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Half-lives for α and cluster radioactivity within a Gamow-like model
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A simple phenomenological model based on the Gamow theory for the evaluation of half-lives for α and
cluster radioactivity is proposed. The model contains only one adjustable parameter: the nuclear radius constant,
common for both kind of decays and an additional hindrance factor to the lifetimes which gives the effect of an
odd particle. A good agreement with the experimental data for nuclei with Z � 84 and N � 104 is achieved.
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I. INTRODUCTION

One of the most important decay modes of heavy nuclei, the
α radioactivity, was discovered in 1899 by Rutherford [1] as
one of three components of the radiation emitted by uranium
nuclei. The first law describing the systematics of the α-decay
half-life times T α

1/2 was proposed in 1911 by Geiger and
Nuttall [2]. This phenomenological decay law was explained
theoretically in 1928 by Gamow [3], who assumed that the
α decay was due to the quantum mechanical tunneling of
a charged α particle through the nuclear Coulomb barrier.
The up-to-date experimental systematics of T α

1/2 can be found
in Ref. [4]. The α-decay half-lives T α

1/2 of nuclei vary from
10−7 to 1018 s and kinetic energies of emitted α particles
between 4 and 11 MeV. In 1966 Viola and Seaborg proposed
a simple formula [5] based on the Gamow model which
well approximates these half-lives. Its extended versions with
parameters adjusted to the experimental data of heavy nuclei
can be found in Refs. [6–8].

Another decay mode, cluster radioactivity, was theoreti-
cally predicted in 1980 by Sandulescu, Poenaru, and Greiner
[9] and discovered four years later by Rose and Jones [10].
This decay is very rare and corresponds to the emission of a
nucleus heavier than 4He, but lighter than a typical mass of
a light fragment in binary fission (A � 60). The half-lives
of cluster radioactivity vary from 1011 to 1029 s. Typical
atomic masses of clusters are in the range 14 � A � 34,
while the mass of a daughter nucleus is close (±4 nucleons)
to the doubly magic 208Pb isotope. Because of the large
mass difference of cluster and daughter nucleus, the cluster
radioactivity phenomenon may be described in a similar way
as the α decay using Gamow-like theories [11] or as a very
mass asymmetric fission process [9,12]. Both approaches,
although from the first sight very different, lead nevertheless to
similar estimates of the half-lives for the cluster radioactivity.
Simple, Viola-Seaborg–like, phenomenological formulas for
the cluster decay half-lives were proposed in Refs. [7,13].

A nice regularity in the systematics for the α and cluster
decays, was recently discovered by Poenaru et al. in Ref. [14],
where a single universal curve for both radioactivities was
found. Following this idea, we have made an attempt to
reproduce the half-lives for both these decays in a model
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based on the Gamow theory [15]. A simple formula for T1/2

is derived using the WKB theory for the penetration of the
Coulomb barrier with a square well for the nuclear part.
We show in the following that using only one adjustable
parameter, the radius constant, it is possible to reproduce
with a good accuracy all existing data for decays of even-even
nuclei. Similarly as in the other papers (see, e.g., [6,7,13]) an
additional parameter, here a hindrance factor h, is introduced
to describe the decay of odd systems. The decay half-lives are
calculated and compared to the experimental data for the 298
α particle and 26 cluster decay processes of nuclei heavier than
208Pb. A good agreement with the data has been achieved.

II. MODEL

The half-life of a decaying nucleus is then given by

T1/2 = ln 2

λ
10h , (1)

where h is the so-called decay hindrance factor due to the
effect of an odd-proton or/and an odd-neutron. Of course for
the decays of the even-even nuclei one takes h = 0. λ is the
decay constant for the α or cluster emission and it is equal to
the following product (see, e.g., [14]):

λ = νSP , (2)

where ν is the number of the collective assaults per time unit
of the emitted object on the potential barrier and S is the
preformation probability of the α particle or the cluster at the
nuclear surface.

The probability of tunneling of an α particle or a cluster
through the potential barrier presented in Fig. 1 is given within
the WKB theory by the following integral (see, e.g., [16]):

P = exp

[
−2

h̄

∫ b

R

√
2μ(V (r) − Ek)dr

]
. (3)

Here μ = MnucA1A2/(A1 + A2) is the reduced mass, whereas
A1 and A2 are atomic mass numbers of the emitted cluster and
the daughter nucleus, respectively, Mnuc = 931 MeV/c2 is the
nuclear mass unit, and Ek the kinetic energy of the emitted
particle. The spherical square well radius R is equal to the
sum of the radii of both decay fragments

R = r0
(
A

1/3
1 + A

1/3
2

)
. (4)
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FIG. 1. Schematic plot of the potential energy as a function of the
distance between the centers of the decaying nuclei.

