, E) = − 1

π
Im

i

v

∫ ∞

0
dz ei(kz−p)z− i

v

∫ z

0 dζ V (ζ ), (32)
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FIG. 2. (Color online) Spin-isospin-averaged NN pair correlation
function in isospin-symmetric nuclear matter at equilibrium density.
The solid curve shows the result of the many-body calculation of
Ref. [26], based on a realistic nuclear Hamiltonian, while the dashed
curve takes into account statistical correlations only. The reference
line g(r) ≡ 1 corresponds to the quasiparticle approximation dis-
cussed in the text, in which all correlations are neglected.

where p = |p|. Under the assumption that V be purely
imaginary, and defining

W (t) = −1

t

∫ t

0
dτ Im V (vτ ), (33)

where τ = ζ/v, one can rewrite Eq. (32) as

P (p, E) = 1

π

∫ ∞

0
dt cos[v(kz − p)t] e−W (t)t . (34)

Note that the right-hand side of the above equation depends
on the energy E = Ek through the momentum k, while W (t)
depends on p through the momentum dependence of the NN
scattering amplitude.

The spectral function takes a very simple form in the case
of uncorrelated nucleons and zero-range scattering amplitude.
From Eqs. (31) and (33) it follows that, in this case,

W = 1
2ρvσp, (35)

independent of t , and

P (p, E) = 1

π

W

[v(kz − p)]2 + W 2
. (36)

D. Effects of NN correlations

The expression of the spectral function of Eq. (36) deserves
some comments. Under the assumptions discussed in Sec. II B,
v(kz − p) ≈ Ek − Ep, and Eq. (36) can be rewritten in a form
reminiscent of the definition of the spectral function in terms
of the nucleon self-energy �(p, E) [27],

P (p, E) = 1

π

Im �(p, E)

[E − Ep − Re �(p, E)]2 + [Im �(p, E)]2
.

(37)

Comparison between the above equation and Eq. (36) shows
that assuming a purely imaginary NN scattering amplitude and
neglecting all correlations amounts to approximating the self-
energy with its energy-independent low-density limit, given
by the forward NN scattering amplitude [28,29], implying

Re �(p, E) = 0, Im �(p, E) = 1
2ρvσp. (38)

The spectral function obtained within the above approximation
includes the effect of collisions between a nucleon carrying
momentum p and the nucleons belonging to the Fermi sea. This
scheme may be regarded as a quasiparticle approximation,
in which only the pole contribution to the Green’s function
is taken into account [30]. However, the contribution of NN
correlations, resulting in an explicitly energy-dependent self-
energy, is disregarded altogether.

Within the formalism discussed in this work, the energy
dependence associated with correlation effects arises from the
time dependence of the function W (t), defined by Eq. (33),
which is in turn to be ascribed to the time dependence of the
radial distribution function.

To see this, consider the simple case of a zero-range
coordinate-space interaction, i.e.,

Im �p(r) = − 1
2ρvσp δ(r). (39)

Substituting the above expression in Eq. (30) and using
Eq. (33), one finds the result

W (t) = 1

2
ρvσp

1

t

∫ t

0
dτ g(vτ ), (40)

which reduces to the time-independent form of Eq. (35) for
g(vτ ) ≡ 1. Note that within the eikonal approximation time
and distance traveled by the projectile particle are trivially
related, as the velocity, v, is assumed to be constant.

The shape of the function W (t), obtained from the above
equation using the nuclear matter radial distribution function
displayed in Fig. 2 and medium-modified NN cross sections,
is illustrated in Fig. 3 for the case of a nucleon carrying
momentum p = 1 GeV. The deviation from the asymptotic
value reflects the fact that, owing to the short-range repulsive
core of the NN interaction, the struck particle is surrounded by
a correlation hole, which makes the probability of FSI at short t
vanishingly small. As a consequence, NN correlations mostly
affect the high-energy behavior of the spectral function.

IV. RESULTS

In this section we report the results of the application of
the formalism discussed in the previous sections to the study
of the electromagnetic response of isospin-symmetric nuclear
matter at momentum transfer |q| � 1 GeV.

The eikonal approximation derived in the previous sections
to calculate the particle spectral function, yielding in turn
the folding function Fq(ω), can be readily extended to the
relativistic regime, relevant to the kinematical region under
consideration. It has been shown (see, e.g., Refs. [31,32]) that,
under the assumptions discussed in Sec. II B, the relativistic
propagator can be linearized and interactions lead to a phase
shift of the plane wave describing the motion of the projectile

024606-5



OMAR BENHAR PHYSICAL REVIEW C 87, 024606 (2013)

FIG. 3. (Color online) Time dependence of the function W (t),
defined by Eq. (40), computed using the radial distribution function
of Fig. 2 and medium-modified NN cross sections obtained from the
procedure described in Refs. [22,25]. The nucleon momentum has
been set to p = 1 GeV.

particle. The form of the eikonal phase turns out to be the same
as the one given by Eq. (25).

The double differential cross section of the process

e + A → e′ + X, (41)

including the effect of FSI, is obtained by convoluting the IA
result with the folding function of Eq. (11) according to

dσ

d�dω
=

∫
dω′

(
dσ

d�dω

)
IA

Fq(ω − ω′). (42)

The details of the calculation of the IA cross section within the
formalism of nuclear many-body theory can be found, e.g., in
Ref. [3].

