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We describe the excited 0+ state of 12C at 7.654 MeV, often called the Hoyle state, in terms of a local potential
8Be + α cluster model. We use a previously published prescription for the cluster-core potential to solve the
Schrödinger equation to obtain wave functions for this state, and also for higher angular momentum states of
the same system. We calculate energies, widths, and charge radii for the resulting band of states, with particular
emphasis on the recently discovered 2+ state. We examine various choices of the global quantum number
G = 2n + L for the cluster-core relative motion, and find that G = 6 leads to the most coherent description of
the properties of the states and is consistent with recent experimental data on the L = 2 state.

DOI: 10.1103/PhysRevC.87.024304 PACS number(s): 21.10.Re, 21.60.Gx, 21.10.Tg, 27.20.+n

I. INTRODUCTION

When considering how carbon could be produced in stellar
nucleosynthesis, Hoyle [1] famously predicted that the 12C
nucleus must have an excited 0+ state in the vicinity of the 3α
breakup threshold. Such a state was duly found [2] in short
order on the basis of Hoyle’s suggestion. Its existence was
essential for 12C to be produced at an adequate rate to open up
the pathways to the synthesis of still heavier nuclei [3]. Not
only had this state escaped both experimental detection and
theoretical prediction up to that point, but it has continued to
pose severe challenges to nuclear structure models ever since.

The shell model struggles to describe any low-lying excited
0+ states in p-shell and sd-shell nuclei. To this day, the
most advanced no-core shell model has not succeeded in
reproducing the excitation energy of the Hoyle state [4].
Models invoking a 3α chain [5–7] were able to accommodate
the excitation energy, but could not reproduce the decay width
of the Hoyle state. Better success was enjoyed by orthogonality
condition model calculations of the 3α system, using a semimi-
croscopic α-α interaction [8,9], which gave a suitably sized
α-decay width in the 8Be(0+

1 ) + α channel. This suggested that
the dominant structure of the Hoyle state must be 8Be(0+

1 ) + α
in a relative s state. Such a conclusion was backed up by fully
microscopic 3α calculations using the resonating group and
generator coordinate methods [10–13]. More recently, fully
microscopic calculations using antisymmetrized molecular
dynamics (AMD) [14] and fermionic molecular dynamics
(FMD) [15] have been able to give a good account of the
low-lying spectrum of 12C without assuming α clustering
a priori. For the particular case of the very loosely bound Hoyle
state a 3α condensate wave function [16] has also been shown
to have a large overlap with the FMD wave function. The
current situation is well summarized in a recent review [17].

In parallel with these theoretical developments, new life has
recently been breathed into the experimental program. Given
that the Hoyle state has a large mean square radius, it is natural
to suggest calculating higher angular momentum states with
this same structure, thereby producing a band of excited states
with a large moment of inertia. Although Friedrich et al. [18]
claim there are no such rotational states, most 3α models do

support them, with the 2+ state generally expected to have an
excitation energy in the region of 10 MeV. Initial searches for
this 2+ state via β decay [19] were discouraging, but in recent
times three separate experiments have provided evidence of
its existence. Itoh et al. [20] see a 2+ state at 9.9 MeV, with
a width of 1.0 MeV, via inelastic α-particle scattering in their
12C(α, α′) measurements. Freer et al. [21] see a 2+ state at
9.6 MeV, with a width of 0.6 MeV, in their inelastic proton
scattering 12C(p,p′) work. Gai [22] confirms the existence of a
2+ state around 10 MeV (but without being able to measure a
width) in photonuclear disintegration 12C(γ, 3α) studies.

In view of this resurgent interest in an excited Hoyle band
we ask in this paper to what extent the known data can
be accounted for (and further excited states predicted) by a
local potential 8Be + α cluster model. This model provides
a physically transparent and calculationally straightforward
description of the energies, widths, and charge radii of the
known states in the proposed Hoyle band. It also throws some
light on the question of how high in angular momentum such
a band might continue. In this way it can be a useful guide to
experimental groups searching for as yet unidentified higher
L states. It is also illuminating to see how far one can get with
a simple but physically motivated model. Although ideally
the full rigors of a more microscopic and computationally
intensive approach might seem preferable, a rather simplified
effective nucleon-nucleon potential is needed to carry this
to fruition. It might be that a phenomenological approach
can produce a band of states with properties closer to the
experimental values. In any event it is interesting to compare
the results from different theoretical treatments with each other
as well as with experiment.