One should interpret R as an effective radius for which the
action integral (3) is equal to the ‘experimental’ ones. The
parameter r0 has then to be fitted to the data. The exit point
from the barrier b corresponds to point, where the Coulomb
potential is equal to the kinetic energy (Ek):

b = Z1Z2e
2

Ek
, (5)

where Z1 and Z2 are the charge numbers of the emitted cluster
and the residual nucleus, respectively. The kinetic energies of
the emitted particles are taken in the present calculation from
Ref. [4].

The potential energy V (r) shown in Fig. 1 is given by

V (r) =
{−V0 0 � r � R ,

Z1Z2e
2

r
r > R .

(6)

After taking into account Eqs. (4), (5), and (6) one can easily
evaluate the integral in the following analytical form (see,
e.g., [16]):

P = exp

⎧⎨
⎩ − 2

h̄

√
2μZ1Z2e2b

⎡
⎣arccos

√
R

b

−
√

R

b
−

(
R

b

)2
⎤
⎦

⎫⎬
⎭ . (7)

Usually one evaluates the frequency of assaults on the
barrier ν from the following classical expression:

ν =
√

2(Ek + V0)/μ

2R
, (8)

where the depth of the potential well V0 is one of the model
parameters. In different approaches it varies from 100 MeV
[17] to 1100 MeV [22]. The last value was obtained from the
α-scattering data. Blendowske and Walliser have assumed the
potential depth for the cluster with the mass number A1 as
V0 = 25A1 MeV [17].

The preformation probability of the α-particle Sα can be
estimated within microscopic theories [18,19] or treated as
the penetrability of the internal part of the barrier in a fission
theory [20,21], but in the majority of applications it is treated
as a free adjustable parameter. The preformation factor of a
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FIG. 2. (Color online) Influence of the formation factor Sα on the
rms deviation of the WKB estimates from the data for the α decay (a)
and cluster emission (b). The change of the radius constant obtained
by the least square fit as well as the hindrance factor for the odd
systems are plotted as a function of Sα.

cluster with mass A1 is often taken in a form proposed in [17]:

Sc = S(A1−1)/3
α , (9)

where Sα is a formation factor for the α particle.
Looking at Eqs. (2) and (8) it is easy to guess that the depth

of the nuclear potential well V0 and the preformation factor Sα

be correlated when one is going to reproduce the experimental
decay constant λ. The deeper the potential well, the higher
the frequency of assaults and, consequently, the lower the
value of Sα is needed to be to reproduce the data when the
radius R of the square well is fixed. On the other hand, the
change of V0 or Sα can be accommodated by an appropriate
shift of the radius constant as one can see in Figs. 2 and 3.
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FIG. 3. (Color online) Similar data as in Fig. 2 but as a function
of the nuclear potential depth constant V0 in Eq. (6).
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FIG. 4. (Color online) Differences of the theoretical and ex-
perimental α decay half-lives on logarithmic scale calculated for
even-even nuclei according to the presented model (WKB, cir-
cles) and the Parkhomenko and Sobiczewski formula [6] (PS,
crosses).

Performing a least square fit of the radius constant r0 (4) (and
the hindrance factor h for the odd systems; see the next section)
to known experimental half-lives for the α decays (298 cases)
and the cluster emission (26 cases) from nuclei heavier than
208Pb as function of Sα and keeping V0 = 0 constant, we get
the root-mean-square (rms) deviation of log10(T cal

1/2/T
exp

1/2 ) as
presented in Fig. 2. The cluster preformation probability is
related here to Sα according to Eq. (9). Both for the α decay
[Fig. 2(a)] and the cluster emission [Fig. 2(b)] the best fit is
obtained when Sα = 1. The increase of the preformation factor
can be compensated by an appropriate reduction of the radius
constant. This result confirms the conclusions of Refs. [20,21]
that the preformation probability of an α particle or a cluster
is related to the penetrability of the internal part of the barrier:
a smaller effective radius of the square well (6) gives a smaller
tunneling probability (3). It is also worthwhile to stress that
the best fit for both the α and the cluster decay is obtained at
almost the same value of r0 ≈ 1.2 fm which is in line with the
results of Ref. [14], where a common universal curve for the
α and cluster radioactivities was found.

