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We present results of fully self-consistent Hartree-Fock-based random phase approximation calculations of the
strength functions S(E) and centroid energies ECEN of isoscalar (T = 0) and isovector (T = 1) giant resonances
of multipolarities L = 0–3 in 40Ca and 48Ca, using a wide range of commonly employed 18 Skyrme-type
nucleon-nucleon effective interactions. We determined the sensitivities of ECEN and of the isotopic differences
ECEN(48Ca) – ECEN(40Ca) to physical quantities, such as nuclear matter incompressibility coefficient, symmetry
energy density, and effective mass, associated with the Skyrme interactions and compare the results with the
available experimental data.
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I. INTRODUCTION

The study of collective modes in nuclei was the subject of
extensive theoretical and experimental studies during several
decades [1–3] because it contributes significantly to our un-
derstanding of bulk properties of nuclei, their nonequilibrium
properties, and properties of the nuclear force. Of particular
interest is the equation of state (EOS), i.e., the binding energy
per nucleon as a function of the neutron (N ) and proton (Z)
densities, of infinite nuclear matter (no Coulomb interaction).
The EOS is an important ingredient in the study of properties
of nuclei at and away from stability, the study of structure, and
evolution of compact astrophysical objects, such as neutron
stars and core-collapse supernovae, and the study of heavy-ion
collisions (HIC) [4,5]. The saturation point of the equation
of state for symmetric (N = Z) nuclear matter (NM) is
well determined from the measured binding energies and
central matter densities of nuclei, by extrapolation to infinite
NM [1,2]. To extend our knowledge of the EOS beyond the
saturation point of symmetric NM, an accurate value of the NM
incompressibility coefficient KNM, which is directly related
to the curvature of the EOS of symmetric NM, is needed.
An accurate knowledge of the dependence of the symmetry
energy, Esym(ρ), on the matter density ρ is needed for the EOS
of asymmetric NM.

There have been many attempts over the years to determine
KNM and Esym(ρ) by considering physical quantities which are
sensitive to the values of KNM and Esym(ρ) [3,4,6,7]. In this
work we investigate the sensitivity of the strength function
distributions of the isoscalar and isovector giant resonances
with multipolarities L = 0–3 of the isotopes 40Ca and 48Ca to
bulk properties of NM, such as KNM, Esym, and the effective
mass m∗. It is well known that the energies of the compression
modes, the isoscalar giant monopole resonance (ISGMR), and
isoscalar giant dipole resonance (ISGDR), are very sensitive
to the value of KNM [1,3,8]. Also the energies of the isovector
giant resonances, in particular, the isovector giant dipole
resonance (IVGDR), are sensitive to the density dependence of
Esym [9,10], commonly parametrized in terms of the quantities
J , L, and Ksym, which are the value of Esym(ρ) at saturation

density (also known as symmetry energy coefficient), and the
quantities directly related to the derivative and the curvature
of Esym(ρ) at the saturation density, respectively. Furthermore,
information on the density dependence of Esym can also be
obtained by studying the isotopic dependence of strength
functions, such as the difference between the strength functions
of 40Ca and 48Ca and between 112Sn and 124Sn. We note
that the value of the neutron-proton asymmetry parameter
δ = (N − Z)/A increases from 40Ca to 48Ca by a value of
0.167 which is significantly larger than the change of 0.087
between 112Sn and 124Sn.