In the next section we describe our local potential 8Be + α
cluster model. After that, we compare the model’s results
with the available data and discuss the possible existence of
additional states. Finally, we summarize our conclusions.

II. LOCAL POTENTIAL CLUSTER MODEL

The cluster model employed here was first proposed to
study the excited 4p-4h band of 16O (band head at 6.05 MeV)

024304-10556-2813/2013/87(2)/024304(6) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevC.87.024304


B. BUCK, A. C. MERCHANT, AND S. M. PEREZ PHYSICAL REVIEW C 87, 024304 (2013)

and the ground-state band of 20Ne [23] and has subsequently
been applied to a wide range of nuclei across the periodic table
from 6Li to 242Cm. However, it has not previously been used
for 12C, because the ground-state band of that nucleus is known
to be oblate (from the sign of its quadrupole moment [24]) and
a two-body cluster-core system inevitably produces a prolate
deformation. This is because, for spinless constituents such as
8Be and α, the quadrupole operator for the system reduces to

M(E2) =
(
Z1A

2
2 + Z2A

2
1

)
(A1 + A2)2

R2Y2(R̂). (1)

The expectation value of this operator always yields a positive
quadrupole moment, indicating a prolate spheroidal shape. To
obtain negative quadrupole moments, appropriate to oblate
shapes, it is necessary to consider three-body systems. This
outcome provides a large part of the motivation behind
attempts to model the ground-state band of 12C (and indeed
the excited 3− state at 9.64 MeV) as an equilateral triangular
arrangement of three α particles [25]. However, the indications
that the Hoyle state, and any associated rotations of it, have
a large 8Be(0+

1 ) + α component, mark out the Hoyle band
as ideal territory for our local potential two-body cluster
model. Unfortunately, this means that we are unable to address
any states of the 12C system that do not have this particular
structure. In particular, we cannot model the ground-state band
and the excited 3− state mentioned above.

In general, we model a nucleus as two even-even subnuclei
of mass A1 and A2 separated by a distance R, interacting
through a deep, local nuclear potential VN (R) and a Coulomb
potential VC(R) appropriate to a point cluster and a uniformly
charged spherical core. The nuclear part has previously been
parametrized in the form [26]

VN (R) = −V0

{
x

{1 + exp [(R − R0)/a]}
+ 1 − x

{1 + exp [(R − R0)/3a]}3

}
(2)

with parameter values given by

v0 = 54.0 MeV, a = 0.73 fm, and x = 0.33 (3)

and V0 related to v0 by

V0 = A1A2

(A1 + A2)
v0. (4)

The radius parameter R0 of the potential is determined by
fitting to the experimental energy of the spectrum’s band head,
and is linked to the choice of G = 2n + L (see below). This
potential is now incorporated into the cluster-core relative
motion Hamiltonian H0(R), and the resulting Schrödinger
equation

H0(R)�GnL(R) = EGnL�GnL(R) = EGnL

uGnL(R)

R
YLM (θ, φ)

(5)

is solved numerically. We label the wave functions and energies
with the global quantum number G = 2n + L, where n is the
number of internal nodes in the radial wave function and L the
orbital angular momentum.

We must choose the value of G large enough to guarantee
that the Pauli exclusion principle is satisfied by excluding
the cluster constituents from states occupied by the core
nucleons. For the 8Be + α system this requires G � 4. The
appropriate choice of G is not clear cut when we are not
using an oscillator potential, although we can certainly use
oscillator considerations as a guide. The lowest allowed
value, G = 4, would correspond to packing the α nucleons
into the p-shell, which seems an unlikely description of
an excited state in 12C. Nevertheless, for completeness, we
present calculations employing G = 4, 6, and 8, with a view
to deciding a posteriori on the basis of a comparison with
experimental data which is the best choice. Indeed, only a
posteriori can we say that our model, with any eventually
preferred value of G, is appropriate for describing the Hoyle
state and its associated band by comparing its predictions with
the measured properties of those states.

Although numerical solution of the Schrödinger equation
without any restrictions on G certainly does produce lower
lying states, they are Pauli forbidden and do not correspond to
physical states of 12C. Thus, we have no 12C bound states in
our model and cannot use it to describe the observed ground
0+ or excited 2+ (4.44 MeV) states of the nucleus. Equally, we
cannot describe the 3− (9.64 MeV) state of 12C (as explained
earlier). It is possible to produce negative parity states in our
model by solving the Schrödinger equation with an odd value
of G, but the resulting energies are 10–20 MeV above the
Hoyle state, and not of immediate interest. Similarly, we could
obtain negative parity states of 12C by using even G values in
conjunction with an excited negative parity state of the 8Be
core. Again, the resulting excitation energies in 12C are too
high to be of interest in the current study.

