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Extrapolations of nuclear binding energies from new linear mass relations
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We present a method to extrapolate nuclear binding energies from known values for neighboring nuclei. We
select four specific mass relations constructed to eliminate smooth variation of the binding energy as function
nucleon numbers. The fast odd-even variations are avoided by comparing nuclei with same parity. The mass
relations are first tested and shown to either be rather accurately obeyed or revealing signatures of quickly
varying structures. Extrapolations are initially made for a nucleus by applying each of these relations. Very
reliable estimates are then produced either by an average or by choosing the extrapolation where the smoothest
structures enter. Corresponding mass relations for Qα values are used to study the general structure of superheavy
elements. A minor neutron shell at N = 152 is seen, but no sign of other shell structures are apparent in the
superheavy region. Accuracies are typically substantially better than 0.5 MeV.

DOI: 10.1103/PhysRevC.87.024319 PACS number(s): 21.10.Dr, 21.60.−n

I. INTRODUCTION

The importance of accurate knowledge of nuclear masses is
undisputed. Unprecedented numbers of precise measurements
are available [1,2], but many particle stable masses are still
unknown. The masses are collected in comprehensive mass
tables [3], which also contain estimates based on smooth
extra/interpolations and consistency between a number of
related particle and cluster separation energies.

Different types of theoretical models are also used to esti-
mate and predict nuclear masses of interest. They are almost all
at some point employing phenomenological parametrization.
The original example is the semiclassical mass formula by
von Weizäcker and Bethe [4], where four parameters are
fitted to known masses and all others can be predicted. Much
more sophisticated versions are developed where the same
idea of expanding in terms of neutron and proton numbers
systematically is exploited in the liquid droplet model [5,6].

The success of the liquid drop models is due to the overall
continuous behaviour of nuclear masses as function of neutron
and proton numbers and, of course, on the inclusion of the
correct physics ingredients of volume, surface, Coulomb, and
symmetry terms. After the bulk part of the nuclear masses
are described, the smaller contributions are highlighted as the
remaining part. This is much more difficult to describe as the
origin is in a number of very different correlations expressed
as, e.g., shell effects, deformations, and pairing. These three
correlations occur rather systematically and can, to some
degree, be accounted for in the droplet models. However, the
severe limitation is that predictions beyond the experimentally
known regions quickly become rather inaccurate.

Improvement in predictive power is obtained by micro-
scopic mean-field models, i.e., Hartee-Fock-Boguliubov, den-
sity functional theory, and Thomas-Fermi calculations [7,8].
Phenomenology now includes the nucleon-nucleon interac-
tions used as input and determined from general symmetry
principles and fit to resulting computed properties. Here the
self-consistency is necessary to have reliability beyond the
fitted regions. At some level the liquid drop bulk properties
must be reproduced if these models are to be successful.
This is more directly exploited in the micro-macro models

where the microscopic fluctuating part first is extracted from
a mean-field shell-model computation and the average smooth
part is replaced by liquid drop expressions [9].

The origin of nuclear masses is the nucleon-nucleon inter-
action, which implies that the different nuclei have (perhaps
complicated) related masses. This is explored in ab initio
calculations of nuclear masses from the basic interaction [10].
It is exploited in a completely different way in a series of
so-called mass relations where Garvey-Kelson is the most well
known [11]. It is based on counting the number of pairwise
interactions in different nuclei and by adding, for example,
three mass difference between two nuclei; the result should
be zero. This is tested to be true for known masses with an
average accuracy of about 500 keV [12].

It is then interesting to test whether the previous mass
formulas obey the rather accurate Garvey-Kelson mass re-
lations. This turns out to be essentially true for the measured
masses, but as soon as extrapolations are involved the accuracy
drops by about a factor of two [13]. The phenomenology
is only really trustworthy within the fitted region. There is
apparently one exception in the Duflo-Zuker mass formulas
constructed from the same principles as the Garvey-Kelson
mass relations [13,14].

A different principle was used in extraction of pairing
properties where emphasis rather than cancellation is desired.
Odd-even mass differences between neighboring nuclei al-
ready reveal these effects. An improvement is obtained in the
slightly more complicated combination where an average of
the two neighboring mass differences is used [4]. A further
extension to include more masses led Jensen et al. [15]
to formulate mass relations obeying a general principle of
cancellation of all smooth terms up to any desired order. The
practical choice is second order, since the necessary nuclei
otherwise may differ too much. It is interesting to note that
Garvey-Kelson relations also eliminate all smooth terms up to
second order. Although never emphasized previously, this is
obviously a convincing reason for their success.

Different mass combinations can now be chosen to either
emphasize specific correlations or to avoid them, for example,
by cancellation. The latter choice produces a combination
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of masses equal to zero, which means any of these masses
can be expressed as a linear combination of the other ones.
Thus, if correct such mass relations are directly applicable
for one-step extrapolations beyond known mass regions.
Similar extrapolations can be made with Garvey-Kelson mass
relations but they do not allow special choices where, for
example, odd-even effects a priori are absent or emphasized.
Other correlations could be investigated as well if a mass
combination can be found to highlight them.

It has been suggested that nuclear masses have a component
of chaotic behavior amounting to 2.78/A1/3 MeV [16], which
amounts to between 0.5 and 1.4 MeV. This seems to be an
exaggeration as suggested by the observation that specific
regions exhibit (unknown) correlations [17] accounting for
maybe half of this amount. This is also indicated by the rather
small root-mean-square deviation of less than 100 keV ob-
tained by the 12-point Garvey-Kelson mass interpolation [13].
Thus, any mass extrapolation can ultimately only meaningfully
aim for an accuracy of at most 200–300 keV with global mass
formulas.

The purpose of this paper is to present four linear mass
relations between isotopes capable of removing smoothly
varying contributions. When applied to isotopes with measured
binding energies, these mass combinations should have a
tendency to cancel completely, barring influences from other
significant contributing factors. Expressing unknown masses
as linear combinations of known ones should allow for the
extrapolating of these unknown masses. This will all be based
on isotopes in their ground-state configurations. The relatively
few assumptions needed to establish the fundamental model
is the greatest advantage of the method. As a result, all
conclusions will be based purely on combinations of binding
energies, without the need for other theoretical considerations.

Our focus will be divided between extrapolating unknown
binding energies and studying the structure of the superheavy
elements. We shall use the method introduced in Ref. [15] to
construct mass relations. Here it will not be attempted to verify
the existence and scale of the effects that influence the binding
energy. We shall use suitable mass relations to eliminate
all or most of the systematic dependencies of the binding
energy on nucleon numbers. The legitimacy of the elimination
will be apparent from the results of applying the mass
relations.

The fundamental model, along with the argumentation
supporting it, will be presented in Sec. II. The majority of
the necessary formulations will be included there as well. It is
then possible to define the specific mass relations needed for
the applications, and this is also included in Sec. II.

Applying these mass relations individually with the purpose
of extrapolating to new binding energies is done in Secs. III A
and III B. In Sec. III C the mass relations are used with Qα

values. This has a number of advantages. In particular, it
is possible to examine the region of superheavy isotopes in
greater detail. The Qα values are very useful in the analysis
of general structures appearing in the binding energy. By
comparing extrapolations from the individual mass relations,
it is possible to calculate more precise results either by simple
averages or by choosing the smoothest extrapolation. Such
combinations are presented in Sec. IV along with the numerical

results in Table I. Finally, Sec. V contains a brief summary
and the conclusions.

II. THE MASS RELATIONS

The idea behind the mass relations is that the nuclear many-
body systems all are derived from the same basic interactions,
and, hence, different nuclei should have related binding
energies. Various principles are applied for different mass
relations. We shall focus on one type where we, first, describe
the general principles, then we derive some useful properties,
and, finally, we specify the applications in the last subsection.

A. General assumptions

The mass formula is often divided into a sum of three
different types of terms, including, first, the dominating term,
BLD(N,Z), describing the smoothly varying gross properties
of the binding energy as function of neutron and proton num-
bers, N and Z. This is the liquid drop, or droplet, model with
the classical four terms, which are volume, surface, Coulomb,
and symmetry energy. The specific form and the precise
numerical values are not important since the smooth character
is necessary only to eliminate unwanted contributions. This is
achieved through suitable linear combinations of the nuclear
binding energies as elaborated in Sec. II B.

