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We describe low-lying collective states in deformed even-even nuclei within a deformed quasiparticle random-
phase approximation (dQRPA) by using a single-particle basis with good angular momentum. The statistical
factors, accounting for the level occupancy, appear in the dQRPA in a natural way as rotation coefficients that
take the intrinsic system to the laboratory system. We have used our model by performing a systematic analysis
of E2 transitions from the first 2+ state to the ground state for all superfluid nuclei in the range 50 < Z � 100 by
using a common charge polarization parameter χ = 0.2. In spite of its similarity to the QRPA, this method is able
to describe in an unified way gross features of electromagnetic transitions from vibrational to rotational nuclei.
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I. INTRODUCTION

The many-body problem of deformed systems is a chal-
lenge for nuclear theory. In nuclear structure, the microscopic
approaches dealing with deformed nuclei are based on the
Nilsson model [1], describing single-particle (sp) dynamics in
an intrinsic system of cylindrical symmetry. It provides a basis
for the microscopic description of collective states in deformed
systems. One of the most popular approaches to describe
collective excitations is the quasiparticle random-phase ap-
proximation (QRPA) [2]. In deformed nuclei the calculations
are performed in the intrinsic system of coordinates and
therefore the physical states with good angular momentum
are given by the projection procedure [3]. This method, called
projection after variation, was widely used to describe a large
variety of collective excitations, like the Gamow-Teller 1+
resonance in the context of double-beta-decay processes [4–7],
low-lying states in neutron-rich nuclei [8–10], the linear
response function [11], giant resonances [12–14], the pygmy
resonance [15], and magnetic properties of nuclei [16]. Let
us also mention in this context the pseudo-SU(3) model,
used to describe the double-beta-decay process in deformed
nuclei [17].

A more exact but much more complex method is to use
projected wave functions before the variational procedure, as
done for instance in the method of variation after mean-field
projection in realistic model spaces (VAMPIR) [18]. This
approach is able to describe very complex effects, like the
shape coexistence phenomenon [19].

Special attention was paid to the analysis of the first-excited
2+ state in even-even nuclei by using the projected generator
coordinate method [20,21].

Reference [22] proposed an alternative, relatively simple
approach where the product between the spherical sp orbital
and core wave function (described by a deformed coherent
state), projected to a given angular momentum, is considered
as a basis state for the many-body problem. In this way, many-
particle–many-hole configurations are taken into account in an
effective way due to the fact that the sp states are “dressed” by
core wave functions. The resulting equations of motion have

formally a similar form as the ones corresponding to a spherical
system. Later on, this method was used to describe various
collective excitations in deformed nuclei, like two-neutrino
double beta decay [23–25], magnetic collective states [26],
and collective excitations in atomic clusters [27].

The purpose of the present paper is to generalize the
approach of Ref. [22] by using a particle-core wave function
coupled to a given angular momentum. In the Sec. II we give
the necessary theoretical background and in Sec. III we apply
it to describe electromagnetic transitions from collective 2+

1
states for even-even vibrational, transitional, and rotational
nuclei.

II. THEORETICAL BACKGROUND

In order to describe a deformed many-body system we will
use an sp basis with good angular momentum:

a
†
τnjm(�) =

∑
Jk

XJk
τnj

[DJ∗
.0 (�) ⊗ c

†
τk

]
jm

, (2.1)

in terms of spherical orbitals c
†
τkm, where τ is the isospin

index, k → (ε, l, k) has the meaning of sp energy ε, angular
momentum l, and total spin k. Notice that the angular
momentum coupling of the Wigner function is performed over
the first projection, denoted by a dot in the above relation. Here,
n denotes the eigenvalue index and the angular momentum
coupling is considered over the laboratory projection M of
the normalized Wigner function DJ

MK (�), while the intrinsic
projection is K = 0.

The operators satisfy the following fermionic condition,
written in the following form:

〈{aτnjm, a
†
τn′j ′m′ }〉C ≡

∫
{aτnjm(�), a

†
τn′j ′m′(�)}d�

= δnn′δjj ′δmm′ , (2.2)

pointing out on the necessity to use the integration over
Euler angles in deriving many-body equations. The expansion
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coefficients XJk
τnj are found by diagonalizing the multipole-

multipole core-particle interaction rλ[Yλ(�) ⊗ Yλ(r̂)]0.
In a simpler approach one supposes the adiabaticity, where

the intrinsic spin sp projection ν is conserved. In this case the
amplitudes are given by (see Chapter 4.7 in Ref. [28])

XJk
τnjν = (−)j+ν

√
2〈jν; k − ν|J0〉x(n)

τkν, (2.3)

in terms of Clebsch-Gordan coefficients and standard Nilsson
amplitudes.

