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as for the competing modes 2νECβ+, 0νECβ+, and 2νECEC, is presented. The calculation makes use of exact
Dirac wave functions with finite nuclear size and electron screening and includes life-times, single and summed
positron spectra, and angular positron correlations.
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I. INTRODUCTION

Double-β decay is a process in which a nucleus (A,Z)
decays to a nucleus (A,Z ± 2) by emitting two electrons or
positrons and, usually, other light particles:

(A,Z) → (A,Z ± 2) + 2e∓ + anything. (1)

Double-β decay can be classified in various modes according
to the various types of particles emitted in the decay. For
processes allowed by the standard model, i.e., the two neutrino
modes: 2νββ, 2νβEC, 2νECEC, the half-life can be, to a good
approximation, factorized in the form[

τ 2ν
1/2

]−1 = G2ν |M2ν |2, (2)

where G2ν is a phase space factor and M2ν the nuclear matrix
element. For processes not allowed by the standard model, i.e.,
the neutrinoless modes: 0νββ, 0νβEC, 0νECEC, the half-life
can be factorized as[

τ 0ν
1/2

]−1 = G0ν |M0ν |2 |f (mi,Uei)|2 , (3)

where G0ν is a phase space factor, M0ν the nuclear matrix
element, and f (mi,Uei) contains physics beyond the standard
model through the masses mi and mixing matrix elements Uei

of neutrino species. For both processes, two crucial ingredients
are the phase space factors (PSF) and the nuclear matrix
elements (NME). Recently, we have initiated a program for
the evaluation of both quantities and presented results for
β−β− decay [1–4]. This is the most promising mode for
the possible detection of neutrinoless double-β decay and
thus of a measurement of the absolute neutrino mass scale.
However, in very recent years, interest in the double positron
decay, β+β+, positron emitting electron capture, ECβ+, and
double electron capture, ECEC, has been renewed. This is due
to the fact that positron emitting processes have interesting
signatures that could be detected experimentally [5]. With this
article we initiate a systematic study of β+β+, ECβ+, and
ECEC processes. In particular we present here a calculation
of phase space factors (PSF). A calculation of nuclear matrix
elements (NME), which are common to all three modes, will
be presented in a forthcoming publication [6].
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Estimates of the transitions rates for β+β+, ECβ+, and
ECEC processes were already given by Primakoff and Rosen
in the 1950s and 1960s [7,8]. Haxton and Stephenson [9]
calculated half-lives for β+β+ including relativistic correc-
tions approximately and some nonrelativistic calculations were
done in the 1980s [10,11]. In the 1990s, this subject was
revisited by Doi and Kotani [12–14] who also presented
a detailed theoretical formulation and tabulated results for
selected cases. At the same time, Boehm and Vogel [15] gave
more comprehensive results, but without a detailed theoretical
description. In these papers, results for the PSFs were obtained
by approximating the positron wave functions at the nucleus
and without inclusion of electron screening. In this article, we
take advantage of some recent developments in the numerical
evaluation of Dirac wave functions and in the solution of
the Thomas-Fermi equation to calculate more accurate phase
space factors for double-β+ decay, ECβ+ decay, and double-
EC in all nuclei of interest. While in the case of β−β− our
results (and corrections) were of particular interest in heavy
nuclei, αZ large, where relativistic and screening corrections
play a major role, in the case of β+β+ our results are of interest
in all nuclei, since in this case there is a balance between
Coulomb repulsion in the final state which favors light nuclei,
αZ small, relativistic corrections, which are large for heavy
nuclei, αZ large, and screening corrections, which are large
in light nuclei due to the opposite sign of β+β+ relative to
β−β−. Studies similar to ours were done for single-β+ decay
and EC in the 1970s [16,17].

In this article we specifically consider the following five
processes:

(i) Two neutrino double-positron decay, 2νβ+β+:

(A,Z) → (A,Z − 2) + 2e+ + 2ν. (4)

(ii) Positron emitting two neutrino electron capture,
2νECβ+:

(A,Z) + e− → (A,Z − 2) + e+ + 2ν. (5)

(iii) Two neutrino double electron capture, 2νECEC:

(A,Z) + 2e− → (A,Z − 2) + 2ν. (6)

(iv) Neutrinoless double-positron decay, 0νβ+β+:

(A,Z) → (A,Z − 2) + 2e+. (7)
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(v) Positron emitting neutrinoless electron capture,
0νECβ+:

(A,Z) + e− → (A,Z − 2) + e+. (8)

The neutrinoless double electron capture process 0νECEC
cannot occur to the order of approximation we are considering,
since it must be accompanied by the emission of one or two
particles in order to conserve energy, momentum and angular
momentum. It will not be considered here.

II. WAVE FUNCTIONS

The key ingredients for the evaluation of phase space factors
in single- and double-β decay are the scattering wave functions
and for EC the bound state wave functions. The general theory
of relativistic electrons and positrons can be found, e.g., in the
book of Rose [18]. The electron scattering wave functions of
interest in β−β− were given in Eq. (8) of [2]. In this article, we
need the positron scattering wave functions, and the electron
bound state wave functions.