In early analysis of the experimental data on the ISGMR
[11,12], a semiclassical model was adopted to relate the energy
of the ISGMR to an incompressibility coefficient KA of the
nucleus and carry out a Leptodermous (A−1/3) expansion
of KA, similar to a mass formula, to parameterize KA into
volume (KNM), surface (KS), symmetry (Kτ ), and Coulomb
(KC) terms [11,13,14]. Shlomo and Youngblood [14] showed
that this type of analysis could not provide a unique solution
even including all available world data as of that time. More
recently [15] a semiclassical analysis of the ISGMR data
in the Sn isotopes demonstrated that the value obtained for
Kτ is quite sensitive to the number of terms employed in
the Leptodermous expansion. In this work we adopt the
microscopic approach of fully self-consistent Hartree-Fock
(HF)-based random phase approximation (RPA), employing
an effective nucleon-nucleon interaction. In the HF-RPA
approach, the values of KNM and the density dependence of
Esym are then deduced from the interaction that best reproduces
the experimental data on the strength functions of the giant
resonance (see the review in Ref. [3]). It is important to note
that ground-state properties of nuclei are well described by
the HF approximation, using an effective nucleon-nucleon
interaction, such as the Skyrme-type interaction [16–18], with
parameters obtained by a fit to a selected set of experimental
data on binding energies and radii of nuclei [1,2]. It was
also demonstrated that HF-based RPA nicely reproduces the
properties of low-lying collective states as well as of giant
resonances [1,2].
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Recently the giant resonance region from 9.5 MeV <
Ex < 40 MeV in 48Ca was studied with inelastic scattering
of 240 MeV α particles at small angles, including 0◦. Close
to 100% of the ISGMR (E0), ISGDR (E1), and isoscalar
giant quadrupole resonance (E2) strengths have been located
between 9.5 and 40 MeV in 48Ca [19]. To study the effect of
neutron-proton asymmetry, a comparison with the available
data for 40Ca [20–22], as well as with the results obtained
within the HF-based RPA, was carried out in Ref. [19].
The ISGMR was found at somewhat higher energy in 48Ca
than in 40Ca, whereas self-consistent HF-RPA calculations
obtained using the SGII [23], KDE0 [24], SKM∗ [25], and
SK255 [26] Skyrme interactions predict a centroid energy in
this neutron-rich Ca isotope lower than in 40Ca.

In this work we extend our theoretical investigation by
considering the isoscalar and isovector giant resonances of
multipolarities L = 0–3 in 40Ca and 48Ca. In the next section
we review the basic elements of the self-consistent HF-based
RPA theory for the strength functions of isoscalar (T = 0)
and isovector (T = 1) giant resonances. In Sec. III we present
results of our calculations for the strength functions S(E) and
centroid energies ECEN obtained for giant resonances of T = 0,
1 and multipolarities L = 0–3 in 40Ca and 48Ca, using a wide
range of 18 commonly used Skyrme-type nucleon-nucleon
effective interactions. We pay attention to the issue of self-
consistency and investigate the sensitivities of ECEN and of
the isotopic differences ECEN(48Ca) – ECEN(40Ca) to physical

TABLE II. Same as Table I with the following conditions defining
the interactions: HBTM, for proton and neutron h̄2/2m = 20.7525
MeV fm2 for 0, for proton h̄2/2m = 20.7213 MeV fm2, and neutron
h̄2/2m= 20.7498 MeV fm2 for 1, and for proton and neutron h̄2/2m=
20.7355 MeV fm2 for 2; JTM, contribution to the spin-orbit potential
from t1 and t2 is taken for 1 and not for 0; CEX, Coulomb exchange
on for 1 and off for 0; RHOC, proton density is used for Coulomb
potential for 0 and charge density is used for Coulomb potential for
1; ZPE, center-of-mass correction is taken as (1-1/A) factor on the
mass for 1 and is computed explicitly a posteriori as Ec.m. = 1

2mA
〈P̂ 2〉

for 0.

Force Ref. HBTM JTM CEX RHOC ZPE

SGII [23] 0 0 1 0 0
KDE0 [24] 2 1 0 0 1
KDE0v1 [24] 2 1 0 0 1
SKM∗ [25] 0 0 1 0 0
SK255 [26] 2 1 0 0 1
SkI3 [40] 0 0 1 0 1
SkI4 [40] 0 0 1 0 1
SkI5 [40] 0 0 1 0 1
SV-bas [41] 1 0 1 0 1
SV-min [41] 1 0 1 0 1
SV-m56-O [42] 1 0 1 0 1
SV-m64-O [42] 1 0 1 0 1
SLy4 [43] 2 0 1 0 0
SLy5 [43] 2 1 1 0 0
SLy6 [43] 2 0 1 0 1
SkMP [44] 0 0 1 0 0
SkP [45] 2 1 1 0 0
SkO’ [46] 2 1 1 0 1

quantities, such as nuclear matter incompressibility coefficient,
symmetry energy density and effective mass, associated with
the effective nucleon-nucleon interactions, and compare the
results with available experimental data. In the last section, we
discuss our results and present our conclusions.