Second, there is a term accounting for shell effects,
Bsh(N,Z), arising from quantum-mechanical correlations fa-
voring special (spherical) configurations. Third, there is a term,
�(N,Z), to describe systematic but not smoothly varying
contributions to the binding energy. This can be odd-even
and other similar (short-ranged) correlation effects. In total,
we have the binding energy separated into such distinct terms,
where each is a function of the nucleon numbers N and Z:

B(N,Z) = BLD(N,Z) + Bsh(N,Z) + �(N,Z). (1)

Explicit addition of terms describing other effects, for
instance, the possible tendency to form α particles within
nuclei, could also be included. However, the possible nature of
α clusters is presently not our prime focus, and, furthermore,
the energy gain from these clusters are also very small or
possibly very smoothly varying [15].

Since the existence of both neutron and proton shells is
undeniable, the second term, Bsh(N,Z), is an inescapable
necessity. The major shells are prominent only in relatively
narrow regions of nucleon numbers. A slowly varying con-
tribution from Bsh between shells can then essentially be
eliminated by the same procedure as BLD(N,Z). This claim
will be substantiated by the results in Sec. III.

The systematic third term, �(N,Z), is more complicated
since it is composed of several effects. It includes three
different pairing effects, along with the Wigner term related
to the isospin symmetry, all of which are more subtle in
nature than the smooth term. However, they are all smooth
functions of nucleon numbers provided isotopes with same
parity are compared and the N = Z line is not crossed. We
shall in this paper impose these restrictions on the employed
extrapolations, although we expect to encounter occasional
signals of these terms.
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TABLE I. The results of combining the extrapolations based on the four different mass relations. The final column indicates which relations
were used when calculating a particular average. Only extrapolations with an uncertainty σi < 500 KeV were considered when calculating this
average. If an extrapolation includes isotopes influence by either a shell or on the N = Z line, it is marked with an asterisk.

Nucleus Estimates of binding energies (keV) Average (keV) Applied relations

(Z, N ) �2n �2p �2α �2(N−Z)

(26, 43) 576250 ± 1292 * 577468 ± 239 * 577029 ± 202 * 578091 ± 275 577422 ± 446 �2p , �2α , �2(N−Z)

(26, 44) 579206 ± 2256 * 582840 ± 250 – * 584436 ± 276 583561 ± 583 �2p , �2(N−Z)

(27, 45) 597521 ± 2633 * 601637 ± 257 * 601272 ± 152 * 601465 ± 361 601378 ± 152 �2p , �2α , �2(N−Z)

(28, 46) 623965 ± 648 * 623861 ± 297 * 619868 ± 2212 * 624385 ± 203 624218 ± 203 �2p , �2(N−Z)

(32, 55) * 719433 ± 237 721976 ± 1353 – * 718789 ± 410 719272 ± 237 �2n, �2(N−Z)

(33, 55) * 733407 ± 256 735628 ± 1530 738781 ± 2351 * 732688 ± 394 733193 ± 256 �2n, �2(N−Z)

(36, 33) 561880 ± 486 561002 ± 1513 – 565048 ± 294 564201 ± 1548 �2n, �2(N−Z)

(36, 34) * 580478 ± 192 * 582467 ± 2134 – 580221 ± 276 580395 ± 192 �2n, �2(N−Z)

(36, 62) 806662 ± 366 807701 ± 185 – 805037 ± 1328 807490 ± 552 �2n, �2p

(36, 63) 808943 ± 422 811736 ± 540 – 811516 ± 78 811431 ± 1659 �2n, �2(N−Z)

(37, 35) * 592557 ± 489 * 594706 ± 1896 – 593650 ± 362 593264 ± 362 �2n, �2(N−Z)

(38, 64) 846621 ± 1136 845897 ± 155 – 846966 ± 256 846184 ± 521 �2p , �2(N−Z)

(40, 38) – * 642144 ± 166 – 642129 ± 151 642136 ± 151 �2p , �2(N−Z)

(40, 42) 694171 ± 4774 694590 ± 230 694624 ± 145 696013 ± 1606 694614 ± 145 �2p , �2α

(42, 70) 928505 ± 382 928726 ± 2999 – 929351 ± 271 929068 ± 271 �2n, �2(N−Z)

(45, 74) 988066 ± 193 * 986373 ± 1081 * 986234 ± 1019 * 987801 ± 216 987949 ± 193 �2n, �2(N−Z)

(45, 75) 991514 ± 260 * 990420 ± 1214 * 991092 ± 2681 * 991504 ± 176 991507 ± 176 �2n, �2(N−Z)

(48, 48) * 797281 ± 190 * 793119 ± 175 – * 795277 ± 1121 795033 ± 1499 �2n, �2p

(48, 83) – *1080376 ± 381 – *1084581 ± 197 1083690 ± 2209 �2p , �2(N−Z)

(49, 84) *1097714 ± 232 *1095129 ± 400 – *1102390 ± 87 1101543 ± 4276 �2n, �2p , �2(N−Z)

(50, 51) * 835352 ± 287 * 836267 ± 295 – * 835137 ± 117 835299 ± 646 �2n, �2p , �2(N−Z)

(52, 52) * 848264 ± 323 * 852185 ± 353 – * 850904 ± 194 850562 ± 1532 �2n, �2p , �2(N−Z)

(52, 87) *1138134 ± 1243 1140623 ± 270 – *1140110 ± 265 1140362 ± 265 �2p , �2(N−Z)

(53, 85) *1144407 ± 1509 1143992 ± 221 1144890 ± 266 *1142366 ± 2237 1144358 ± 355 �2p , �2α

(58, 94) 1240393 ± 202 1241112 ± 409 – 1242205 ± 155 1241501 ± 738 �2n, �2p , �2(N−Z)

(60, 68) 1047404 ± 187 1049530 ± 2129 – 1046496 ± 93 1046674 ± 487 �2n, �2(N−Z)

(60, 95) 1268120 ± 682 1266702 ± 277 1266251 ± 423 1266860 ± 771 1266566 ± 277 �2p , �2α

(61, 70) 1070175 ± 395 1070384 ± 762 – 1068999 ± 333 1069488 ± 458 �2n, �2(N−Z)

(61, 71) 1079011 ± 1534 1080538 ± 1146 1079524 ± 388 1079127 ± 303 1079277 ± 303 �2α , �2(N−Z)

(62, 70) – 1072374 ± 446 – 1072246 ± 122 1072254 ± 122 �2p , �2(N−Z)

(62, 71) 1081835 ± 1800 1081867 ± 393 – 1082341 ± 181 1082257 ± 181 �2p , �2(N−Z)

(62, 72) 1094145 ± 2024 1094109 ± 362 1094870 ± 209 1094296 ± 165 1094471 ± 266 �2p , �2α , �2(N−Z)

(62, 98) 1302650 ± 448 1302344 ± 214 – 1302713 ± 1063 1302401 ± 214 �2n, �2p

(63, 72) – 1094922 ± 283 – 1093656 ± 499 1094614 ± 638 �2p , �2(N−Z)

(63, 74) 1117498 ± 3591 1116361 ± 210 1117409 ± 344 1115580 ± 695 1116645 ± 509 �2p , �2α

(64, 74) 1120095 ± 3568 1119918 ± 109 – 1119650 ± 144 1119820 ± 109 �2p , �2(N−Z)

(64,100) 1333063 ± 248 1332671 ± 328 1333134 ± 489 1334078 ± 641 1332950 ± 248 �2n, �2p , �2α

(64,101) 1337977 ± 453 1337702 ± 295 – 1338532 ± 730 1337784 ± 295 �2n, �2p

(65,100) 1341837 ± 190 1341306 ± 491 1339899 ± 757 1342848 ± 424 1341928 ± 613 �2n, �2p , �2(N−Z)

(67,105) 1387302 ± 333 1387183 ± 498 1385586 ± 1250 1388720 ± 385 1387762 ± 639 �2n, �2p , �2(N−Z)