A. Positron scattering wave functions

We use, for β+ decay, negative energy Dirac central field
scattering state wave functions,

ψεκμ(r) =
(

ifκ (ε, r)χ−μ
−κ

−gκ (ε, r)χ−μ
κ

)
, (9)

where χ−μ
κ are spherical spinors and gκ (ε, r) and fκ (ε, r) are

radial functions, with energy ε, depending on the relativistic
quantum number κ defined by κ = (l − j )(2j + 1). Given an
atomic potential V (r) the functions gκ (ε, r) and fκ (ε, r) satisfy
the radial Dirac equations:

dgκ (ε, r)

dr
= −κ

r
gκ (ε, r) + ε − V + mec

2

ch̄
fκ (ε, r),

(10)
dfκ (ε, r)

dr
= −ε − V − mec

2

ch̄
gκ (ε, r) + κ

r
fκ (ε, r).

The potential V appropriate for this case is obtained from
that for electrons by changing the sign of V (Z into −Z).
These scattering positron wave functions are normalized as the
corresponding scattering electron wave functions, Eq. (12) of
[2], except for the change in sign in the Sommerfeld parameter
η = Ze2/h̄v.

B. Electron bound wave functions

For electron capture (EC) we use positive energy Dirac
central field bound state wave functions,

ψn′κμ(r) =
(

gb
n′,κ (r)χμ

κ

if b
n′,κ (r)χμ

−κ ,

)
, (11)

where n′ denotes the radial quantum number and the quantum
number κ is related to the total angular momentum, jκ = |κ| −
1/2. For K-shell electrons n′ = 0, κ = −1, 1S1/2, while for
LI -shell electrons n′ = 1, κ = −1, 2S1/2. We do not consider
here LII and LIII shells because these are suppressed by the
nonzero orbital angular momentum, 2P1/2, 2P3/2. The bound

state wave functions are normalized in the usual way∫
ψn′κμ(r)†ψn′κμ(r)dr

=
∫ ∞

0

[
gb

n′,κ
2
(r) + f b

n′,κ
2
(r)

]
dr = 1. (12)

C. Potential

The radial positron scattering and electron bound wave
functions are evaluated by means of the subroutine package
RADIAL [19], which implements a robust solution method that
avoids the accumulation of truncation errors. This is done
by solving the radial equations by using a piecewise exact
power series expansion of the radial functions, which then are
summed up to the prescribed accuracy so that truncation errors
can be completely avoided. The input in the package is the
potential V . This potential is primarily the Coulomb potential
of the daughter nucleus with charge Zd , V (r) = Zd (αh̄c)/r in
case of β+ decay and the Coulomb potential of the mother
nucleus with charge Zm, V (r) = −Zm(αh̄c)/r in case of
electron capture. As in the case of single-β decay and electron
capture we include nuclear size corrections and screening.

The nuclear size corrections are taken into account by an
uniform charge distribution in a sphere of radius R = r0A

1/3

with r0 = 1.2 fm, i.e.,

V (r) =
[±Zi (αh̄c)

r
, r � R

±Zi(αh̄c)
(

3−(r/R)2

2R

)
, r < R

]
, (13)

i = d,m. The introduction of finite nuclear size has also the
advantage that the singularity at the origin in the solution of
the Dirac equation is removed.

The contribution of screening to the phase space factors was
extensively investigated in single-β decay [20,21]. The screen-
ing potential is of order VS ∝ Z

4/3
i α2 and thus gives a contribu-

tion of order α = 1/137 relative to the pure Coulomb potential
VC ∝ Ziα. We take the screening contribution into account by
using the Thomas-Fermi approximation. The Thomas-Fermi
function ϕ(x), solution of the Thomas-Fermi equation

d2ϕ

dx2
= ϕ3/2

√
x

(14)

with x = r/b and

b = 1

2

(
3π

4

)2/3
h̄2

mee2
Z

−1/3
i � 0.8853a0Z

−1/3
i , (15)

where i = d,m and a0 is the Bohr radius, is obtained by
solving Eq. (14) for a point charge Zi with boundary conditions

ϕ(0) = 1,
(16)

ϕ(∞) = − 2

Zd

,

for β+β+ decay,

ϕ(0) = 1,

ϕ(∞) = 1

Zm

, (EC), (17)

ϕ(∞) = − 1

Zd

, (β+),
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FIG. 1. (Color online) The Thomas-Fermi functions with the
boundary conditions of Eqs. (16)–(18) for 78Kr decay. The dot-dashed
(gray) curve corresponds to the solution for β+β+ decay, the dashed
(red) curve corresponds to the solution for EC, the dashed (blue)
curve corresponds to the solution for β+ decay, and the solid (black)
curve corresponds to the ECEC.