Similarly, the increase of the nuclear potential depth, and
in consequence, the frequency of assaults [via Eq. (8)], can
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FIG. 5. (Color online) The same as in Fig. 4 but for even-odd
nuclei.

be compensated by a reduction of the radius constant as one
can see in Fig. 3 for the α decay half-lives. It is interesting to
notice that the quality of the fit (rms) is almost independent
of the potential well depth. That figure is made for a constant
preformation probability Sα = 1.

As the results of the above investigation we have decided to
simplify the formula (2) for the decay constant by neglecting
the preformation probability as it can be included in the
tunneling probability P given by the integral (3):

λ = νP , (10)

and to evaluate in the following the number of assaults per
time unit on the barrier using an approximate equation for the
ground state of the spherical square-well potential with the
radius given Eq. (4):

ν = πh̄

2μR2
. (11)

It is seen that in this approach the frequency of assaults depends
only on the size of the well and the reduced mass μ of the
emitted fragment.
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FIG. 6. (Color online) The same as in Fig. 4 but for odd-even
nuclei.

III. α DECAYS

The least square fit of the radius constant r0 is performed
by an adjustment to the logarithms of the measured half-lives
for the 298 α decays listed in Ref. [4] for nuclei heavier than
208Pb. The model estimates are obtained using Eqs. (1), (3),
and (10), (11). For nuclei with an odd number of nucleons the
additional constant hindrance factor (hp, hn or hnp) is fitted.
Following the discussion in the previous section we assume
here the formation probability Sα = 1 when preforming the
fitting procedure. As the quality of the fit is almost the same
when one assumes only one hindrance constant h instead
of three independent hindrance factors for each kind of odd
nucleon: hp, hn, or hnp, we have decided to stay with only
two adjustable parameters r0 and h which we have obtained
through the least square fit procedure:

r0 = 1.21 fm, h = hp = hn = 0.216, hnp = 2h . (12)

The radius constant was simultaneously fitted to the data for
the α and the cluster radioactivities.

The least square fit value of the radius constant is r0 =
1.21 fm and its distribution width is only σr0 = 0.02 fm. The
data obtained from log10(T1/2) for the α decays are presented
by the open circles while those obtained from the half-lives for
the cluster emission by the filled symbols. The average value
of the hindrance factor for the α decays is h = 0.216 and its
widths is σh = 0.546.
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FIG. 7. (Color online) The same as in Fig. 4 but for odd-odd nuclei.

The α-decay half-lives obtained within the present model
are compared below with the phenomenological formula
developed by Parkhomenko and Sobiczewski [6]:

log10 T α
1/2(Z,N ) = aZ(Qα(Z,N) − Ei)

−1/2 + bZ + c ,

(13)

where the constants a = 1.5372, b = −0.1607, and c =
−36.573 are common for all decaying nuclei. The effect of
an odd proton or neutron on T α

1/2 is obtained in this approach
by the energy shifts in the Qα-value Ep = 0.113 MeV, En =
0.171 MeV, and Epn = Ep + En. The estimates made using
the formula (13) which contains five adjustable parameters,
belong to the most precise ones.

The logarithm of the ratio of the calculated half-life (T cal
1/2)

to the measured one (T exp
1/2 ) for all examined nuclei is presented

in Figs. 4–7 as a function of the neutron number. The estimates
obtained with the present WKB model (circles) are compared
with the results obtained using the Parkhomenko-Sobiczewski
(PS) formula (13) (crosses) [6]. It is seen in Fig. 4 that for
even-even nuclei both models give comparable estimates. The
WKB results are closer to the data for lighter nuclei than the
PS estimates while in the superheavy region the PS results
are slightly better. Large deviations of both estimates from the
data are observed for even-odd nuclei (Fig. 5) around the magic
numbers N = 126 and N = 152 or 154, where the considered
models underestimate the T

exp
1/2 by two orders of magnitude. A

slightly better agreement can be observed in Fig. 6 for odd-even
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TABLE I. Root-mean-square deviations of log10(T1/2) calculated
for the Viola-Seaborg–like formula given in Eq. (13) for the α decay
[6] and in Eq. (14) the cluster radioactivity [13] is compared with
the results of the present WKB model with the radius constant r0 =
1.21 fm.