(68,105) 1396784 ± 436 1398240 ± 323 1397201 ± 58 1398343 ± 161 1397349 ± 663 �2n, �2p , �2α , �2(N−Z)

(68,106) 1403282 ± 249 1404464 ± 609 1404991 ± 357 1404826 ± 129 1404544 ± 841 �2n, �2α , �2(N−Z)

(69,108) 1422022 ± 184 1423137 ± 998 – 1422893 ± 93 1422716 ± 463 �2n, �2(N−Z)

(69,109) 1426615 ± 361 1428561 ± 1044 – 1427412 ± 474 1426908 ± 361 �2n, �2(N−Z)

(70,109) 1436405 ± 360 1435954 ± 1439 1436501 ± 103 1435908 ± 635 1436494 ± 103 �2n, �2α

(71, 83) *1227402 ± 438 1227271 ± 471 – *1226192 ± 779 1227341 ± 438 �2n, �2p

(71,110) 1450595 ± 425 1448160 ± 1502 1450074 ± 93 1450005 ± 593 1450097 ± 93 �2n, �2α

(72, 85) 1249894 ± 187 1249664 ± 319 – 1250965 ± 638 1249835 ± 187 �2n, �2p

(73, 85) 1250003 ± 404 1249843 ± 497 – 1250054 ± 235 1250013 ± 235 �2n, �2p , �2(N−Z)

(74, 87) 1271494 ± 365 1272211 ± 113 – 1272571 ± 361 1272183 ± 459 �2n, �2p , �2(N−Z)

(75, 87) 1271867 ± 492 1271718 ± 302 – 1270835 ± 507 1271759 ± 302 �2n, �2p

(75, 92) 1324297 ± 207 1324669 ± 311 1323990 ± 403 1325523 ± 1207 1324346 ± 207 �2n, �2p , �2α

(75,118) 1529546 ± 345 *1529841 ± 1167 *1530772 ± 2269 *1530133 ± 429 1529776 ± 345 �2n, �2(N−Z)
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TABLE I. (Continued).

Nucleus Estimates of binding energies (keV) Average (keV) Applied relations

(Z, N ) �2n �2p �2α �2(N−Z)

(76, 89) 1293730 ± 390 1293974 ± 229 – 1294570 ± 340 1294078 ± 229 �2n, �2p , �2(N−Z)

(77, 88) 1282791 ± 307 1283328 ± 429 – 1281841 ± 531 1282973 ± 307 �2n, �2p

(77, 93) 1335380 ± 180 1335618 ± 220 1335199 ± 400 1336152 ± 643 1335446 ± 180 �2n, �2p , �2α

(78, 91) 1314656 ± 761 1315246 ± 242 – 1314896 ± 292 1315104 ± 242 �2p , �2(N−Z)

(79, 90) 1303813 ± 240 1304075 ± 282 – 1303200 ± 380 1303787 ± 391 �2n, �2p , �2(N−Z)

(79, 95) 1356317 ± 297 1356279 ± 181 – 1355432 ± 528 1356290 ± 181 �2n, �2p

(80, 93) 1335989 ± 479 1336045 ± 258 – 1336382 ± 448 1336104 ± 258 �2n, �2p , �2(N−Z)

(80,131) – *1644785 ± 366 – *1643683 ± 294 1644115 ± 447 �2p , �2(N−Z)

(81, 97) 1377933 ± 406 *1377553 ± 446 – *1377229 ± 220 1377415 ± 220 �2n, �2p , �2(N−Z)

(82, 94) 1346745 ± 126 *1347085 ± 243 *1346991 ± 1303 *1347653 ± 636 1346817 ± 126 �2n, �2p

(82, 95) 1356385 ± 434 *1356892 ± 452 – *1357465 ± 853 1356628 ± 434 �2n, �2p

(83, 98) – *1389816 ± 321 *1390047 ± 488 *1391306 ± 1084 1389886 ± 321 �2p , �2α

(84, 96) – *1366448 ± 262 – *1366742 ± 156 1366665 ± 156 �2p , �2(N−Z)

(84, 98) – *1389136 ± 311 *1388890 ± 132 *1389155 ± 80 1389087 ± 80 �2p , �2α , �2(N−Z)

(84, 99) – *1399474 ± 424 *1398674 ± 463 *1398201 ± 227 1398514 ± 640 �2p , �2α , �2(N−Z)

(84,140) – 1712129 ± 227 – 1711176 ± 253 1711704 ± 352 �2p , �2(N−Z)

(84,141) – 1715816 ± 384 – 1714216 ± 141 1714407 ± 939 �2p , �2(N−Z)

(84,142) – 1720838 ± 290 – 1719998 ± 55 1720027 ± 541 �2p , �2(N−Z)

(84,143) – 1724348 ± 237 – 1723840 ± 270 1724127 ± 237 �2p , �2(N−Z)

(86,103) – *1438847 ± 349 – *1438645 ± 271 1438721 ± 271 �2p , �2(N−Z)

(86,144) 1747230 ± 93 1747198 ± 173 – 1746714 ± 170 1747127 ± 276 �2n, �2p , �2(N−Z)

(86,145) 1751216 ± 89 – – 1750244 ± 110 1750834 ± 393 �2n, �2(N−Z)

(87,111) 1520866 ± 442 *1519842 ± 1133 *1520530 ± 312 *1520839 ± 1472 1520642 ± 312 �2n, �2α

(88,146) 1772938 ± 147 – – 1771596 ± 496 1772829 ± 822 �2n, �2(N−Z)

(90,116) 1572224 ± 841 1572457 ± 1181 1572136 ± 212 1572279 ± 167 1572224 ± 167 �2α , �2(N−Z)

(90,117) 1580086 ± 1803 1581275 ± 1135 1580703 ± 450 1580524 ± 489 1580621 ± 450 �2α , �2(N−Z)

(90,147) 1791915 ± 232 – – 1792436 ± 256 1792150 ± 232 �2n, �2(N−Z)

(92,123) – 1641179 ± 2031 1638388 ± 342 *1639006 ± 358 1638683 ± 342 �2α , �2(N−Z)

(92,149) 1816700 ± 422 – 1816384 ± 247 – 1816465 ± 247 �2n, �2α

(94,131) – 1706355 ± 424 – 1705431 ± 131 1705512 ± 562 �2p , �2(N−Z)

(94,132) 1714752 ± 162 1714640 ± 303 – 1714508 ± 50 1714531 ± 50 �2n, �2p , �2(N−Z)

(94,154) 1856744 ± 85 1856600 ± 359 – – 1856736 ± 85 �2n, �2p

(95,132) – 1715359 ± 480 – 1714860 ± 254 1714969 ± 254 �2p , �2(N−Z)

(96,134) – 1734758 ± 458 – 1734312 ± 174 1734368 ± 174 �2p , �2(N−Z)

(96,136) 1751675 ± 294 – 1752023 ± 382 1750297 ± 415 1751444 ± 765 �2n, �2α , �2(N−Z)

(98,140) 1786792 ± 243 1787021 ± 237 1786900 ± 712 – 1786909 ± 237 �2n, �2p

(100,144) 1822301 ± 819 1821948 ± 172 1822088 ± 327 – 1821979 ± 172 �2p , �2α

The terms in Eq. (1) do not necessarily constitute a complete
expression for the binding energy. Additional overlooked or
unknown effects might also contribute in different ways.
However, we expect that any such neglected but significant
effects will produce a clear deviation from the systematic
results and thereby reveal itself. This will be considered in
relation to the actual numerical results presented in Sec. IV.

B. Manipulating the binding energy

A flexible method to manipulate binding energies was
discussed in Ref. [15] with the aim of isolating specific
contributing effects. A possibility is then to study individual
effects in relative isolation. However, this flexibility also
indirectly enables the extrapolation of unknown binding
energies. The idea is to combine separation energies in a

manner reminiscent of a second-order difference.