As a further model extension we could include excitations
of the 8Be core into its 2+ and 4+ states. We do not do
this here because it would involve the introduction of more
adjustable parameters to describe the noncentral interactions
that accompany such excitations, and we are trying to keep
the number of fitted quantities to a minimum. Our previous
experience of including core excitations in treatments of 16O
[27] and 24Mg [28] leads us to expect that they would not have
a major effect on our conclusions in the 8Be + α case.

Solving the Schrödinger equation produces excitation
energies and their associated widths directly. The resulting
wave functions can also be used to calculate mean square
charge radii of the states from

(Z1 + Z2)〈R2(12C)〉 = Z1〈R2(8Be)〉 + Z2〈R2(α)〉

+
(
Z1A

2
2 + Z2A

2
1

)
(A1 + A2)2

〈
R2

rel

〉
, (6)

where (Z1, A1) = (4, 8) and (Z2, A2) = (2, 4) for the 8Be + α
system. To apply this formula for charge radii we need
to supplement the wave functions generated above with a
description of the ground state of 8Be (or at least, of its
mean square charge radius). An excellent description of α-α
scattering phase shifts and 8Be has already been given within
the local potential cluster model [29] using a Gaussian nuclear
potential

VN (R) = VG exp (−αR2) (7)
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with VG = 122.6225 MeV and α = 0.22 fm−2 and a Coulomb
potential

VC(R) = Z1Z2erf(βR)

R
(8)

with β = 0.75 fm−1 and where Z1 = Z2 = 2 for the α-α
system. We adopt this description of 8Be wholesale because,
within our model, it can hardly be improved upon.

As a consistency check on the widths of the states we can
make use of our earlier work (see, for example, Ref. [30])
on charged particle decay widths. Within the two-body local
potential model, a semiclassical approximation leads to an
α-partial width of

�α = F
h̄2

4μ
exp

(
− 2

∫ R3

R2

dR k(R)

)
, (9)

where R2 and R3 are the two outermost classical turning points
and μ is the reduced mass of the system. The normalization
factor F is given to good accuracy by

F

∫ R2

R1

dR

2k(R)
= 1, (10)

with R1 the innermost turning point, and the wave number
k(R) is

k(R) =
(

2μ

h̄2 |Q − V (R)|
)1/2

(11)

and Q is the experimental energy of the decaying state relative
to the two-body breakup threshold.

III. ENERGIES, WIDTHS, AND RADII OF
HOYLE BAND STATES

As outlined in the previous section, we calculate 8Be + α
cluster states, using a previously published prescription for the
potential [26], without adjusting any of the parameters v0, a
and x listed in Eq. (3). We identify the 0+ state with the Hoyle
state, check that this choice produces a good account of the
available data, and proceed to calculate similar states of higher
angular momenta. Each band of states is labeled by the choice
of G = 2n + L. The maximum possible value of L in this
scheme is equal to G itself (corresponding to the nodeless wave
function). We determine the potential radius R0 of the potential
by fitting so as to reproduce the experimental energy of the 0+
Hoyle state exactly. The resulting values for R0 are listed in
Table I. It is also useful to know the position and maximum
height of the potential (Coulomb barrier) since this gives an up-
per limit on the energy of a resonant state with the correspond-
ing value of L. Therefore we also list these values in Table I
for the three values of G = 4, 6, and 8 under consideration.

Figure 1 shows the potentials (nuclear, Coulomb, and
centrifugal combined) obtained from the procedure described
above for G = 4, 6, and 8. It is clear from inspection that
it would be no surprise to discover that the state with the
highest expected L value for each value of G was completely
unbound (or at best precariously resonant). In fact, none of
the states of the Hoyle band is bound. They are all (at best)
resonances, and in some cases rather close to the top of the

TABLE I. Potential Maxima for G = 4, 6, and 8.

L Vmax (MeV) at Rmax(fm)

G = 4 G = 6 G = 8
R0 = 0.8883 fm R0 = 1.9386 fm R0 = 2.9008 fm

0 1.63 at 6.20 1.42 at 7.25 1.26 at 8.28
2 3.12 at 5.16 2.44 at 6.41 2.02 at 7.56
4 9.23 at 3.48 5.74 at 5.28 4.24 at 6.62
6 13.87 at 4.02 8.82 at 5.74
8 17.26 at 4.86

Coulomb barrier, so the calculation of their energies and widths
is numerically delicate. In view of this we have found it
expedient to crosscheck our results using a variety of different
calculational methods.