for ECβ+ decay (EC, β+, respectively), and

ϕ(0) = 1,

ϕ(∞) = 0, (18)

for ECEC decay. This takes into account the fact that the final
atom is a negative ion with charge −2, −1 or a neutral ion
depending on the mode (β+β+, ECβ+, ECEC, respectively).
With the introduction of this function, the potential V (r)

including screening becomes

V (r) ≡ ϕ(r) ×
[±Zi (αh̄c)

r
, r � R

±Zi(αh̄c)
(

3−(r/R)2

2R

)
, r < R

]
, (19)

i = d,m. This can be rewritten in terms of an effective charge
Zeff = Ziϕ(r), where Zeff now depends on r . In order to
solve Eq. (14), we use the Majorana method described in [22]
which is valid both for a neutral atom and negative/positive
ion. The Majorana method requires only one quadrature and is
amenable to a simple solution, the accuracy of which depends
on the number of terms kept in the series expansion of the
auxiliary function u(t) of Ref. [22]. The solution is smooth
for all three boundary conditions. It is particularly useful here,
since we want to evaluate screening corrections in several
nuclei. As an example for the resulting ϕ(x) functions with
the boundary conditions presented in Eqs. (16)–(18) we show
in Fig. 1 results for 78Kr decay.

D. Solutions

In order to illustrate the effect of finite size and screening
we show in Fig. 2 the positron scattering wave function for
ε = 1.0 MeV, and in Fig. 3 the electron bound wave function
for the 1S1/2 and 2S1/2 states. Comparing Figs. 3 with 2 of
Ref. [2], one can see that the effect of screening is larger
than in β−β− and of opposite sign, since the electron cloud
decreases the magnitude of the repulsive potential seen by the
outgoing positrons.
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FIG. 2. (Color online) Positron radial wave functions f−1(ε, r), g−1(ε, r) [(a) and (c), respectively] and g1(ε, r), f1(ε, r) [(b) and (d),
respectively] for Zd = 34, ε = 1.0 MeV, and R = 5.13 fm (vertical line). The notations WF1 (dotted lines), WF2 (dashed lines), and WF3
(solid lines) correspond to leading finite size Coulomb, exact finite size Coulomb, and exact finite size Coulomb with electron screening,
respectively.
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FIG. 3. (Color online) Electron bound state wave functions gb
0,−1(r), f b

0,−1(r) [(a) and (c), respectively] and gb
1,−1(r), f b

1,−1(r) [(b) and (d),
respectively] for Zm = 36 and R = 5.13 fm (vertical line) scaled dimensionless with a factor of [4π (mec

2)3]−1/2(h̄c/a0)3/2a0. The notations
WF1 (dotted lines), WF2 (dashed lines), and WF3 (solid lines) correspond to leading finite size Coulomb, exact finite size Coulomb, and exact
finite size Coulomb with electron screening, respectively.

III. PHASE SPACE FACTORS IN DOUBLE-β DECAY

In order to calculate PSFs for β+β+, ECβ+, and ECEC, we
use the formulation of Doi and Kotani [12,13].

A. Decays where two neutrinos are emitted

The 2νββ decay is a second-order process in the effective
weak interaction. It can be calculated in a way analogous to
single-β decay. Neglecting the neutrino mass, considering only
S-wave states and noting that with four leptons in the final state
we can have angular momentum 0, 1, and 2, we see that both
0+ → 0+ and 0+ → 2+ decays can occur. We denote by Qi ,
where i = β+β+, ECβ+, ECEC, the Q values of the decay.
These can be obtained from the mass difference between neu-
tral mother and daughter atoms, M(A,Z) − M(A,Z − 2) as

Qβ+β+ = M(A,Z) − M(A,Z − 2) − 4mec
2,

QECβ+ = M(A,Z) − M(A,Z − 2) − 2mec
2, (20)

QECEC = M(A,Z) − M(A,Z − 2).

For the total available kinetic energy one also needs to take
into account the binding energy of the captured electron and
thus the total available kinetic energies for β+β+, ECβ+, and
ECEC modes are

Tβ+β+ = M(A,Z) − M(A,Z − 2) − 4mec
2,

TECβ+ = M(A,Z) − M(A,Z − 2) − 2mec
2 − εb, (21)

TECEC = M(A,Z) − M(A,Z − 2) − εb1 − εb2 .

The values of M(A,Z) − M(A,Z − 2) are shown in Table I.
Another quantity of interest in the evaluation of the PSFs is

the excitation energy EN of the intermediate nucleus with
respect to the average of the initial and final ground states,

Ã = 1
2W0 + EN − EI = 1

2 [M(A,Z)

−M(A,Z − 2) − 2mec
2] + EN − EI , (22)

illustrated in Fig. 4. As discussed in Ref. [2], the results
for PSF depend weakly on the values of the energies EN

in the intermediate odd-odd nucleus, as remarked years ago
by Tomoda [23] and as shown explicitly in our Ref. [2],
Fig. 4. We therefore perform all calculations in this paper by
replacing EN with an average value 〈EN 〉 and Ã = 1.12A1/2

MeV as suggested by Haxton and Stephenson [9]. The error
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Ex

0 1

0 2

0 1

2 1

EI EF 2

46
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48
106 Cd

47
106 Ag EI

EF

FIG. 4. Notation used in this article. The example is for 106Cd
decay.
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TABLE I. Mass difference M(A,Z) − M(A,Z − 2) used in the
calculation.