Q(n1, z1; n2, z2) = −S(N − n1, Z − z1) + 2S(N,Z)

− S(N + n1, Z + z1). (2)

The separation energy of n2 neutrons and z2 protons in any
isotope is given as a difference between binding energies,

S(N,Z) = B(N,Z) − B(N − n2, Z − z2). (3)

Calculating Q using Eqs. (1) and (3) results in an expression
for Q, which like the original expression for B in Eq. (1), can
be separated in three terms, i.e.,

Q = QLD + Qsh + Q�. (4)

Depending on the chosen (n1, z1; n2, z2), some terms will be
diminished while others will be emphasized. The contributions
from the last two terms in Eq. (4) vary greatly in size
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depending on the chosen (n1, z1; n2, z2), but common for all
configurations is the fact that the smooth terms are almost
completely eliminated. Interpreting the discrete variables N
and Z as global, continuous variables automatically results in
an elimination up to and including the second order in the
Taylor expansion of the smooth terms around (N,Z). The
leading-order contribution to continuous functions, B̃ and Q̃,
which are analogous to B and Q, is then third order in the
Taylor expansion, that is,

Q̃ = − ∂3B̃

∂N2∂Z
n1(n1z2 + 2n2z1) − ∂3B̃

∂N3
n2

1n2

− ∂3B̃

∂Z3
z2

1z2 − ∂3B̃

∂N∂Z2
z1(n2z1 + 2n1z2), (5)

as seen by direct expansion. This remaining contribution will
always be present for smooth functions when mass relations
based on Eq. (2) are constructed. It either has to be corrected
for or included in accuracy estimates.

By severe reduction of the smooth contributions to a size
like in Eq. (5), other effects would stand out. Desired effects
then can be emphasized by suitably chosen configurations
(n1, z1; n2, z2). The shell effect, in particular, will figure
prominently in certain parts of the nuclear chart, and the
validity of some extrapolations in these areas therefore will
be more doubtful. However, lacking an accurate expression
for the general contributions from shell effects, it is difficult to
construct appropriately corrected mass relations. Moreover,
any expression describing shell effects would be another
source of error in the extrapolations. Thus, we shall not attempt
to account for the shell effects, although perhaps detect their
presence by observing systematic deviations.

Instead of the separation energies in Eq. (2) we can use
similar combinations arising from Qα values, that is, for
n2 = z2 = 2,

S(N,Z) − B(4He) = −Qα. (6)

The advantage is that Qα sometimes is much more accurately
known than nuclear masses themselves, and this is especially
pronounced for superheavy nuclei. This observation is very
well established by the experimental techniques where masses
are measured relative to other masses. It is then possible to use
Eq. (2) with Qα values, which leads to

Q = Q + B(4He) − 2B(4He) + B(4He)

= Qα(N − n1, Z − z1) − 2Qα(N,Z)

+Qα(N + n1, Z + z1). (7)

Other types of conclusions may then become possible from
Qα relations, as, in addition to the better accuracy, only three
measured values enters Eq. (7) in contrast to the four terms
arising from Eqs. (2) and (3).

C. Constructing specific mass relations

The aim is to find a reliable extrapolation of binding
energies through the mass relations in Sec. II B. This is
accomplished by carefully choosing the configuration in
Eq. (2) such that the result ideally is zero. If in a certain area
of the nuclear chart, limited only by the available measured

isotopes, a mass relation is prone to return the value zero, it
is reasonable to assume this tendency would continue beyond
the known isotopes. Unknown binding energies can then be
calculated directly from a given mass relation. However, such
extrapolation is reliable only if the chosen mass relation in fact
eliminates all contributions from the binding energy in Eq. (1).
Even then care has to be taken to avoid outlandish results.

Many mass formulas have a tendency to deviate signifi-
cantly when extrapolating outside the experimentally known
region [13]. The present method does not rely on a specific
form of a mass formula. However, Eq. (2) allows for an endless
number of possible mass relations by choosing (n1, z1; n2, z2)
accordingly, and using too great values for ni and zi would
make the approximation of Eq. (2) as a derivative less accurate.
The likelihood of combining different effects in the result in-
creases when combining isotopes farther apart, and the extrap-
olation would also be less accurate. Similarly, the mass relation
could be chosen to eliminate the smooth parts to any order
desired. Unfortunately, this would also come at the expense of
reliability since isotopes farther apart would be required.

We therefore only apply mass relations where ni and zi

never are larger than 2. Furthermore, to avoid the quickly
varying pairing contribution, we choose to compare nuclei of
the same odd-even character. In total, we use here four mass
relations where ni and zi are 0 and 2. They combine nuclei
with fixed N , Z, A = N + Z, and N − Z, respectively, which
is defined by

�2n(N,Z) = Q(2, 0; 2, 0)

�2p(N,Z) = Q(0, 2; 0, 2)

�2α(N,Z) = Q(2, 2; 2, 2)

�2(N−Z)(N,Z) = Q(2,−2; 2,−2). (8)

The actual nuclei in these four mass relations can be seen
in Fig. 1, where the original six nuclei from Eqs. (2) and
(3) reduce to only four with different weights. These four
mass relations should, ideally, completely eliminate any
contributions from pairing effects. Of course, the actual
results will not be so idealized and will, at the very least,
include remnants of the smooth term. Some minor pairing
contribution might still remain, since no systematic theory
can account for all these effects, as discussed by Friedman
et al. [18]. Still, the combinations shown in Fig. 1 seem

FIG. 1. The physical structures of the four mass relations in
Eq. (8). The weights assigned to the different isotopes reflect the
concatenation of the six terms from Eqs. (2) and (3) into four.
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intuitively to be more likely to add up to zero and thereby
provide useful mass relations for the extrapolations.

III. EXTRAPOLATIONS

The actual analysis is divided into two subsections. First,
the results are examined individually by applying the four
mass relations to the available measurements of binding
energies. The tendencies are discussed to emphasize the
relevant structures and provide insight into the viability of
the general method. The areas accessible to the mass relations
will also be determined in the process. The measurements are
from Audi and Meng [19] for isotopes in their ground state
with nucleon number, A, spanning 0–295.

Second, the mass relations are applied to Qα values with
the purpose of analyzing general structures found among the
superheavy elements. The measurements of Qα are also from
Audi and Meng [19]; unfortunately, they are not necessarily
of isotopes in their ground state.

A. Procedure and general behavior

The general method described in Sec. II C is idealized and
constitutes the simplest and most obvious way to perform the
extrapolations. However, a slightly more complicated proce-
dure is applied to increase accuracy and estimate uncertainty.
The fundamental idea is still to combine four different isotopes
horizontally, vertically, or diagonally.

First, the mass relation is tested locally, that is, with
�2n as the example and (N + 2, Z) as the unknown, we
compute �2n(N − 2, Z), �2n(N − 4, Z), and �2n(N − 6, Z).
Each would be zero if the mass relation is exactly obeyed.
A systematic tendency in the region can be accounted for
by computing the nonzero average value which is used for
�2n(N,Z) in the prediction of the unknown (N + 2, Z)
binding energy. Obviously, a systematic tendency is then
accounted for in the prediction, which, furthermore, now has
an extrapolation uncertainty attached from the spread around
the average value of the mass relation.

With the diagonal relations (�2(N−Z) and �2α) it is
impossible to calculate an average based on three preceding
values. This would reduce the available extrapolations almost
to none. Instead, only the immediately preceding value is used
for �2(N−Z).

The uncertainties of the actual extrapolations have two gen-
eral sources. The uncertainties in the measurements combine
with the uncertainty of the predicted (nonzero) average value.
Since this expected average is based on three different, but
overlapping, applications of the mass relation, this statistical
error is the combination of six different uncertainties in
measurements. Depending on the specific isotopes, and how
well they have been measured, this uncertainty can at times be
very significant.

Recently, it has been suggested by Olofsson et al. [17] that
the distribution of binding energies inherently is, at least partly,
chaotic in nature. This is still subject to discussion as Molinari
and Weidenmüller [16] interpret the results as being due to
residual interactions in the shell model. However, to account
for any (chaotic) fluctuations, the variation of the average

value, computed from the three mass combinations, must be
included in the final uncertainty of the extrapolated value.