(i) We use our own bound-state code to perform a
numerical integration of the Schrödinger equation, but
rounding off the potential at its maximum value for radii
in excess of that radius where the maximum is achieved
(i.e., V = Vmax for R � Rmax). This serves to give a
good estimate of the energies that can be used to provide
a starting energy for the methods described below, and
also as a consistency check on these subsequent results.

(ii) We use the published code GAMOW [31], which employs
complex arithmetic to solve the Schrödinger equation
and fits Gamow tails to the resonant states, so as to

0 2 4 6 8 10
R(fm)

-100

0

0

0

100

V
(R

) 
(M

eV
) G=6

G=4

G=8

FIG. 1. Local potentials (nuclear + Coulomb + centrifugal) for
the 8Be + α system corresponding to all possible L values for the
global quantum numbers G = 4, 6, and 8. The potentials for G = 4
are displaced upwards by 100 MeV and those for G = 8 downwards
by 100 MeV to aid visibility.
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evaluate energies and widths of the states. We need this
code principally for the wave functions it generates,
which can be used eventually in the calculation of the
mean square charge radii.

(iii) We use the published elastic scattering code SCAT2 [32],
which allows us to monitor the scattering phase shifts of
the 8Be + α system as a function of the center of mass
(c.m.) energy, and thereby to identify the peak energies
and widths of the resonant states in the various partial
waves.

(iv) As an order of magnitude check, we also evaluate the
widths of the states using the semiclassical method
discussed in the previous section, Eq. (8). Previous
experience using this approach to calculate half lives for
charged particle decay suggests that it can be expected
to agree with the true value to within about a factor of
two.

The code SCAT2 writes out the scattering matrix elements
ηl in the form 1 − Re(ηl) and Im(ηl), where the ηl are related
to the transmission coefficients Tl by

Tl = 1 − |ηl|2. (12)

We run the code at successively incremented c.m. energies,
centered on the values indicated by our own bound-state code
and by GAMOW, and monitor the behavior of the scattering
matrix as the energy increases through the suspected resonance
region. As the energy of a resonant state is approached from
below, the value of 1 − Re(ηl) for the appropriate partial
wave l rises from near zero through 1 towards 2. We take
the energy range over which it rises from 0.5 to 1.5 as the
width of the resonant state. The value of Im(ηl) also rises from
0 towards 1, and then falls again to zero. By systematically
working through the energy regions indicated by the bound-
state code (and taking successively finer incremental energy
grids as necessary), we obtain the width values reported
for the L > 0 states in Table II. The widths for the 0+
states were obtained using the semiclassical approximation
described in the previous section, Eqs. (8)–(10). We note
that the experimental width of the 0+ state is 8.5 ± 1.0 eV,
with which the corresponding theoretical value obtained with
G = 6 in Table II is in good agreement.

The energies from all these methods are mutually compat-
ible and we present the average of them as the peak energy of
each resonance in Table II. We have added 7.365 MeV to the

TABLE II. Calculated state energies, widths, and 〈R2〉 for G =
4, 6, and 8.

L E(MeV) ± �

G = 4 G = 6 G = 8

0 7.654 ± 3(eV) 7.654 ± 6(eV) 7.654 ± 13(eV)
2 No state 9.61 ± 360(keV) 8.85 ± 68(keV)
4 No state 13.71 ± 1.24(MeV) 11.52 ± 300(keV)
6 No state 16.25 ± 660(keV)
8 No state
〈R2〉 11.688 fm2 13.457 fm2 15.553 fm2√

〈R2〉 3.42 fm 3.67 fm 3.94 fm

2 2.1 2.2 2.3 2.4 2.5
c.m. Energy (MeV)

0.5

1

0.5

1

1.5

Im
(η
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1-
R

e(
η

l)

FIG. 2. The energy dependence of 1 − Re(ηl) and Im(ηl) for the
G = 6, L = 2 resonance near the c.m. energy of 2.22 MeV obtained
from the code SCAT2. The energy scale has been shifted slightly to
align it with the average energy calculated for the 2+ excitation by
our different calculations.

c.m. scattering energies to obtain excitation energies relative
to the 12C ground state. (Note that the 0+ state’s energy of
7.654 MeV was used to fit the potential radius R0 for all three
values of G.)