Next we will investigate 2+
1 collective states within a

deformed QRPA, by using the pairing plus quadrupole-
quadrupole residual two-particle interaction and the deformed
basis (2.1). We call this approach the dQRPA method. The
dQRPA generalizes similar investigations performed by using
the standard spherical QRPA code [29,30]. In this way it is
possible to avoid the complicated problem of projecting out
two-quasiparticle excitations of a deformed ground state. In
our calculations we will consider the “yrast” Nilsson states
with j = ν in Eq. (2.3) by dropping the index ν in our further
notations.

Let us consider now the residual two-body interaction. The
most general form, written in terms of the deformed basis
(2.1), is given by

Hint =
∑
ττ ′

∑
λ0λλ′

G
λ0λλ′
ττ ′ (n1j1n

′
1j

′
1; n2j2n

′
2j

′
2)

× {Dλ0
.K⊗[(

a
†
τn1j1

⊗ a
†
τ ′n′

1j
′
1

)
λ
⊗ (

a
†
τn2j2

⊗ a
†
τ ′n′

2j
′
2

)†
λ′
]
λ0

}
0.

(2.4)

The matrix elements are given by the integration of the
product between the used two-body potential, single-particle
wave functions, written in the representation (2.1), and the
Wigner function. In our approach we will use a simplified
separable form of the interaction, rewritten in the particle-hole
representation as follows:

Hint → HQ =
∑
ττ ′

∑
λ0λλ′

F
λ0λλ′
ττ ′

[Dλ0
.K ⊗ (Qτλ ⊗ Qτ ′λ′)λ0

]
0.

(2.5)

The basic ingredients of our approach are the multipole
operators, written in the deformed (nj ) representation as

Qτλμ =
∑

12

〈τn1j1||Qλ||τn2j2〉C√
2λ + 1

(
a
†
τn1j1

⊗ ãτn2j2

)
λμ

, (2.6)

where the index C denotes the integration over the core Euler
angles �, similar to Eq. (2.2). By using Eq. (2.1), one obtains
the reduced matrix element of this operator in terms of standard
spherical reduced matrix elements as follows:

〈τn1j1||Qλ||τn2j2〉C = ĵ1ĵ2

∑
Jk1k2

X
Jk1
τn1j1

X
Jk2
τn2j2

(−)k1+j2+λ−J

×W (j1k1j2k2; Jλ)〈τk1||Qλ||τk2〉,
(2.7)

where ĵ = √
2j + 1 and W is the standard Racah symbol. In

the case of monopole operators the above relation for the band
head J = 0 and k = j can be written in terms of the largest

Nilsson component and has a simple form

〈τn1j1||Q0||τn2j2〉C = δ12

2
(
x

n1
τj1

)2

2j1 + 1
〈τj1||Q0||τj1〉. (2.8)

Thus, the factor multiplying the spherical reduced matrix
element in Eq. (2.7) automatically contains the “statistical
factors,” which become 2

2j+1 for the monopole case. This
factor, well known in proton emission [see Eq. (4.66) in
Ref. [28]], was introduced in Ref. [22] ad hoc by using
purely statistical reasoning. Here, we suppose the validity of
the adiabatic assumption, due to the fact that the core states
have low angular momenta. This condition keeps valid the
intrinsic pairing condition, but seen in the laboratory system
of coordinates. We will restrict ourselves to a monopole
pairing Hamiltonian with constant strengths for protons and
neutrons, respectively, by recoupling pp components with
higher multipolarity into the corresponding ph terms. Thus,
the pairing Hamiltonian can be approximated by the following
ansatz in the deformed (nj ) representation

HP →
∑

τ

∑
nj

(eτnj − 	τ )
2

2j + 1
Nτnj

− 1

4

∑
τ

∑
njn′j ′

Gτnjn′j ′
2

2j + 1
P

†
τnj

2

2j ′ + 1
Pτn′j ′ , (2.9)

where

eτnj = ετnj

(
x

(n)
τj

)2
,

(2.10)
Gτnjn′j ′ = Gτ

[
x

(n)
τj x

(n′)
τj ′

]2
.

Here Nτnl denotes the particle-number operator and the
monopole pairing operator is given by P

†
τnj = √

2j + 1(a†
τnj ⊗

a
†
τnj )0. One can easily see that in the case of a common

value of the Nilsson amplitude, one obtains the standard
Hamiltonian with shifted sp energies and a renormalized
constant pairing strength. Indeed, this is approximately true for
a given deformation concerning the orbitals around the Fermi
level, which play the leading role in determining the paring
gap. In our calculations we will use this approximation.