To achieve this we combine the two different contributions
to the uncertainty, that is, from measurement and average.
Thus, ri ±

√
s2
i + v2

i = ri ± σi , where i labels the applied
relation, ri is the extrapolated value, si is the measurement
uncertainty, vi is the variation, and σi is the final uncertainty
of the extrapolation. The applicability of this extrapolation
method has limits, and some energies cannot be meaningfully
extrapolated. Consequently, only results where σ < 500 KeV
are included, since otherwise the extrapolated values are too
uncertain to be of interest.

We now proceed to investigate the systematic behavior of
the mass relations. The results from all four mass relations are
shown in Figs. 2 and 3. The most prominent visible features
arise from the shell effects around the more or less magic
numbers. Whenever a shell crossing is involved, a significant
deviation from the surrounding binding energies appear. How
the mass relation is positioned relative to the shell defines both
the sign and the scale of this deviation.
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FIG. 2. (Color online) The vertical relation �2p with the horizon-
tal relation �2n below applied to all isotopes with A > 30. The color
scale is in keV and extrapolated isotopes are in black.
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FIG. 3. (Color online) The two diagonal relations, �2α above and
�2(N−Z) below applied to all isotopes with A > 30. The color scale
is in keV and extrapolated isotopes are in black.

Consequently, because the binding is amplified by the +3
coefficient on the (N,Z) value (see Fig. 1), a mass relation
computed for a magic number (N,Z) must be significantly
greater than for neighboring isotopes. A mass relation centered
one or possibly even two nucleons before a shell should also
have a noticeably greater outcome, though not to the same
extent. Similarly, a relation centered two or three nucleons
after a shell would have a noticeably smaller outcome, since
the −3 coefficient in the relation would be closer to the shell
and would, therefore, dominate over the +3 contribution. If
the relation was centered just after a magic number, the −3 and
+3 coefficients would probably cancel, and the result might
appear as if unaffected by shells altogether.

Generally, it is tempting to assume that the extrapolations
will be more exact in regions with heavier isotopes, where
changes from isotope to isotope are more gradual. If the
changes are more gradual, the expected outcome should pre-
sumably be more reliable, as the binding energies themselves
would fluctuate less. This can also be reflected in the attached
uncertainties.

B. Results from individual mass relations

The �2n and �2p relations are shown in Fig. 2. They
combine nuclear masses only horizontally and vertically
in the N -Z diagram. They are, therefore, well suited for
extrapolations beyond neutron and proton drip lines but less
well suited for the narrow strips of superheavy elements. These
two mass relations are also sensitive only to their own type of
shell effects, as seen in the figures. This confirms again the
near independence of neutron and proton shell fillings. The
very light isotopes have been omitted, because they disrupted
the energy scale and made minor energy changes less obvious.
Their binding energies and structure are, in any case, strongly
varying and any meaningful extrapolation would be close to
impossible.

The most prominent features in the �2p relation on Fig. 2
are the shells at Z = 50, and 82, but also the shell at Z = 28 is
clearly visible. The trace of these shells extend over numbers
corresponding to the range of the mass relations. As expected,
the influence is positive below and negative above the shells.
This symmetry extends to both sides of a shell and is reflected
in the size as well. The absolute values at the shells vary but is
always greater than 1 MeV and often ∼2–4 MeV. The results
for (N,Z) and (N,Z − 2), when located at the shell, are nearly
identical with opposite sign, which, again, demonstrates the
symmetry of the shell effect.

It is also interesting to note how neutron shells are visible
only with �2p at a proton shell; otherwise, the mass relation is
very small. This emphasizes how exclusively �2p is concerned
with effects relating to protons. The neutron and proton shells
are, to a large extent, away from drip lines, filled independently.
The region around Z = 40, where N > 50, shows many
characteristics otherwise found in shells. There is an increase in
energy just before Z = 40 and a decrease in energy afterwards,
with a slight fluctuation at Z = 40, which is similar to the shell
at Z = 82. The energy changes are less pronounced than for
other shells and the energy changes are also less well defined.
Nevertheless, the general smooth behavior in the region is
clearly disrupted, and the result is compatible with Z = 40 as
the most prominent subshell.

Overall, the �2p relation has, away from shells, a very
pronounced tendency to more or less vanish. In particular,
the region beyond the Z = 50 shell is smooth and typically
less than 500 keV numerically. Extrapolations from this
region should then be very reliable. This claim will be
carefully investigated in Sec. IV, where we also compare to
extrapolations from other mass relations.

The results in Fig. 2 from �2n are incredibly similar in
most regards to the results for �2p. The same tendency to
complete cancellation is observed, though the remains are
typically less than 300 keV when evaluated numerically.
Actually, every visible feature appears more distinctly. The
shells at N = 28, 50, 82, and 126 are not only obvious but
also sharply defined and confined to the area immediately
surrounding the shells. The symmetry around the shell itself is
also still present, and it is as clear as for protons. The size of the
shell deviations are ∼2–4 MeV, again, very much comparable
to the �2p results.

More interesting is the region around (Z,N ) = (40, 60),
where, once again, a deviation is visible. The same region
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where the Z = 40 subshell was visible with �2p now shows a
deviation with �2n. This is particularly interesting considering
that none of the major proton shells are visible away from a
neutron shell, which suggest that this is not solely a shell
effect. The deviation has some similarities with the other
shells, but it still decisively differs from an ordinary shell.
Most strikingly, the energy first increases, then decreases, and
then increases again, which suggests that this effect arises from
a more complicated structure than a regular shell effect.

As an example of a possible use of these mass relations,
we look into this mass region in a little more detail.
Figures 2(a) and 2(b) clearly show shell structures around
(Z,N) = (40, 58). First, the neutron shell at N = 58 is
less prominent than the well-established major shells but
nevertheless unmistakingly recognized by the mass relations
deviating from zero. This observation of a neutron subshell for
N = 58, 60 is discussed in Ref. [20].

These shells for Z = 40 and N = 58 do not extend through
all the known isotopes. For Z = 40, the structure is absent
for N < 49 and present for 49 < N < 63. For N = 58, the
structure is absent for Z > 42 and present for 38 < Z < 42.
The explanations can be found by inspecting the fillings of the
corresponding neutron and proton shells. For nucleon numbers
between 40 and 50, the g9/2 shell is only partly occupied.
Adding more nucleons requires occupation of other shells,
that is, g7/2, d5/2, and possibly s1/2. The neutron shell at
N = 58 then disappears when Z increases beyond 42. This
is precisely when at least four protons occupy the g9/2 shell,
which, therefore, wants to deform to avoid the degeneracy.
The neutron shell is not sufficiently strong to prevent this
deformation. For Z = 40, the proton shell is only visible for
N larger than 48, which is when the rather close-lying g7/2

and d5/2 levels begin to be occupied. The gain in neutron
deformation energy is not sufficient to overcome the rather
strong spherical proton shell effect. The reason is that the
neutron single-particle level density changes only relatively
little with modest deformation.

The results from using the diagonal relations for �2α

and �2(N−Z) are presented in Fig. 3. The �2α relation is
oriented diagonally towards the heavy isotopes in the chart of
nuclides. It therefore should be able to extrapolate to heavier
isotopes than any of the other mass relation. Unfortunately,
this orientation also rather strongly confines it to the isotopes
at the heavy end of known isotopes.

The shells are again very pronounced, but now all the
structures from both �2p and �2n appear in �2α . It is
interesting to notice how the neutron shells are more sharply
defined than the proton shells, as it also appeared when
comparing the results of �2p and �2n. Not surprisingly, the
deviation around (Z,N ) = (40, 60) is even more prominent
here, but also the area around (Z,N) = (60, 92) shows a
rather strong deviation from zero. This deviation could also
be detected with �2n, albeit more faintly, but it was almost
invisible with �2p. A clear and significant effect in this mass
region is, therefore, somewhat surprising, but it demonstrates
how well �2α detects the more elusive tendencies.

As �2α includes more effects than �2p and �2n, the results
also vary much more. The reliability of any extrapolated result
might therefore be questionable. This objection is legitimate

for extrapolations involving several different shells. However,
away from shells the fluctuations around zero are generally
less than 500 keV. In particular, a promising mass region with
smooth behavior is N > 126 and Z > 82. For heavy or super-
heavy isotopes the results should be as reliable as with �2p or
�2n at the drip lines. This suggests interesting extrapolations
with �2α in the less accessible region of heavy or superheavy
nuclei.