II. SELF-CONSISTENT HF-BASED RPA APPROACH

In numerical calculations of the properties of giant reso-
nances in nuclei within the HF-based RPA theory, one starts
by adopting an effective nucleon-nucleon interaction V12, such
as the Skyrme interaction, with parameters determined by a fit
of the HF predictions to experimental data on ground-state

0

0.02

0.04

0.06

0.08

0.1
TAMU data
KDE0

E (MeV)

ISGMR

Fr
ac

�o
n 

T0
 E

0 
EW

SR
/M

eV (a)
40Ca

0

0.02

0.04

0.06

0.08

0.1

0.12
TAMU data
KDE0

E (MeV)

(b) ISGDR

Fr
ac

�o
n 

T0
 E

1 
EW

SR
/M

eV

0

0.04

0.08

0.12

0.16
TAMU data
KDE0

E (MeV)

(c) ISGQR

Fr
ac

�o
n 

T0
 E

2 
EW

SR
/M

eV

0.00

0.02

0.04

0.06

0.08

5 15 25 35 45

KDE0

E (MeV)

(d) ISGOR

Fr
ac

�o
n 

T0
 E

3 
EW

SR
/M

eV

FIG. 1. (Color online) Self-consistent HF-based RPA results
(solid lines) for the distribution of the energy-weighted strength,
normalized to one (fraction of EWSR), for the isoscalar monopole
(E0), dipole (E1), quadrupole (E2), and octopole (E3) in 40Ca,
obtained using the KDE0 [24] Skyrme interaction. For the purpose of
comparison with experiment a Lorenzian smearing of a 3 MeV width
was used in the calculation. The experimental data [21] are shown as
histograms.
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properties, such as binding energies and radii, of a selected set
of a wide range of nuclei. Then, the RPA equations are solved
using the particle-hole interaction deduced from V12, by em-
ploying a certain numerical method [27–29], and the physical
quantities of interest, such as the strength functions S(E) and
transition densities, are calculated. We point out that in a fully
self-consistent HF-based RPA calculation, one should include
all the components of V12 in the RPA calculations and use a
sufficiently large particle-hole configuration space to insure
convergence. Necessary conditions for fully self-consistent
calculations are as follows: (i) The spurious isoscalar dipole
state (due to center-of-mass motion) is obtained at zero
energy; and (ii) the energy weighted sun rules (EWSR) are
fulfilled.

A. Skyrme energy density functional

In our calculations we have adopted the follow-
ing form for the Skyrme-type effective nucleon-nucleon
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FIG. 2. (Color online) Same as Fig. 1 except for 48Ca. Experi-
mental data is from Ref. [19].

interaction [30]:

V12 = t0
(
1 + x0P

σ
12

)
δ(�r1 − �r2) + 1

2
t1

(
1 + x1P

σ
12

)

× [←
k2

12δ(�r1 − �r2) + δ (�r1 − �r2) �k2
12

]
+ t2

(
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12

) ←
k12δ (�r1 − �r2) �k12

+ 1
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2

)
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+ iW0
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k12δ (�r1 − �r2) (�σ1 + �σ2) × �k12, (1)

where ti , xi , α, and W0 are the parameters of the interaction and
P σ

12 is the spin exchange operator, �σi is the Pauli spin operator,
�k12 = −i( �∇1 − �∇2)/2, and

←
k12 = −i(

←∇1 − ←∇2)/2. Here, the
right and left arrows indicate that the momentum operators act
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FIG. 3. (Color online) Self-consistent HF-based RPA results
(solid lines) for the distribution of the energy-weighted strength,
normalized to one (fraction of EWSR), for the isovector monopole
(E0), dipole (E1), quadrupole (E2), and octopole (E3) in 40Ca,
obtained using the KDE0 [24] Skyrme interaction. A Lorenzian
smearing of a 3 MeV width was used in the calculation.
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on the right and on the left, respectively. The corresponding
mean-field VHF and the total energy E of the system are given
by

VHF = δH

δρ
, E =

∫
H (r) d3r, (2)

respectively, where H(r) is the Skyrme energy-density func-
tional, [31] obtained using Eq. (1). It is given by [30]

H = K + H0 + H3 + Heff + Hfin + Hso + Hsg + HCoul, (3)

where,

K = h̄2

2m
τ, (4)

is the kinetic-energy term. For the Skyrme interaction of
Eq. (1), we have

H0 = 1
4 t0

[
(2 + x0) ρ2 − (2x0 + 1)

(
ρ2

p + ρ2
n

)]
, (5)

H3 = 1
24 t3ρ

α
[
(2 + x3) ρ2 − (2x3 + 1)

(
ρ2

p + ρ2
n

)]
, (6)
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FIG. 4. (Color online) Same as Fig. 3 except for 48Ca.