πZ − πN n h V-S WKB
rms rms

α decay [6]
e-e 96 0.54 0.39
e-o 85 0.216 0.78 0.68
o-e 65 0.216 0.53 0.47
o-o 52 0.432 0.72 0.68
Cluster radioactivity [13]
e-e 16 0.80 0.85
odd A 10 1.973 0.64 0.45

isotopes, where typically the estimates deviate from the data
by less than one order of magnitude. The effect of the magic
number N = 126 is also visible in Fig. 7 in which the results
for odd-odd nuclei are presented. Here the quality of both fits
is comparable. The large deviations of the estimated and the
measured half-lives observed in the vicinity of magic numbers
demand the inclusion of the shell effects in the model. It is
worth to mention here that in Ref. [8] the new Geiger-Nuttal
law for the calculations of α-decay half-lives was proposed
where the effects of the quantum numbers, in particular the
magic number N = 126, were taken into account.

The rms deviations of the WKB estimates made for the
α and cluster decays using Eqs. (1), (3), and (10), (11) with
the same radius constant r0 = 1.21 fm for all α and clusters
radioactivities and only one hindrance factor for odd systems
are on the average slightly smaller than the rms obtained
when using the phenomenological five parameters formula
(13) proposed in [6]. The details are summarized in Table I.

IV. CLUSTER RADIOACTIVITY

The same formalism as for the α decay was used to describe
the cluster-emission half-lives with the same radius constant
r0 = 1.21 fm.

The estimates of the half-lives for the cluster decay are
compared in Fig. 8 with the experimental data taken from
[4,11,12,23–25]. A good agreement with the data is achieved
without any readjustment of the radius constant. For the odd-A
systems (ten cases) an additional hindrance factor h = 1.973
is introduced. For the majority of cases (22 of 26) the deviation
does not exceed one order of magnitude. The rms deviation of
log10(T1/2) is equal to 0.85 in the case of the decay of even-even
nuclei, while for odd-nuclei it is only 0.45.

Our results are compared in Table I with the estimates
obtained using the Viola-Seaborg type formula developed in
Ref. [13]:

log10(T1/2) = aZ1Z2Q
−1/2 + cZ1Z2 + d + h , (14)

which contains four adjusted parameters:

a = 1.51799, c = −0.053387, d = −92.91142, h = 1.402.
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FIG. 8. (Color online) Cluster radioactivity half-lives. The exper-
imental data (dots) are compared to calculated values (open symbols).
Arrows are set in cases where observed half-lives have determined
only a lower limit.

The last parameter is the hindrance factor for emission of
clusters from odd-A nuclei. It is seen from Table I that our
estimates obtained with only one fitted parameter to the cluster
data reproduce the experimental data with a similar quality as
the formula (14).

V. SUMMARY

The following conclusions can be drawn from our investi-
gation:

(i) The effect of the preformation factor can be emulated
by an appropriate change of the radius constant which
respectively decreases the tunneling probability.

(ii) The depth of the collective nuclear potential well felt by
an effective α particle or cluster formed in the decaying
nucleus is probably much smaller that one commonly
assumes.

(iii) The frequency of assaults of the emitted light fragment
can be estimated from the quantum-mechanical ground-
state frequency in the spherical square well.

(iv) For all nuclei with Z � 84 and N � 104, i.e., for 298
α and 26 cluster experimentally known decay events,
our model describes with rather good accuracy the half-
lives of both types of decays.

(v) The model reproduces α and cluster decay half-lives
using the same radius constant r0 = 1.21 fm, common
for even and odd decaying nuclei.

(vi) The effect of an odd particle on the α-decay lifetimes
was introduced in the form of one additional parameter:
a hindrance factor h, the same for nuclei with odd proton

024308-5



A. ZDEB, M. WARDA, AND K. POMORSKI PHYSICAL REVIEW C 87, 024308 (2013)

or neutron number, while for the odd-odd system the
hindrance factor is doubled. Also only one hindrance
factor was used to reproduce the half-lives of odd-A
nuclei with respect to the cluster emission.

We believe the results of our investigations will also be
important for other branches of physics and chemistry which
are dealing with the potential barrier tunneling.
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