Nucleus M(A, Z) − M(A,Z − 2)(MeV)a

β+β+, ECβ+, and ECEC allowed
78Kr 2.8463(7)
96Ru 2.71451(13)b

106Cd 2.77539(10)c

124Xe 2.8654(22)
130Ba 2.619(3)
136Ce 2.37853(27)d

ECβ+ and ECEC allowed
50Cr 1.1688(9)
58Ni 1.9263(3)
64Zn 1.0948(7)
74Se 1.209169(49)e

84Sr 1.7900(13)
92Mo 1.651(4)
102Pd 1.1727(36)c

112Sn 1.91982(16)f

120Te 1.71481(125)g

144Sm 1.78259(87)c

156Dy 2.012(6)
162Er 1.8440(30)b

168Yb 1.40927(25)b

174Hf 1.0988(23)
184Os 1.453(58)h

190Pt 1.384(6)

ECEC allowed
36Ar 0.43259(19)
40Ca 0.193510(20)
54Fe 0.6798(4)
108Cd 0.27204(55)i

126Xe 0.920(4)
132Ba 0.8440(10)
138Ce 0.698(10)
152Gd 0.05570(18)j

158Dy 0.284(3)
164Er 0.02507(12)k

180W 0.14320(27)l

196Hg 0.820(3)

aReference [24].
bReference [25].
cReference [26].
dReference [27].
eReference [28].
fReference [29].
gReference [30].
hReference [31].
iReference [32].
jReference [33].
kReference [34].
lReference [35].

introduced by this approximation is discussed in Sec. IV.
We emphasize, however, that our calculation has been set
up in such a way as to allow a state by state evaluation, if
needed.

1. 2νβ+β+ decay

The formulas for 2νβ+β+ decay are exactly the same as for
2νβ−β− decay described in [2], where now ε1 is the energy of
the first positron, ε1 = εp1 , and ε2 is the energy of the second
positron, ε2 = εp2 . We use here the same approximations as
in [2], that is to evaluate the positron wave functions at the
nuclear radius

g−1(ε) = g−1(ε, R),
(23)

f1(ε) = f1(ε, R),

and to replace the excitation energy EN in the intermediate
odd-odd nucleus by a suitably chosen energy 〈EN 〉, giving

Ã = 1
2W0 + 〈EN 〉 − EI . (24)

The phase space factors are then given in terms of quantities
[2,23]

〈KN 〉 = 1

ε1 + ω1 + 〈EN 〉 − EI

+ 1

ε2 + ω2 + 〈EN 〉 − EI

,

〈LN 〉 = 1

ε1 + ω2 + 〈EN 〉 − Ei

+ 1

ε2 + ω1 + 〈EN 〉 − EI

.

(25)

These approximations allow a separation of the PSF from the
nuclear matrix elements and the condition under which they are
good have been discussed in [2]. Apart from a narrow region
around threshold, where the error is ∼ 1%, the approximations
are good throughout. For β+β+ decay we have two integrated
phase space factors G

(0)
2ν and G

(1)
2ν whose explicit expression

are given in Eqs. (21)–(28) and (34)–(36) of [2]. Since the
calculated single-β decay matrix elements of the GT operator
in a particular nuclear model appear to be systematically larger
than those derived from measured f t values of the allowed
GT transitions, and this effect is usually taken into account by
quenching the axial vector coupling constant gA,eff = qgA, it
is convenient to separate it from the phase space factors G2ν .
Also, it is convenient to scale the matrix elements with the
electron mass, mec

2. The phase space factors are then in units
of yr−1. From these we obtain

(i) The half-life[
τ 2ν

1/2

]−1 = G
β+β+
2ν g4

A|mec
2M (2ν)|2. (26)

(ii) The differential decay rate

dW2ν

dεp1

= N2ν ln 2
dG

β+β+
2ν

dεp1

, (27)

where N2ν = g4
A|mec

2M (2ν)|2.
(iii) The summed energy spectrum of the two positrons

dW2ν

d
(
εp1 + εp2

) = N2ν ln 2
dG

β+β+
2ν

d
(
εp1 + εp2

) . (28)

These three quantities depend only on G
(0)
2ν ≡ G

β+β+
2ν .

(iv) The angular correlation between the two positrons

α(ε1) = dG
(1)
2ν

/
dεp1

dG
(0)
2ν

/
dεp1

, (29)
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TABLE II. Phase space factors G2ν obtained using screened exact finite size Coulomb wave functions. For comparison, values of Doi and
Kotani [12] and Boehm and Vogel [15] are also shown. They have been extracted from [12] and [15] by removing g4

A, and converting to yr−1 units.