Heff = 1
8 [t1 (2 + x1) + t2 (2 + x2)] τρ

+ 1
8 [t2 (2x2 + 1) − t1 (2x1 + 1)] (τpρp + τnρn), (7)

Hfin = 1
32 [3t1 (2 + x1) − t2 (2 + x2)] (∇ρ)2

− 1
32 [3t1 (2x1 + 1) + t2 (2x2 + 1)] [(∇ρp)2

+ (∇ρn)2], (8)

Hso = W0

2
[J · ∇ρ + xw(Jp · ∇ρp + Jn · ∇ρn)], (9)

and

Hsg = − 1
16 (t1x1 + t2x2) J 2 + 1

16 (t1 − t2)
(
J 2

p + J 2
n

)
. (10)

Here, H0 is the zero-range term, H3 is the density-dependent
term, Heff is an effective-mass term, Hfin is a finite-range
term, Hso is a spin-orbit term, Hsg is a term that is due
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FIG. 5. (Color online) Comparison of experimental data [19,21]
of the ISGMR centroid energies of 40Ca (a), 48Ca (b), and the
48Ca –40Ca energy difference (c), shown as the regions between the
dashed lines, with the results of fully self-consistent HF-based RPA
calculations (solid circles) obtained using the Skyrme interactions
of Table I, plotted vs. KNM. The results obtained with violation of
self-consistency in the RPA calculations are shown in (d).
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to tensor coupling with spin and gradient and HCoul is the
contribution to the energy density that is due to the Coulomb
interaction. In Eqs. (5)–(10) ρ = ρp + ρn, τ = τp + τn, and
J = Jp + Jn, are the particle number density, kinetic-energy
density, and spin-density with p and n denoting the protons and
neutrons, respectively [30]. Note that the additional parameter
xw, introduced in Eq. (9), allows us to modify the isospin
dependence of the spin-orbit term.

The contribution to the energy-density, Eq. (3), from the
Coulomb interaction can be written as a sum of a direct and
an exchange term:

HCoul (r) = H dir
Coul (r) + H ex

Coul (r) . (11)

For the direct term it is common to adopt the expression,

H dir
Coul (r) = 1

2
e2ρp(r)

∫
ρp(r ′)
|r − r ′|d

3r ′, (12)

and for the corresponding exchange term to use the Slater
approximation,

H ex
Coul (r) = −3

4
e2ρp(r)

[
3ρp(r)

π

]1/3

. (13)

It is very important to emphasize that the definitions of
Eqs. (12) and (13) are not for the bona fide direct and exchange
terms because each of them includes the contributions of
the self-interaction term, which appear in opposite signs and
cancel out in Eq. (11); see Ref. [32].
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FIG. 6. (Color online) The values of ρ0, m∗/m, and J are plotted
vs KNM, for the Skyrme interactions of Table I.

The HF approach applied to finite nuclei violates trans-
lational invariance, introducing a spurious center-of-mass
(c.m.) motion. Thus, one must extract the contributions of
the c.m. motion to the binding energy B, rms radii, and other
observables. To account for the c.m. correction to the total
binding energy, one must subtract from it the so-called c.m.
energy given as

Ec.m. = 1

2mA
〈P̂ 2〉, (14)

where, P = −ih̄
∑

i ∇i is the total linear momentum operator.
During the last four decades, many Skyrme type effective

nucleon-nucleon interactions of different forms were obtained
by fitting the HF results to selected sets of experimental
data [33,34]. We emphasize that in this work we consider
the specific form of Eq. (1) for the Skyrme-type interaction.
The values of the Skyrme parameters of the interactions
adopted in this work are listed in Table I. It is very important
to note that in determining the parameters of the Skyrme
interaction, Eq. (1), several approximations, concerning the
terms of Eqs. (4), (10), (11), and (14), were made in the HF
calculations. These approximations, which should be taken
into account for a proper application of the specific interaction
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FIG. 7. (Color online) The HF-based RPA results (solid circles)
of the ISGMR centroid energies ECEN of 40Ca (a), 48Ca (b), and
the 48Ca–40Ca energy difference (c), obtained using the Skyrme-type
interactions of Table I, as a function of the NM symmetry energy at
saturation density J . The limits on the experimental data are shown
by the dashed lines.

024303-6



GIANT RESONANCES IN 40Ca AND 48Ca PHYSICAL REVIEW C 87, 024303 (2013)

in fully self-consistent HF-based RPA calculations, are

(i) The kinetic term, Eq. (4). In some interactions the mass
of the proton is taken to be equal to that of the neutron
and a certain value for the nucleon mass is adopted. In
other interactions the mass of the proton is taken to be
different than that of the neutron.