It is worth mentioning that Eq. (4.5) of Ref. [22] has a
similar ansatz with our Eq. (2.9), but the paired states are
spherical orbitals “dressed” by core states. In our case the
paired states are deformed Nilsson orbitals in the laboratory
system, dressed by the core states. Thus, it becomes possible to
use the replacement 2j + 1 → 2 in spherical BCS equations
in order to obtain the same relations as for the deformed case.
In the quasiparticle representation

a
†
τnjm = uτnjα

†
τnjm + vτnjατnj−m(−)j−m, (2.11)

the multipole operator becomes

Qτλμ =
∑

n1j1�n2j2

ξλ
τ12

[A
†
λμ(τ12) + (−)λ−μAλ−μ(τ12)], (2.12)

in terms of the normalized pair quasiparticle operator

A
†
jm(τ12) = 1√

1 + δn1n2δj1j2

(α†
τn1j1

⊗ α
†
τn2j2

)jm, (2.13)
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where we used the short-hand notation τ12 = (τn1j1n2j2) and

ξλ
τ12

= 〈τn1j1||Qλ||τn2j2〉C√
(2λ + 1)(1 + δn1n2δj1j2 )

× (uτn1j1vτn2j2 + vτn1j1uτn2j2 ). (2.14)

As a result of the deformation, the residual Hamiltonian (2.5)
couples QRPA phonons of multipole λ

�
†
λμ(ν) =

∑
τ

∑
n1j1�n2j2

[X (ν)
λ (τ12)A

†
λμ(τ12)

−Y (ν)
λ (τ12)Aλ−μ(τ12)(−)λ−μ

]
, (2.15)

with phonons of other multipoles leading to the general phonon

D
†
λμ(ν) =

∑
λ0λ′

Z
(ν)
λ0λ′λ

[Dλ0
.K ⊗ �

†
λ′(ν)

]
λμ

. (2.16)

In this work we will restrict ourselves to the lowest term
with λ0 = 0 and λ = λ′. Thus, we will use the pairing plus
multipole-multipole Hamiltonian

H = HP − HQ

= HP − 1

2

∑
λ

∑
ττ ′

Fλ
ττ ′

√
2λ + 1 (Qτλ ⊗ Qτ ′λ)0 ,

(2.17)

and the QRPA equations become decoupled. We further
assume that a similar averaged rule (2.2) can also be applied
to the commutator of quasiparticle pair operators (2.14). By
minimizing the functional

Eλ(ν) = 〈[�λ(ν),H, �
†
λ(ν)]〉C

〈[�λ(ν), �†
λ(ν)]〉C

, (2.18)

where the expectation values include the integration over �,
the QRPA amplitudes are given by (the dQRPA) equations of
motion which are formally similar to those of the spherical
version: ( Aλ Bλ

−Bλ −Aλ

)(X (ν)
λ

Y (ν)
λ

)
= Eλ(ν)

(X (ν)
λ

Y (ν)
λ

)
. (2.19)

The dQRPA matrix elements are given by the following
symmetrized double commutators:

Aλ(τ12τ
′
12) = 〈[Aλμ(τ12),H,A

†
λμ(τ ′

12)]〉C
= δτ12τ

′
12

(
Eτn1j1 + Eτn2j2

) − Fλ
ττ ′ξ

λ
τ12

ξλ
τ ′

12
,

Bλ(τ12τ
′
12) = −〈[Aλμ(τ12),H,Aλ−μ(τ ′

12)(−)λ−μ]〉C
= −Fλ

ττ ′ξ
λ
τ12

ξλ
τ ′

12
, (2.20)

and they contain quasiparticle energies Eτnj = [(eτnj −
	τ )2 + 2

τ ]1/2, labeled by the eigenvalue index n, and the
factors ξλ

τ ′
12

(2.14) featuring the deformed matrix elements. As
we will show latter, in spite of the similarity to the spherical
QRPA, this formalism is more general. It is able to describe in
an unified way low-lying excitations not only in spherical but
also in deformed systems.

The strength of an electric transition, connecting the
dQRPA eigenstate ν to the ground state, is characterized by

the B(Eλ) value defined by

B(Eλ : ν → 0) = 1

2λ + 1
|〈0||T̂λ||ν〉C |2, (2.21)

with the reduced matrix element

〈0||T̂λ||ν〉C = √
2λ + 1

∑
τ

eτ

×
∑

n1j1�n2j2

ξλ
τ12

[X (ν)
λ (τ12) + Y (ν)

λ (τ12)
]
,

(2.22)

where eτ are the effective charges

eπ = e(1 + χ ), eν = χ, (2.23)

expressed in terms of the polarization parameter χ .