G
β+β+
2ν (10−29 yr−1) G

ECβ+
2ν (10−24 yr−1) GECEC

2ν (10−24 yr−1)

Nucleus This work DK BV This work DK BV This work DK BV

β+β+, ECβ+, and ECEC allowed
78Kr 9770 13600 16000 385 464 390 660 774 136
96Ru 1040 1080 1230 407 454 350 2400 2740 433
106Cd 2000 1970 2420 702 779 652 5410 6220 1120
124Xe 4850 4770 5410 1530 1720 1408 17200 20200 3500
130Ba 110 47.9 59.2 580 549 420 15000 16300 2590
136Ce 0.267 0.559 0.795 190 253 192 12500 15800 2420

ECβ+ and ECEC allowed
50Cr 1.16 × 10−6 1.05 × 10−6 0.422 0.0887
58Ni 1.11 1.16 1.00 15.3 17.0 3.01
64Zn 3.81 × 10−9 3.83 × 10−9 1.41 0.281
74Se 1.09 × 10−5 8.39 × 10−6 5.656 1.08
84Sr 0.729 0.616 93.6 17.9
92Mo 0.206 0.164 208 24.0
102Pd 1.62 × 10−6 7.16 × 10−7 46.0 9.14
112Sn 4.95 4.33 1150 235
120Te 0.730 0.524 888 173
144Sm 2.49 1.98 5150 982
156Dy 25.3 20.2 17600 3100
162Er 6.40 6.69 5.29 15000 18100 2770
168Yb 0.00979 0.00763 4710 890
174Hf 1.00 × 10−9 2.77 × 10−14 1580 310
184Os 0.0299 0.0156 12900 2240
190Pt 0.00588 0.00235 12900 2290

ECEC allowed
40Ca 1.25 × 10−5

54Fe 0.0469
108Cd 0.0207
126Xe 46.1
132Ba 39.1
138Ce 18.4
158Dy 0.183
180W 0.00156
196Hg 821

which depend on both G
(0)
2ν and G

(1)
2ν . Here and in Secs. III A2

and 3,

M (2ν) = −
[

M
(2ν)
GT

ÃGT

−
(

gV

gA

)2
M

(2ν)
F

ÃF

]
, (30)

where M
(2ν)
GT = 〈0+

F | ∑nn′ τ
†
nτ

†
n′ σn · σn′ |0+

I 〉 and M
(2ν)
F =

〈0+
F | ∑nn′ τ

†
nτ

†
n′ |0+

I 〉. The closure energies ÃGT and ÃF could
in principle be different, but in this article we take ÃGT =
ÃF ≡ Ã.

The phase space factors for 2νβ+β+ decay are listed in
Table II column 2, where they are also compared with values
found from literature [12,15] (columns 3 and 4), and in Fig. 5.
The values in the literature have been converted to our notation
by removing factors of g4

A and (mec
2)2. The value for 136Ce

should be taken with caution because of the very low Q value.
We also have available upon request for all 2νβ+β+ nuclei

in Table II the single positron spectra, the summed energy
spectra and angular correlations between the two outgoing
positrons. As examples, we show the cases of 78Kr →78Se
decay, Fig. 6, and of 106Cd →106Pd, Fig. 7. The use of a
screened potential makes a considerable difference compared
to the results obtained when taking into account only the finite
nuclear size, as shown in Fig. 6. Note the difference between
the single positron spectra in Figs. 6 and 7 for β+β+ and the
single electron spectra in Figs. 6 and 7 of [2] for β−β−decay.
Note also the difference in the scale of Fig. 5, 10−29yr−1, for
2νβ+β+, as compared with the scale of Fig. 5 of [2], 10−21yr−1,
for 2νβ−β−.

2. 2ν ECβ+ decay

For the calculation of electron capture processes the crucial
quantity is the probability that an electron is found at the
nucleus. This can be expressed in terms of the dimensionless
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FIG. 5. (Color online) Phase space factors G
β+β+
2ν in units (10−29

yr−1). The label “DK” refers to the results obtained by Doi and
Kotani [12] using approximate electron wave functions. The figure is
in semilogarithmic scale.

quantity [12]

B2
n′,κ = 1

4π (mec2)3

(
h̄c

a0

)3 (a0

R

)2

× [(
gb

n′,κ (R)
)2 + (

f b
n′,κ (R)

)2]
, (31)

where a0 is the Bohr radius a0 = 0.529 × 10−8cm and we
use for the nuclear radius R = 1.2A1/3fm. For capture from
the K-shell n′ = 0, κ = −1, 1S1/2 while for capture from the
LI -shell n′ = 1, κ = −1, 2S1/2.