Finally, the other diagonal relation, �2(N−Z), is shown in
Fig. 3. Unfortunately, it is oriented perpendicularly to the rather
narrow strip of measured masses. The number of isotopes
to which this relation can be readily applied is, therefore,
rather limited. On the other hand, it points directly towards
the boundary of the known nuclear territory, which then
should allow extrapolations coinciding with �2n and �2p.
However, the general behavior is the same as with �2α , and
both proton and neutron shells are clearly visible. This limits
the possibilities for reliable extrapolations.

These discussions suggest that the mass relation with the
largest extrapolation potential seem, to be the �2n relation. It
generally cancels completely, and is affected by few unpre-
dictable effects, and it sharply defines the neutron shells. The
same is true for the �2p relation, although its nature is slightly
more erratic. The diagonal relations �2(N−Z) and �2α should
be as reliable as �2n or �2p, but more care must be taken when
applying them, as they are more often influenced by shells.

Viewed collectively, the results unanimously corroborate
the predictions from Sec. II, which, in turn, indicates that the
initial division of the binding energy in the three characteristic
terms is well founded.

C. Evaluations with Qα values

The available measurements of Qα values extend to far
heavier isotopes than the binding energies, although recent
developments at SHIPTRAP [21] in measuring absolute
masses may allow for more extensive use of our method in the
future. Qα therefore can provide greater insight into the nature
of the superheavy isotopes. Applying Qα values as outlined in
Eq. (7) has a number of advantages. Not only are they measured
to a higher nucleon number, but Eq. (7) employs only three
different measurements, which gives a more compact relation,
more likely to be applicable. Unfortunately, the measured Qα

values do not necessarily relate to ground-state configurations.
The specific state, in particular, among the superheavy iso-
topes, are usually unknown. This fact alone makes it very
difficult to extrapolate binding energies accurately from chains
of connected Qα measurements. As a consequence, we shall
only use the results to shed light on the general tendencies of
the binding energies in the superheavy region.

The results for the superheavy region are displayed in Fig. 4
for both �2α and �2n relations. We notice, first, a rather clear
picture of the deviation from zero around the known high-end
shells at N = 126 and Z = 82. The size of the deviations is
∼2–4 MeV, both positive and negative.

Otherwise, the most interesting feature in Fig. 4, visible
with both �2α and �2n, is the systematic nonzero values
around N = 152. This deviation extend through all evaluations
with �2α , and with �2n significant positive deviations are also
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FIG. 4. (Color online) Results of evaluating Qα values with the
�2α relation above and the �2n relation below. The evaluations are
confined to the superheavy isotopes. The color scale is still in keV.

visible. This is exactly the behavior expected from a minor
shell, and with �2n the deviations are even symmetric around
the shell. The size of the deviations are ∼1 MeV, so it is
rather weak compared with other shells. This is not surprising
considering the nucleon number it occurs at, but these features
definitely corresponds to that of an ordinary shell. On the other
hand, no other shell effect appears, even though the continued
increasing stability demonstrate that some shell effects provide
the necessary smaller binding energy.

IV. EXTRAPOLATED BINDING ENERGIES

We shall compare the results from different extrapolations
and define a suitable average leading to better accuracy.
Any systematic discrepancies between the individual relations
should be accentuated by such a combination. Particularly
interesting are applications in the region where Z > 82 and
N < 126, which is less known. The estimations presented
by Audi and Meng [19], for instance, diligently cover most

of the chart of nuclides except for this specific area. After
the general discussion we shall provide tables of extrapolated
nuclear binding energies.

A. Improving the accuracy

The individual extrapolations are all legitimate attempts
at estimating the binding energy of unknown isotopes. In
the landscape of binding energies, each linear mass relation
can be seen as approaching the unknown isotope from a
different direction. A single mass relation cannot be expected
to provide perfect predictions, because of the fluctuating,
possibly chaotic, nature of the binding energy. However,
if a particular isotope could be approached from several
different directions, the expected fluctuations could be viewed
from several sides, which would provide a clearer image of
the given isotope. In other words, if an isotope could be
extrapolated by several different mass relations, the results
could be either examined and used to select the most accurate
of the extrapolations or be combined to provide a much more
reliable estimate of the binding energy.

Comparing different extrapolations would also examine the
legitimacy of the method itself. If different extrapolations for
the same isotope deviated significantly, it could cast doubt on
the entire procedure. Different mass relations will, of course,
involve shells or other influencing factors at different isotopes,
and care must be taken when comparing the extrapolations.

There are several considerations to bear in mind when
combining extrapolations based on different mass relations.
Both when selecting or prioritizing particular extrapolations,
and when calculating an appropriate uncertainty for the final
result. To avoid confusion, the exact procedure leading to the
recommended results first will be explained in some detail.

First, it is vital that the individual extrapolations seem
reliable and have a certain degree of precision. To accom-
modate these requirements only extrapolations with a limited
uncertainty, specifically extrapolations where σi < 500 KeV,
are included in the calculated average. However, to demon-
strate the possible fallibility of the individual mass relations
in certain areas, all extrapolations of relevant isotopes, even if
unused, are included in Table I. The final column in Table I
lists the mass relations used in the calculated average.

The actual weighted average is calculated in stages both to
account for known effects such as shells and to detect general
deviations. First, we use all extrapolations with σi < 500 KeV
to provide ri ± σi . Second, we define the relation

fi = |ri − r|
σi

, (9)

where r denotes the average and ri is the individual extrapola-
tion. If max(fi) < 3/2, then the individual extrapolations are
within an acceptable range of the average, and the uncertainty
for the average value is defined as σ = min(σi).

Otherwise, if max(fi) > 3/2 the individual extrapolations
differ too greatly from the average result, and the computed
average has little meaning. Any extrapolations involving shell
crossings or crossing the N = Z-line often differs from the
general tendencies, as apparent from Figs. 2 and 3. These
results are marked with an asterisk in Table I and are considered
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less reliable. The marked extrapolations are then excluded, and
a new, more plausible, average is calculated. Based on this
average, a relation similar to the one presented in Eq. (9) is
defined, though now obtained by fewer extrapolations. Once
again, if max(fi) < 3/2, then the uncertainty is defined as
σ = min(σi).

The extrapolations may be incompatible as in the neigh-
borhood of closed shells or by crossing the N = Z line. A
meaningful uncertainty then is defined as σ = 2/3 max(|ri −
r|), where ri only includes the extrapolations used in the
final calculation of r . As a consequence of this procedure,
some results might be based on a single extrapolation, even
though multiple mass relations have estimated the isotope.
The other available extrapolations could, for instance, involve
a shell crossing and would then be discarded if the initial
results were incompatible. Actually, some isotopes, which
have been estimated by several mass relations, might not have a
meaningful resulting average at all, if all the extrapolations had
an uncertainty exceeding 500 keV. The isotopes in both cases,
those with either an average based on a single extrapolation
or no average at all, have been omitted from Table I, as they
provided no relevant information.

B. Numerical results

All the results presented in Table I have merit and provide
some information, though not all will be commented on.
Instead, focus will be on a select few, which demonstrates the
various considerations necessary when evaluating the results.
Though, some general propensities can be seen by observing
the results as a whole.

It is immediately obvious that extrapolations based on �2α

feature a lot less frequently than any of the other mass relations.
The reason is that �2α extrapolates along the stability curve
and towards the superheavy nuclei. This makes it difficult to
compare �2α with any of the other relations as they rarely
coincide. From Table I it is also evident that most results
are calculated based on only two different mass relations.
Of course, a combination based on additional extrapolations
would be preferable, but even if just two are comparable the
result’s credibility would increase greatly.

The applicability of the mass relations in various areas
across the chart of nuclides is demonstrated by the scattered
results. Viewing this erratic distribution collectively, it is
clear that the results are more consistent with a greater
degree of certainty among the heavier isotopes. The difference
between extrapolations with lighter isotopes are typically
∼800 keV, whereas the heavier isotopes often differ with less
than 400 keV. There are also extrapolations with very large
differences, but these are almost exclusively found among the
light nuclei. This tendency was to be expected, as the binding
energy per nucleon generally varies more for lighter isotopes.