III. NUMERICAL APPLICATION

We have applied the dQRPA approach to describe the
B(E2) values of decays from the 2+

1 collective state to
the ground state in superfluid vibrational, transitional, and
rotational nuclei. Nilsson states in the intrinsic system of
coordinates were provided by diagonalizing the axially sym-
metric quadrupole interaction βmNω2r2Y20(θ ′). As a basis we
used the eigenstates of the spherical Woods-Saxon potential
with a universal set of parameters [31] plus a Coulomb
interaction for protons. The deformation parameters were
taken from Ref. [32] and the experimental pairing gaps were
estimated by using binding-energy data [32] of neighboring
nuclei. The pairing gaps Gτ in Eq. (2.10) were automatically
determined. The quadrupole-quadrupole coupling strengths
F 2

ττ ′ , defined by Eq. (2.17), were considered equal, as in
the classical Ref. [29]. The common value was determined
from the experimental 2+

1 energy [33] for each nucleus by
using the standard dispersion-relation technique for separable
interactions. For the polarization parameter in Eq. (2.23) we
adopted the (universal) value χ = 0.2.

For the spherical sp basis we used five orbitals below and
five above the Fermi level giving about 50 QRPA pairs, while
for the deformed one we used an equivalent space provided
by 15 levels below and 15 above the Fermi level, i.e., about
350 pairs in the dQRPA basis. As a test we analyzed the
energy-weighted strength function, defined by the product

EWSF = E(ν)B(E2 : ν → 0), (3.1)

as a function of the QRPA eigenvalues E(ν). The result for
the vibrational nucleus 130Te, given by the standard spherical
QRPA code, is plotted in Fig. 1(a). The similar result, but
provided by the deformed QRPA code, with the deformation
parameter β = 0, is given in Fig. 1(b). One sees that the two
results practically coincide, proving the validity of the key
ingredient of dQRPA, which is the reduced matrix element in
the deformed basis, given by Eq. (2.7). As a reference, we give
in Figs. 1(c) and 1(d) the same plots, but for the rotational
nucleus 240Pu. Here, the deformation parameter β = 0.22 was
used in the dQRPA calculation. As is well visible the results
of the spherical QRPA and dQRPA are completely different.
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FIG. 1. Energy-weighted strength function (3.1) for (a) the
spherical QRPA and (b) dQRPA in the case of the vibrational nucleus
130Te. Similar plots are given in panels (c) and (d) for the rotational
nucleus 240Pu, by using the deformation parameter of the deformed
field from Ref. [32].

Notice that the strength corresponding to the 2+
1 state becomes

significantly larger.
In order to analyze the differences between the spherical

and deformed approaches, we have investigated the E2 decay
properties of the 2+

1 states in superfluid even-even nuclei for
the region 50 < Z � 100. We have divided the data into two
sets separated by the magic number Z = 82.

In Fig. 2(a) we give by the open symbols the experimental
B(E2) values [33] in the region 50 � Z � 82 (111 values),
while by the filled symbols we indicate the B(E2) values
for 82 < Z � 100 (27 values). The correspondence between
the charge number of the isotopic chains we analyzed, the
associate neutron numbers and the interval of the index values
n is given in Table I.

In Fig. 2(b) are plotted the results given by the spherical
QRPA code. They reproduce the order of magnitude of the
B(E2)s in the region 50 � Z � 82 (open symbols), containing
mostly vibrational and transitional nuclei. The relative mean
square error in this region is about 30%. In the region
82 < Z � 100 (filled symbols), where most nuclei have small
2+

1 energies and rotational spectra, the computed B(E2) values
are by a factor 2 to 3 lower, the mean-square error being about
100%. So, as expected, the spherical QRPA fails in reproducing
the B(E2) values for rotational nuclei. On the contrary, in
Fig. 2(b) this region is much better reproduced by the dQRPA
(filled symbols). Indeed, here the mean-square error decreases
down to 25%. In order to enable a clear comparison, in Fig. 2(d)
we show again the experimental values. The better agreement
of the dQRPA results with the data can be explained by the
summation over core states J in the reduced matrix element
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FIG. 2. Theoretical B(E2) values given by the standard spherical
QRPA (b) and the dQRPA (c) versus excitation energy. For a better
comparison, in panels (a) and (d) are given the same experimental
B(E2) values [33].

given by Eq. (2.7). Indeed, by considering only the lowest yrast
core state the B(E2) results become lower, comparable to the
spherical method. Thus, the core states play an important role
in describing well deformed nuclei. In Fig. 3(a) we plotted the
same data, but versus the quadrupole deformation parameter
β. One notices different slopes for the two mentioned regions.
This feature cannot be explained by the spherical QRPA
given in Fig. 3(b), but it is nicely reproduced by dQRPA
in Fig. 3(c).