Denoting by εp the energy of the emitted positron and by
eb the binding energy of the captured electron, the phase space
factor can be written as [12]

G
ECβ+
2ν = 2Ã2

3 ln 2

(G cos θ )4

16π5h̄
(mec

2)
∑
i=0,1

B2
i,−1

∫ QECβ+ +εb+mec
2

mec2

×
∫ QECβ+ +εb−εp

0
[(g−1(εp, R))2 + (f1(εp, R))2]

× (〈KN 〉2 + 〈LN 〉2 + 〈KN 〉〈LN 〉)
×ω2

1ω
2
2ppcεpdω1dεp, (32)

where ω1 and ω2 are the neutrino energies. Now in the defini-
tion of 〈KN 〉 and 〈LN 〉 in Eq. (25), ε1 = εe = −(mec

2 − eb) is
the energy of the captured electron and ε2 = εp is the energy
of emitted positron. Again separating g4

A and the electron mass
(mec

2)2, the PSF are in units of yr−1. From those, we obtain

(i) The half-life[
τ 2ν

1/2

]−1 = G
ECβ+
2ν g4

A

∣∣mec
2M (2ν)

∣∣2
. (33)

(ii) The differential decay rate

dW2ν

dεp

= N2ν ln 2
dG

ECβ+
2ν

dεp

, (34)

where N2ν = g4
A|mec

2M (2ν)|2.
The obtained PSFs are listed in Table II column 5 where

they are compared with previous calculations (columns 6 and
7), and in Fig. 8. The very small values in the second part of
the table should be taken with caution in view of their very
small Q value.

An example of single positron spectrum is shown in Fig. 9.
This figure is for 106Cd →106Pd 2νECβ+ decay.

3. 2ν EC EC decay

In the case of double electron capture with two neutrinos the
energies of the electrons are fixed and the two neutrinos carry
all the excess energy. The equation for PSF then reads [12]

GECEC
2ν = 2Ã2

3 ln 2

(G cos θ )4

16π3h̄
(mec

2)4
∑

i,j=0,1

B2
i,−1B2

j,−1

×
∫ QECEC+εb1 +εb2

0
(〈KN 〉2 + 〈LN 〉2 + 〈KN 〉〈LN 〉)

×ω2
1ω

2
2dω1. (35)

In this case, in the definition of 〈KN 〉 and 〈LN 〉 in Eq. (25),
ε1 = εe1 = −(mec

2 − eb1 ) is the energy of the first captured
electron and ε2 = εe2 = −(mec

2 − eb2 ) is the energy of the
second captured electron. The values obtained are listed in
Table II column 8 where they are compared with previous
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FIG. 6. (Color online) Single positron spectra (a), summed energy spectra (b), and angular correlations between the two outgoing positrons
(c) for the 78Kr →78Se 2νβ+β+ decay. The scale in (a) and (b) should be multiplied by N2ν when comparing with experiment. In (a) and (b)
the upper, solid curve is obtained when taking into account finite nuclear size and electron screening, while the lower, dashed curve presents
spectra obtained when taking into account only the finite nuclear size. In (c) these two calculations coincide.
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FIG. 7. Single positron spectra (a), summed energy spectra (b), and angular correlations between the two outgoing positrons (c) for the
106Cd →106Pd 2νβ+β+ decay. The scale in (a) and (b) should be multiplied by N2ν when comparing with experiment.

calculations (columns 9 and 10), and in Fig. 10. From GECEC
2ν

we can calculate
(i) The half-life[

τ 2ν
1/2

]−1 = GECEC
2ν g4

A|mec
2M (2ν)|2. (36)

While in the case of β+β+ and ECβ+ decay all three
calculations agree within a factor of ∼ 1.5, in the case of
ECEC decay, the calculation reported in the book of Boehm
and Vogel [15], disagrees with the other two by a factor of
approximately 4. The origin of this discrepancy is not clear.
The values in Table II have been converted to units yr−1

using the same procedure in all three cases, β+β+, ECβ+,
and ECEC. Since apart from the factor of 4, the behavior with
mass number of GECEC

2ν in [15] is the same as in the other two
calculations, it may be simply due to a different definition of
GECEC

2ν . Note that the scale in Fig. 10, 10−24 yr−1, for 2νECEC
is very different from that for 2νβ+β+, 10−29 yr−1, in Fig. 5
due to a much larger Q value.

B. Neutrinoless modes

As discussed in Ref. [4], several scenarios of neutrinoless
double β decay have been considered, most notably, light
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Ce
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FIG. 8. (Color online) Phase space factors G
ECβ+
2ν in units

(10−24 yr−1). The label “DK” refers to the results obtained by Doi and
Kotani [12] using approximate electron wave functions. The figure is
in semilogarithmic scale.

neutrino exchange, heavy neutrino exchange, and Majoron
emission. After the discovery of neutrino oscillations, attention
has been focused on the first scenario and the mass mode,
where the transition operator is proportional to 〈mν〉 /me. In
this article we present phase-space factors for the mass mode.
Phase-space factors associated with the other modes, called
〈λ〉 and 〈η〉 in Ref. [23], will form the subject of a subsequent
publication.