The uncertainty connected to the final average value mostly
comes from only one of the relevant extrapolations. This
indicates that the extrapolations generally are compatible and
make the final results more credible. However, some results
are questionable, where the uncertainty has been calculated
based on the distance between extrapolations. For instance,
σ > 1 MeV for (48, 48), (48, 83), (49, 84), and (52, 52) which

makes these results less useful. Such uncertainties are not
surprising in view of the involved isotopes, where, for example,
rapidly varying shell effects are pronounced. On the other
hand, the significant uncertainty of, for instance, (84, 141) is
somewhat more troubling. Considering the involved extrapo-
lations, a better result could have been expected. This goes to
show the volatility of the method in the vicinity of shells and
emphasizes the care that must be taken when analyzing these
results.

Inconsistent results like those are clearly in the minority,
as most have an acceptable uncertainty based on very com-
patible extrapolations. For instance, the averages for (84, 98),
(86, 103), (86, 144), (90, 116), (94, 132), and (94, 154) are
all based on very consistent extrapolations. The benefit of
combining different mass relations is also emphasized when
considering (90, 116), where �2n and �2p have extrapolations
with significant uncertainties. The average is then based on �2α

and �2(N−Z), but the final average value is actually consistent
with the extrapolations based on �2n and �2p.

Results where Z > 82 and N < 126 are perhaps more
interesting. The area defined by these shells has traditionally
been difficult to estimate and isotopes in this area extrapolated
by multiple mass relation deserves special attention. Some of
these extrapolations involve shells and must be viewed with
suspicion. The nine extrapolations in this area are generally
internally consistent, including even those influenced by shells.
They must be used with care, but the remaining majority seem
to be especially reliable. In particular, the results for (90, 116)
and (90, 117) are based on very close-lying extrapolations, and
(90, 116) also have a very reasonable uncertainty.

Actually, it could be argued that the procedure is too
exclusive in certain situations. For instance, the heavier iso-
topes like (90, 117), or, in particular, (98, 140) and (100, 144),
could possibly have included additional mass relations in the
calculations. Here some extrapolations have been excluded
based on their uncertainties, even though the final result agrees
almost perfectly with these extrapolations. The preferred
attitude has been to err on the side of caution, which is why
these extrapolations have been excluded.

To get an indication of whether the averages are reasonable
extrapolations, they are, in Table II, compared with estimates
provided by Audi and Meng [19]. For Z < 64 the deviation
between the estimates are often greater than 1 MeV, which
again indicates that extrapolations are less reliable for light
isotopes. However, for Z > 64, the differences are usually
less than 300 KeV, and the uncertainties are also very much
comparable.

Table II also includes a comparison with 10 nuclei not
included in Audi and Meng’s preliminary mass table. The
measurement of 139Te was done by Hakala et al. [22], whereas
138I, 155Nd, and 160Sm were measured by Van Schelt et al. [23].
The last six isotopes 101Sn, 102Sr, 119Rh, 181Lu, 193Re, and 234Ra
are included in the final version of Ame2012 [24]. There is
a significant difference between the extrapolations of 101Sn,
139Te, and 160Sm and the measured values. The extrapolations
in these cases includes either the shell Z = 50 or the subshell
Z = 64, which could explain the large deviation. Shell effects
could also explain the not insignificant deviation of 193Re.
On the other hand, the extrapolations of 102Sr, 119Rh, 138I,
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TABLE II. The average of the extrapolated values from Table I compared to estimates by Audi and Meng [19] and to experimental
measurements of 10 nuclei. The differences between the average and both the estimates and the measurements are listed in the final two
columns.

Nucleus Estimates of binding energies (keV) Measured Differences (keV)

(Z, N ) Average Audi and Meng (keV) A & M Expt.

(26, 43) 577422 ± 446 574977 ± 483 – 2445 –
(26, 44) 583561 ± 583 580930 ± 630 – 2631 –
(27, 45) 601378 ± 152 599688 ± 576 – 1690 –
(28, 46) 624218 ± 203 624042 ± 370 – 176 –
(32, 55) 719272 ± 237 721404 ± 522 – −2132 –
(33, 55) 733193 ± 256 735328 ± 440 – −2135 –
(36, 33) 564201 ± 1548 561177 ± 414 – 3024 –
(36, 34) 580395 ± 192 578410 ± 350 – 1985 –
(36, 62) 807490 ± 552 807324 ± 490 – 166 –
(36, 63) 811431 ± 1659 809622 ± 495 – 1809 –
(37, 35) 593264 ± 362 590328 ± 504 – 2936 –
(38, 64) 846184 ± 521 845988 ± 204 845904 ± 70 196 280
(40, 38) 642136 ± 151 639600 ± 468 – 2536 –
(40, 42) 694614 ± 145 694458 ± 164 – 156 –
(42, 70) 929068 ± 271 928704 ± 336 – 364 –
(45, 74) 987949 ± 193 988176 ± 238 988104 ± 9 −227 −155
(45, 75) 991507 ± 176 992160 ± 240 – −653 –
(48, 48) 795033 ± 1499 792864 ± 384 – 2169 –
(48, 83) 1083690 ± 2209 1075117 ± 131 – 8573 –
(49, 84) 1101543 ± 4276 1092861 ± 266 – 8682 –
(50, 51) 835299 ± 646 835977 ± 303 836391 ± 300 −678 −1092
(52, 87) 1140362 ± 265 1141607 ± 417 1141436 ± 4 −1245 −1074
(53, 85) 1144358 ± 355 1144296 ± 138 1144357 ± 6 62 1
(58, 94) 1241501 ± 738 1240776 ± 152 – 725 –
(60, 68) 1046674 ± 487 1046272 ± 256 – 402 –
(60, 95) 1266566 ± 277 1266505 ± 155 1266398 ± 16 61 168
(61, 70) 1069488 ± 458 1069222 ± 131 – 266 –
(61, 71) 1079277 ± 303 1079364 ± 132 – −87 –
(62, 70) 1072254 ± 122 1071576 ± 264 – 678 –
(62, 71) 1082257 ± 181 1081822 ± 133 – 435 –
(62, 72) 1094471 ± 266 1094244 ± 134 – 227 –
(62, 98) 1302401 ± 214 1303360 ± 160 1303142 ± 10 −959 −741
(63, 72) 1094614 ± 638 1094445 ± 270 – 169 –
(63, 74) 1116645 ± 509 1116550 ± 137 – 95 –
(64, 74) 1119820 ± 109 1119456 ± 138 – 364 –
(64,100) 1332950 ± 248 1333484 ± 328 – −534 –
(64,101) 1337784 ± 295 1338315 ± 495 – −531 –
(65,100) 1341928 ± 613 1341615 ± 165 – 313 –
(67,105) 1387762 ± 639 1387352 ± 172 – 410 –
(68,105) 1397349 ± 663 1396802 ± 173 – 547 –
(68,106) 1404544 ± 841 1403136 ± 348 – 1408 –
(69,108) 1422716 ± 463 1422195 ± 354 – 521 –
(69,109) 1426908 ± 361 1426848 ± 356 – 60 –
(70,109) 1436494 ± 103 1436475 ± 358 – 19 –
(71, 83) 1227341 ± 438 1227072 ± 154 – 269 –
(71,110) 1450097 ± 93 1450172 ± 362 1450159 ± 159 −75 −62
(72, 85) 1249835 ± 187 1249563 ± 157 – 272 –
(73, 85) 1250013 ± 235 1249148 ± 158 – 865 –
(74, 87) 1272183 ± 459 1272061 ± 161 – 122 –
(75, 87) 1271759 ± 302 1271214 ± 162 – 545 –
(75, 92) 1324346 ± 207 1324143 ± 0 – 203 –
(75,118) 1529776 ± 345 1529332 ± 193 1529324 ± 38 444 452
(76, 89) 1294078 ± 229 1293930 ± 165 – 148 –
(77, 88) 1282973 ± 307 1283205 ± 165 – −232 –
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TABLE II. (Continued).