Finally, in Fig. 4 we give the quadrupole-quadrupole
coupling strength F 2

ττ ′ as a function of the mass number for the
spherical case by filled symbols and deformed case by open
symbols. The values are close to each other, especially in the
region above Z > 82. Their bulk features can be approximated
by the corresponding power laws, given in Fig. 4. As an
interesting observation, notice that the strength of the deformed

TABLE I. Charge numbers and the corresponding intervals for
neutron and index values.

Z N n Z N n Z N n

52 68–78 1–6 66 86–98 51–57 86 134–136 1–2
54 64–86 7–17 68 88–102 58–65 88 130–140 3–7
56 70–90 18–26 70 88–106 66–75 90 132–144 8–13
58 70–92 27–34 72 94–108 76–83 92 136–146 14–18
60 84–92 35–39 74 94–112 84–90 94 144–150 19–22
62 76–92 40–45 76 106–116 91–96 96 148–152 23–25
64 88–96 46–50 78 106–120 97–104 98 152–154 26–27

80 104–124 105–111
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FIG. 3. Same as in Fig. 2, but versus the quadrupole deformation
parameter of the deformed mean field [32].

interaction follows better a quadratic law in the region below
the double-magic nucleus 208Pb.

It is not the purpose of this paper to analyze the higher 2+
k

states, predicted by QRPA eigenvalues. Anyway, let us mention
that this approach is able to describe their gross features.
In order to illustrate this fact, we plotted by open symbols
in Fig. 5(a) spherical 2+

k QRPA eigenvalues, corresponding
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FIG. 4. Values of coupling strength multiplying the spherical QQ

interaction (filled symbols) and the deformed QQ interaction (open
symbols) versus the mass number. The corresponding fitting curves
are also given.
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FIG. 5. (a) Energies of 2+
k states, k = 2, 3, 4 for spherical QRPA

(open symbols) and the corresponding experimental values (filled
symbols) as a function of states. The labels correspond to the isotopic
chains given by the last three columns of the Table I. (b) Same as in
(a) but for dQRPA.

to k = 2, 3, 4, for the region Z > 82. This region contains
mainly well-deformed nuclei. As a comparison, there are
given the corresponding available experimental values by
filled symbols. One sees that the theoretical values display the
same clustering features as the experimental ones (k = 2, 3, 4
eigenvalues are close to each other for each isotope), but they
are higher, especially for Z = 88 and 90 isotopes. On the
other hand, the corresponding dQRPA eigenvalues in Fig. 5(b)
improve the situation. The electric transitions connecting these
states to the ground state are much smaller in comparison to
2+

1 states, i.e., between 0.1 and 0.4 W.u. (Weisskopf units)
(depending on the excitation energy), thus reproducing the
experimental order of magnitude. One has to keep in mind that
we used a very simple approach by considering that all QQ
strengths in Eq. (2.17) are equal. By using different coupling
strengths it is of course possible to improve the agreement of
higher 2+

k states with experiment.

IV. CONCLUSIONS

In conclusion, we described the quadrupole collective
excitations in even-even nuclei within a common formalism,
called the deformed QRPA (dQRPA), by using an sp basis
with good angular momentum provided by the Nilsson states
rotated into the laboratory frame of coordinates. Thus, the
physical collective states are directly determined, without
any additional projection procedure. The statistical factors,
taking into account the level occupancy in the laboratory
system, appear in a natural way within the dQRPA as rotation
coefficients of the wave function when taking it from the
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intrinsic to the laboratory system. We analyzed E2 transitions
from the collective 2+

1 state to the ground state for superfluid
nuclei in the charge-number range 50 < Z � 100 by using
a single value χ = 0.2 for the polarization charge. It turned
out that, as expected, the standard spherical QRPA approach
fails in describing rotational nuclei with E2 < 100 keV.
On the other hand, the dQRPA improves dramatically the
description of the E2 transitions for these nuclei. Therefore
the assumed adiabaticity seems to be a reasonable assumption
in describing low-lying collective states. This relatively simple
approach seems to be very promising in analyzing any kind
of spin-multipole interaction, including magnetic type of

excitations and intraband transitions in deformed nuclei within
the multipole-coupled approach given by Eq. (2.16). Further
applications of the dQRPA are under way.
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