1. 0νβ+β+ decay

The equations for 0νβ+β+ decay are exactly the same as for
0νβ−β− decay described in [2], where now ε1 is the energy of
the first positron, ε1 = εp1 , and ε2 is the energy of the second
positron, ε2 = εp2 . There are also here two quantities G

(0)
0ν and

G
(1)
0ν in units of yr−1 from which one can obtain

(i) The half-life

[
τ 0ν

1/2

]−1 = G
β+β+
0ν g4

A

∣∣∣∣ 〈mν〉
me

∣∣∣∣
2

|M (0ν)|2. (37)

(ii) The differential decay rate

dW0ν

dεp1

= N0ν ln 2
dG

β+β+
0ν

dεp1

, (38)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.0
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8.0 10 29

p mec2 MeV

dG
2
d
p

FIG. 9. Single positron spectra for the 106Cd →106Pd 2νECβ+

decay. The scale should be multiplied by N2ν when comparing with
experiment.
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FIG. 10. (Color online) Phase space factors GECEC
2ν in units

(10−24 yr−1). The label “DK” refers to the results obtained by Doi and
Kotani [12] using approximate electron wave functions. The figure is
in semilogarithmic scale.

where N0ν = g4
A|M (0ν)|2. Both the half-life and the

differential decay rate, are given in terms of G
(0)
0ν ≡

G
β+β+
0ν .

(iii) The angular correlation between the two positrons

α(εp1 ) = dG
(1)
2ν

/
dεp1

dG
(0)
2ν

/
dεp1

. (39)

The values of G
β+β+
0ν are shown in Table III column 2 where

they are compared with previous calculations (column 3 and
4), and in Fig. 11. In this case, our calculation and that of [13]
disagree with the calculation reported in [15] by a larger factor.

We also have available upon request the single electron
spectra and angular correlation for all 0νβ+β+ nuclei in
Table III. An example, 106Cd decay, is shown in Fig. 12.

2. 0ν ECβ+ decay

In case of neutrinoless positron emitting electron capture,
the energy of the emitted positron is fixed and the equation for
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FIG. 11. (Color online) Phase space factors G
β+β+
0ν in units

(10−20 yr−1). The label “DK” refers to the results obtained by Doi and
Kotani [12] using approximate electron wave functions. The figure is
in semilogarithmic scale.

TABLE III. Phase space factors G0ν obtained using screened
exact finite size Coulomb wave functions. For comparison value of
Doi and Kotani [13] an Boehm and Vogel [15] are also shown. These
are extracted from [13] and [15] by removing g4

A and converting to
yr−1 units.

G
β+β+
0ν (10−20 yr−1) G

ECβ+
0ν (10−18 yr−1)

Nucleus This work DK BV This work DK BV

β+β+, ECβ+, and ECEC allowed
78Kr 250 293 59.4 6.37 7.11
96Ru 84.5 90.7 12.2 9.62 10.8
106Cd 96.2 102 14.5 13.0 14.7
124Xe 114 123 18.1 19.7 22.9
130Ba 25.7 21.0 1.67 17.6 19.8
136Ce 2.42 3.55 0.175 15.3 18.7

ECβ+ and ECEC allowed
50Cr 0.0887
58Ni 1.21 1.30
64Zn 0.0507
74Se 0.230
84Sr 1.94
92Mo 1.92
102Pd 0.287
112Sn 5.20
120Te 3.92
144Sm 8.11
156Dy 15.2
162Er 12.9 15.8
168Yb 4.23
174Hf 0.0272
184Os 7.04
190Pt 5.57

PSF reads [13]

G
ECβ+
0ν = 1

4R2

2

ln 2

(G cos θ )4

4π3
(h̄c2)(mec

2)5
∑
i=0,1

B2
i,−1

× [(g−1(εp, R))2 + (f1(εp, R))2]ppcεp. (40)

The PSF are in units yr−1, and from those we can calculate
(i) The half-life

[
τ 0ν

1/2

]−1 = G
ECβ+
0ν g4

A

∣∣∣∣ 〈mν〉
me

∣∣∣∣
2

|M (0ν)|2. (41)

The values obtained are listed in Table III column 5 where
they are compared with previous calculations (column 8)
and in Fig. 13. In this case only calculations of [13] are
available.

IV. ESTIMATE OF THE ERROR

Two main sources of error in the evaluation of the phase
space factors are the Q values and the nuclear radius, R. We
have taken for the atomic mass M(A,Z) the available experi-
mental values with errors shown in Table I. The more accurate
values used in this table account for some of the differences
between our calculated values and those of [12,13,15] obtained
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FIG. 12. Single positron spectra (a), and angular correlations between two outgoing positrons (b) for the 106Cd →106Pd 0νβ+β+ decay.
The scale in the left should be multiplied by N0ν when comparing with experiment.