Nucleus Estimates of binding energies (keV) Measured Differences (keV)

(Z, N ) Average Audi and Meng (keV) A & M Expt.

(77, 93) 1335446 ± 180 1335180 ± 170 – 266 –
(78, 91) 1315104 ± 242 1315327 ± 169 – −223 –
(79, 90) 1303787 ± 391 1304004 ± 338 – −217 –
(79, 95) 1356290 ± 181 1356852 ± 174 – −562 –
(80, 93) 1336104 ± 258 1336252 ± 173 – −148 –
(80,131) 1644115 ± 447 1640947 ± 211 – 3168 –
(81, 97) 1377415 ± 220 1378076 ± 178 – −661 –
(84,140) 1711704 ± 352 1712480 ± 224 – −776 –
(84,141) 1714407 ± 939 1716075 ± 225 – −1668 –
(84,142) 1720027 ± 541 1721216 ± 452 – −1189 –
(84,143) 1724127 ± 237 1724519 ± 454 – −392 –
(86,144) 1747127 ± 276 1747080 ± 230 – 47 –
(86,145) 1750834 ± 393 1750749 ± 231 – 85 –
(88,146) 1772829 ± 822 1772784 ± 468 1772949 ± 31 45 −120
(90,147) 1792150 ± 232 1792194 ± 474 – −44 –
(92,149) 1816465 ± 247 1816899 ± 241 – −434 –
(98,140) 1786909 ± 237 1787142 ± 476 – −233 –
(100,144) 1821979 ± 172 1822192 ± 244 – −213 –

155Nd, 181Lu, and 234Ra are very much comparable to the
measured values. Despite the fact that 138-I are very close
to both the Z = 50 and the N = 82 shell, the extrapolation
predicted exactly the value measured. Apparently, the method
can at times be applied near magic numbers.

Figure 5 provides an overview of the differences between
the extrapolated and the measured values as a function of
nucleon number. The three nuclei deviating by more than
500 keV in our extrapolation are influenced by closed shell
or subshell effects, which add to the inaccuracy in the present
type of extrapolation. The other more believable points deviate,
on average, by about 200 keV.

The corresponding extrapolations by Audi and Meng
exhibit a comparable deviation, on average about 130 keV.
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FIG. 5. The differences between our extrapolations and the mea-
sured values where the error bars are based solely on the extrapolated
uncertainties. The crosses indicate the difference between Audi and
Meng’s extrapolations and the measurements.

As seen from Table II their uncertainties are also comparable.
However, shell effects seem included in their extrapolations.

V. CONCLUSION

The ultimate purpose of this paper was to extrapolate new
binding energies, using several mass relations constructed
specifically to this task.

A very general model for describing the binding energy was
assumed based on known contributions. Four relations were
then designed to eliminate as many factors as possible in the
description of the binding energy. The intent was to identify
groupings of isotopes where the mass relation either canceled
completely or showed clear, predictable tendencies. By con-
tinuing these tendencies outcomes could be predicted, and the
binding energy of unknown isotopes could be extrapolated
accordingly.

Four mass relations were defined and applied individually.
The results were used to confirm the predictions of cancellation
of smoothly vanishing aspects and, by extension, to corrob-
orate the initial assumption of dividing the binding energy
in qualitatively different terms. Each of the mass relations
supplied numerous extrapolations, which were scattered across
the chart of nuclides. This scattering demonstrated that the
applicability of the method was not limited to a specific area,
though the results were generally more reliable with heavier
isotopes. Many isotopes were also extrapolated by several mass
relations, which provided several comparable estimates for the
given isotopes. In addition, it allowed for a combined result
based on extrapolations from different mass relations.

When comparing or combining different extrapolations,
some considerations had to be made. Some extrapolations had
too-large uncertainties and were excluded from any calcula-
tions. These extrapolations were considered too unreliable and
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would not improve the final result. If significant discrepancies
were found when calculating the average, any extrapolation
influenced by effects known to be significant was excluded as
well.

Several extrapolations could be combined with these
considerations in mind, and the final results were displayed
in tables where several expected general tendencies were
observed. In particular, results regarding heavier isotopes were
more consistent and more reliable. The unique orientation
of one mass relation along the stability curve resulted in
fewer possible extrapolations comparable with the other three
relations.

Comparisons of extrapolated results, based on any of the
four mass relations, in general showed rather close agreement.
Even when an extrapolation was discarded based on its
uncertainty it was often in close vicinity to the final average.
The extrapolations at higher nucleon number usually differed
by at most ∼400 keV. These averages were consistent with
other estimates, and the uncertainties were of the same
magnitude. On the other hand, the averages seemed much
less accurate for lighter isotopes, and the method is probably
not competitive for these isotopes.

A number of the results in the region where Z > 82 and
N < 126 were acceptable both in consistency and uncertainty.
This is particularly interesting given that this region tradition-
ally is very difficult to estimate. Some results, notably in this
area, were influenced by shell effects and should be handled
with care, but, generally, the calculated averages seemed to be
reliable.

Ten isotopes estimated by combining extrapolations were
measured after Audi and Meng complied their initial informa-
tion. This allowed for a direct evaluation of the accuracy of the
method. The values for most extrapolations corresponded very
well to the extrapolations. Those that deviated significantly
were all in the vicinity of shells or subshells, and the inaccuracy
of the method in such areas is not surprising, as no attempt has
been made to account for these effects. On the contrary, it is
more surprising that the extrapolation of 138I is so accurate as
this isotope is also close to shells.

The greatest fundamental weakness with the presented
method is the use of somewhat removed isotopes. Isotopes
are combined over a significant distance, particularly when
calculating the variation in the tendencies. Combining isotopes
over a greater distance increases the likelihood of combining

unrelated effects. It is difficult to account for the effect of
one isotope being influenced differently than the others in the
extrapolation. The usual approach has been to apply more
compact mass relations. Beginning with the Garvey-Kelson
mass relations, this fear of combining unrelated effects has
been an ongoing concern. However, despite the rather large
span of the mass relations used here, the results are comparable
to the best of other available extrapolations.

Although, applying other, possibly more compact, mass
relations would be the most obvious way to supplement the
results. By combining results from multiple mass relations,
and not just the four applied here, this method also allows
for convenient extensions and improvements. Applying more
complex mass relations could possibly increase the applica-
bility of this method even more. By creating a comprehensive
system of extrapolations based on different relations it would
probably be possible to determine binding energies with still
greater precision and in greater number. The actual binding
energy would be approached from many directions by several
mass relations, and the final result would be all the more
credible.

Even though the extrapolated binding energies might not
be perfectly consistent, the calculated averages should still
be very viable and useful estimates. In particular, results for
isotopes unencumbered by shell effects and the like should be
more than reliable.

Finally, from the evaluations of Q values along the stability
line it was possible to examine general structures in the binding
energy of superheavy isotopes. Here signature of a minor
neutron shell at N = 152 was found. Applying the mass
relation perpendicularly to the stability curve, the behavior
across this neutron number was found to be characteristic of a
closed shell. These findings very clearly suggest there exists a
minor neutron shell at N = 152. It is also striking that no other
shell is revealed in this region which owes its very existence
to stability provided by shell effects.

In conclusion, simple four-nucleus mass relations, where
smooth contributions to the nuclear binding energy vanish to
second order, are used to extrapolate unknown nuclear binding
energies with rather good accuracy. We provide estimates for a
series of different nuclei just outside the region of knowledge
where a good deal of present nuclear research activities are
focused. In particular, we apply the method to the superheavy
region where special Q values are measured very accurately.

[1] D. Lunney, J. M. Pearson, and C. Thibault, Rev. Mod. Phys. 75,
1021 (2003).

[2] M. Block et al., Nature 463, 785 (2010).
[3] G. Audi, A. H. Wapstra, and C. Thibaults, Nucl. Phys. A 729,

337 (2003).
[4] A. Bohr and B. R. Mottelson, Nuclear Structure, Volume I and

II: Nuclear Structure (World Scientific, Singapore, 1998).
[5] W. D. Myers, Droplet of Atomic Nuclei (Plenum, New York,

1977).
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