Figure 2 shows the energy dependence of 1 − Re(ηl) and
Im(ηl) for the G = 6, L = 2 resonance near the c.m. energy
of about 2.22 MeV. This is both a typical case, and the state
that we are most interested in (because of recent experimental
results [20–22], which have at last found a rotational state
of the Hoyle band). The best description of this state within
our model is achieved using G = 6. For G = 4 there is no
resonant state at all, and for G = 8 the excitation energy is too
low and the width too narrow. We are not unduly concerned
that this value of G does not tally nicely with oscillator shell
model considerations, which might suggest G = 8 since most
of the low-lying intruder states in this region are described
as 4p-4h excitations in the shell model. We are not using a
harmonic oscillator potential and will generate rather different
wave functions with exponential rather than Gaussian tails,
and so do not expect an identity of G values between the
two cases. Our calculations also predict an excited 4+ state
at 13.71 MeV. We predict a width of 1.24 MeV for it, which
would make it hard to detect in experiments. We note however
that this excitation energy places the state above the barrier
maximum for an L = 4 state in a G = 6 band, indicating that
the result is not completely reliable, although still indicative
of a possible 4+ state in this region.

024304-4



LOCAL POTENTIAL MODEL OF THE HOYLE BAND IN 12C PHYSICAL REVIEW C 87, 024304 (2013)

In this context it is interesting to note that Freer et al.
[33] have recently found evidence for a new state in
12C at 13.3 ± 0.2 MeV with a width of 1.7 ± 0.2 MeV
in their studies of the 12C(4He, 4He + 4He + 4He) 4He
and 9Be(4He, 4He + 4He + 4He)n reactions. Analysis of
the angular distributions suggests that the state might
have Jπ = 4+. As such, its properties are in line with
our expectations for the third state in the Hoyle band,
and we await the outcome of further investigations with
interest.

Previous analyses of inelastic electron scattering from
12C [34] indicate that the Hoyle state has an abnormally
large charge radius. We therefore calculate the values of
〈R2〉 implied by our model for G = 4, 6, and 8. We first
need to calculate a mean square charge radius for 8Be. We
do this by using the mean square charge radius for an α
particle of 1.6757 fm [35] and the mean square separation
of the two α particles calculated by our bound-state code and
confirmed by GAMOW using the potential of Ref. [29] in the
formula

〈R2〉8Be = 〈R2〉α + 1
4 〈R2〉α−α. (13)

This yields a mean square charge radius for 8Be of 10.634 fm2

(with a square root of 3.261 fm). This, in turn, serves as input
for the mean square charge radius of the Hoyle state in the
formula

〈R2〉12C−Hoyle = 1
3 〈R2〉α + 2

3 〈R2〉Be + 2
9 〈R2〉α−Be. (14)

Our G = 6 value of 3.78 fm is somewhat below the value
of 3.87 fm deduced by Funaki et al. [34] but significantly
larger than the values deduced from earlier GCM calculations

of 3.50 fm [12] and 3.47 fm [11] obtained from full 3α
calculations using Volkov effective two-nucleon forces.

IV. CONCLUSION

It has long been suspected that the Hoyle state in 12C might
have rotational excitations built upon it so that a Hoyle band
could be present in the 12C spectrum. Recent experimental
work has located a 2+ state a little below 10 MeV with a
width of about 600 keV, which is a strong candidate for such
a structure. This has motivated us to apply a local potential
8Be-α cluster model, with previously published potential
prescription, to the system to see if we can reproduce the
existing data and predict properties of other similar states.

The calculation is numerically delicate but obtaining
closely similar excitation energies from three different meth-
ods gives us a good degree of confidence in our results. We find
that with a global quantum number of G = 6 we are able to
give a good account of the width and root mean square charge
radius of the Hoyle state itself and a reasonable description
of the excitation energy and width of the proposed excited 2+
member of the putative Hoyle band. We note that our calculated
2+ state is very close to the top of the Coulomb barrier. We also
predict a rather wide 4+ state of the G = 6 band at an excitation
energy of roughly 14 MeV, and find that the band certainly
terminates here (if not already with the 2+ state). However, our
calculation is not completely reliable for this state, and there
may be a case to be made that the known 4+ state at 14.083
MeV [36] should be assigned to the Hoyle band. Perhaps there
are even two 4+ states there. This is an interesting conundrum
that further experimental investigation might be able to resolve.
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