with older values of the atomic masses. We estimate the error
here as a multiple of δQ/Q, where δQ is the error in Q.
The nuclear radius enters the calculation in various ways,
most notably the evaluation of the positron wave functions
at the nucleus g−1(R) and f1(R) and for ECβ+ and ECEC, the
electron probability, B2

n′,κ . We have taken R = r0A
1/3 with

r0 = 1.2 fm. An estimate of the error here is obtained as
in single-β+ decay and single EC [21] by adjusting r0 for
each nucleus, A,Z, using the experimental value 〈r2〉exp from
electron scattering. Finally, another uncertainty is introduced
by the average excitation energy, 〈EN 〉. In [2] we estimated this
uncertainty which affects only the 2ν processes by comparing
the results of the calculation with 〈EN 〉 = 1.12A1/2 MeV with
that of the single state dominance model, for example in 106Cd
decay, the ground state of the intermediate 106Ag nucleus is
1+, giving EN = E1+

1
= 0.0 MeV. The resulting error is of the

order of a few percent. Screening corrections play a minor role
and do not introduce a large error. The situation is summarized
in Table IV.
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FIG. 13. (Color online) Phase space factors G
ECβ+
0ν in units

(10−18 yr−1). The label “DK” refers to the results obtained by Doi and
Kotani [13] using approximate electron wave functions. The figure is
in semilogarithmic scale.

V. USE OF PHASE SPACE FACTORS

The main use of PSFs discussed in this paper is to calculate
half-lives for the β+β+, ECβ+, and ECEC decay, by combin-
ing them with a calculation of the NME, the only constraints
being that the NME are defined in a way consistent with
Eqs. (26), 2νβ+β+; Eq. (33), 2νECβ+; Eq. (36), 2νECEC;
Eq. (37), 0νβ+β+; and Eq. (41), 0νECβ+. The calculation
of half-lives with matrix elements obtained from IBM-2 will
be presented in forthcoming publication [6]. Here we use
the calculation of PSF to extract the dimensionless quantity
g4

A|(mec
2)M2ν |2 = |Meff

2ν |2as done in the case of β−β− decay
reported in [2].

For two neutrino double positron decay and competing
modes the only positive experimental half-life result is from
a geochemical experiment in 130Ba [36]: T 2ν

1/2 = (2.2 ± 0.5) ×

TABLE IV. The estimate of uncertainties introduced to phase
space factors due to different input parameters.

2νβ+β+ Q value 10 × δQ/Q

Radius 1.0%
Screening 0.10%

〈EN 〉 model dependent (� 1%)

0νβ+β+ Q value 4 × δQ/Q

Radius 9%
Screening 0.10%

〈EN 〉 –

2νECβ+ Q value 8 × δQ/Q

Radius 1.0%
Screening 0.10%

〈EN 〉 model dependent (� 1%)

0νECβ+ Q value 2 × δQ/Q

Radius 9%
Screening 0.10%

〈EN 〉 –

2νECEC Q value 6 × δQ/Q

Radius 1.0%
Screening 0.10%

〈EN 〉 model dependent (� 1%)

024313-10



PHASE SPACE FACTORS FOR β+β+ DECAY . . . PHYSICAL REVIEW C 87, 024313 (2013)

TABLE V. Experimental 2νECEC half-lives and the correspond-
ing effective nuclear matrix elements |Meff

2νECEC|.

Nucleus GECEC
2ν (10−21 yr−1) τ 2νECEC

1/2 (1021 yr) expa |Meff
2νECEC|

130Ba 15.0 2.2 ± 0.5 0.174 ± 0.017

aReference [36].

1021 yr. In geochemical experiments, it is not possible to
disentangle the different modes, but in Ref. [37] this value is
believed to be for the 2νECEC process, because other modes
are strongly suppressed. Our calculations in Table II support
this statement and we thus take T 2νECEC

1/2 = (2.2 ± 0.5) × 1021

yr in 130Ba, from which we extract the value of |Meff
2νECEC| in

Table V.
We note that the value we extract is comparable to the values

extracted from 2νβ−β− decay in [2]. To emphasize this point
we show in Fig. 14 the newly extracted value in comparison
with all others.

VI. CONCLUSIONS

In this article, we have reported a complete and improved
calculation of phase space factors for 2νβ+β+, 2νECβ+, and
2νECEC, as well as 0νβ+β+ and 0νECβ+ double-β decay
modes, including half-lives, single positron spectra, summed
positron spectra, and positron angular correlations, to be used
in connection with the calculation of nuclear matrix elements.
Apart from their completeness and consistency of notation,
we have improved the calculation by using exact Dirac wave
function with finite nuclear size and electron screening. The
program for calculation of phase space factors has been set up

β β , CA
β β , SSD

ECEC, CA
Ca
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Se Zr

Mo

Mo Ru 02

Cd

Te
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U
Ba
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FIG. 14. (Color online) Effective nuclear matrix elements |Meff
2ν |

extracted from the experimental 2νββ half-lives as a function of mass
number. The red triangle is the value extracted from τ 2νECEC

1/2 . For
comparison the grey dots and squares represent the values extracted
from β−β− experiments.

in such a way that additional improvements may be included if
needed (P -wave contribution, finite extent of nuclear surface,
etc.) and that it can be used in connection with the closure
approximation, the single state dominance hypothesis and the
calculation with sum over individual states.
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