As an example, Fig. 4 shows the behavior of the folding
function for incident momentum ∼2 GeV, computed using
the radial distribution function of Fig. 2 and medium-modified
NN cross sections. For simplicity, we have neglected the effect
of the finite range of the NN scattering amplitude, which is
known to be small [6], by setting βp = 0 in Eq. (28). The
solid and dashed lines correspond to the full result and to
the quasiparticle approximation [see Eq. (38)], in which NN
correlations are neglected altogether. It clearly appears that the
inclusion of correlations leads to a reduction of the tails of the
folding function, resulting in turn in a reduction of FSI effects
in the low-ω tail of the differential cross section.

These features can be observed in Fig. 5, which shows
the cross section of isospin-symmetric nuclear matter at
beam energy Ee = 3.6 GeV and electron scattering angle
θe = 30 deg. Comparison between the solid and dashed lines,
corresponding to the full and IA calculations, respectively,
clearly shows that in the region of low energy loss FSI provide
the dominant contribution, which brings theoretical results into
agreement with the extrapolated data of Ref. [33]. The role of
NN correlations is illustrated by the dot-dashed line, obtained
using the folding function computed within the quasiparticle
approximation (dashed line of Fig. 4). It is apparent that

FIG. 4. (Color online) Energy dependence of the folding function
defined in Eq. (11). The solid and dashed lines correspond to the full
calculation and to the quasiparticle approximation of Eq. (38), respec-
tively. The calculations have been carried out for isospin-symmetric
nuclear matter at equilibrium density. The nucleon momentum
|q| = 1.9 GeV corresponds to quasifree kinematics at incident energy
Ee = 3.6 GeV and electron scattering angle θe = 30 deg.

neglecting correlations leads to largely overestimated FSI
effects.

In Fig. 6 the differential cross section obtained using
the formalism discussed in this article is compared to the
extrapolated nuclear matter data of Ref. [33] and to the 56Fe
data of Ref. [34] at beam energy Ee = 4 GeV and electron
scattering angle θe = 30 deg. The proposed approach appears
to provide a quantitative description of the measured cross
sections over a range exceeding five orders of magnitude.

FIG. 5. (Color online) Differential cross section of the scattering
process e + A → e′ + X on isospin-symmetric nuclear matter, at
beam energy Ee = 3.6 GeV and electron scattering angle θe =
30 deg. The solid and dot-dashed lines represent the results of the full
calculation and those obtained within the quasiparticle approximation
discussed in the text, respectively. The cross section obtained within
the IA, i.e., neglecting FSI, is displayed by the dashed line. The data
points show the extrapolated nuclear matter cross section of Ref. [33].
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FIG. 6. (Color online) Differential cross section of the scattering
process e + A → e′ + X on isospin-symmetric nuclear matter, at
beam energy Ee = 4 GeV and electron scattering angle θe = 30 deg.
The solid line shows the results of the full calculation, including FSI.
The diamonds corresponds to the extrapolated nuclear matter cross
section of Ref. [33]. For comparison, the crosses also show the cross
section of Ref. [34], measured in the same kinematical setup using
an 56Fe target.

V. CONCLUSIONS

We have discussed the description of FSI in the nuclear re-
sponse and have shown that the widely employed convolution
form of Eq. (1) can be obtained from a fundamental approach
based on nuclear many-body theory, using the spectral function
formalism.

The folding function of the convolution approach turns
out to be directly related to the spectral function describing
high-momentum nucleons occupying particle states, which
can be calculated within the eikonal approximation. The
main elements entering this calculation are the measured NN
scattering cross sections, modified to take into account the
effects of the nuclear medium, and the radial distribution
function g(r), yielding the probability of finding two nucleons
separated by a distance r in the nuclear ground state. Both the
nucleon effective mass, driving the modifications of the NN
cross section, and the radial distribution function are obtained
from accurate many-body calculations based on a realistic
nuclear Hamiltonian.

The interpretation of the folding function as a particle
spectral function allows one to unambiguously identify the
contribution of NN correlations arising from the energy
dependence of the nucleon self-energy.

The main effect of FSI is a redistribution of the strength,
producing a slight decrease of the response in the region

of the quasifree peak and a sharp enhancement of its tails.
Inclusion of NN correlations, resulting in the appearance of
the energy dependence of the nucleon self-energy, leads to a
substantial reduction of FSI, to be ascribed to the correlation
hole surrounding the struck nucleon.

The results of numerical calculations of the electron-
nucleus scattering cross section at momentum transfer
� 2 GeV show that FSI are the dominant reaction mechanism
in the region of low energy loss, corresponding to values of
the Bjorken scaling variable x � 1.5. Their effect brings the
theoretical results into agreement with the data over a broad
range of energy loss.

A pioneering study of the nuclear matter cross section
within the convolution approach was carried out in the 1990s
[6]. The results of this work suggested that, even after inclusion
of NN correlations, using the free-space NN cross section to
compute the folding function leads to sizably overestimated
FSI. The authors of Ref. [6] argued that the source of this
problem could be traced back to modifications of the NN cross
section arising from the internal structure of the nucleon, and
they advocated the occurrence of color transparency to explain
the disagreement between theory and data.

In the present work we have taken into account the
modifications of the free-space NN cross sections arising
from many-body effects, which lead to a decrease of FSI.
Moreover, unlike the folding function of Ref. [6], the folding
function resulting from the approach described in this article
is non-negative by definition. The occurrence of oscillations
in the tails of the folding function of Ref. [6], associated with
the appearance of negative values, is incompatible with the
interpretation in terms of a particle spectral function, and as
such it is unphysical. In fact, it must be regarded as numerical
noise.

A comprehensive analysis of the large database of inclusive
data at large momentum transfer within the present approach
will provide valuable information on the dependence of FSI
on both the nuclear mass number, A, and the squared four-
momentum transfer, Q2. Such a study may help to shed light
on the interpretation of the measured ratios of inclusive nuclear
cross sections at x > 1 [35,36].
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