(ii) The spin-density terms, Eq. (10). In some interactions
the contributions from the spin-density term as given by
Eq. (10), are ignored. We note that contributions from
Eq. (10) are crucial for the calculation of the Landau
parameter G′

0.
(iii) The Coulomb term, Eq. (11). In some interactions the

Coulomb term of Eq. (13) is omitted. It is important to
note that by neglecting the term of Eq. (13), one neglects
the bona fide Coulomb exchange term together with
the spurious contribution of the self-interaction term.
This leads to a contribution to Coulomb displacement
energies, obtained from Eq. (12), which is in better
agreement with experimental data [35], because in the
HF calculations with Skyrme interactions one neglects
the contributions due to charge symmetry breaking in
the nucleon-nucleon interaction and the contribution to
Coulomb energy associated with long-range correla-
tions. Also, in some interactions the charge density is
used in Eq. (11), instead of the point proton density.

(iv) The center of mass correction, Eq. (14). Traditionally,
one simplifies the computation of Eq. (14) by taking
into account only the one-body parts of it, which
can be easily achieved by replacing 1

m
→ 1

m
[1 − 1

A
]

in the kinetic-energy term. In this case, the effects
of neglecting the two-body part of Eq. (14) are
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FIG. 8. (Color online) The values of Ksym, J , and KNM are plotted
vs L, for the Skyrme interactions of Table I.

compensated by renormalization of the force param-
eters. This may induce in the forces an incorrect
trend with respect to the nucleon number A that
becomes visible in the nuclear matter properties. A
more appropriate approach, used in some interactions,
is to take into account the contribution of the two body
terms by using the HF single-particle wave functions
or by employing a simple scheme to evaluate Eq. (14).

The approximations that were used to obtain the Skyrme
interactions adopted in this work are listed for each interaction
in Table II.

B. RPA calculations of strength functions

In this work we have carried out fully self-consistent HF-
based RPA calculations for electric giant resonances in 40Ca
and 48Ca using the effective energy density functionals (EDF)
given by Eqs. (3)–(14) with Tables I and II and employing
the numerical method for RPA described in Refs. [28,36,37],
which is formulated in terms of coordinatelike Q (time-even)
and momentumlike P (time-odd) particle-hole (p-h) operators
and adapted for a given EDF. We point out that to insure
self-consistency we have carried out the calculations using a
large p-h space and included all the terms of the p-h residual
interaction (time-even and time-odd) which are associated with
the EDF used in the HF calculations. No additional time-
odd residual interactions were added. For a given scattering
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FIG. 9. (Color online) Same as Fig. 7 except as a function of the
strength W0 of the spin-orbit interaction.
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operator FL, we have calculated the strength function,

S(E) =
∑

j

|〈0|FL|j〉|2δ(Ej − E0). (15)

Here, |0〉 is the RPA ground state and the sum is over all RPA
excited states |j 〉 with the corresponding excitation energies
Ej . We adopt the single-particle scattering operator,

FL =
∑

i

f (ri)YL0(i), (16)

for isocalar (T = 0) excitations and

FL = Z

A

∑
n

f (rn)YL0(n) − N

A

∑
p

f (rp)YL0(p), (17)

for isovector excitations (T = 1). In Eqs. (16) and (17) we use
the operator f (r) = r , for the isovector dipole (T = 1, L =
1) and f (r) = r3 − (5/3)〈r2〉r for the isoscalar dipole (T =
0, L = 1), to eliminate possible contribution of the spurious
state mixing [38,39]. For the isoscalar and isovector monopole
(L = 0), quadrupole (L = 2), and octopole (L = 3) excitations
we use the operators r2, r2, and r3, respectively. We then
determine the energy moments of the strength function,

mk =
∫ ∞

0
EkS(E)dE. (18)

The centroid energy, ECEN, is then obtained from

ECEN = m1

m0
. (19)
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FIG. 10. (Color online) Same as Fig. 7 except for the ISGDR as
a function of KNM.

The energy moment m1 can also be calculated using the
HF ground-state wave function, thereby leading to an energy
weighted sum rule (EWSR) [1,10]. For the isoscalar FL in
Eq. (16), the EWSR is given by

m1(L, T = 0) = 1

4π

h̄2

2m

∫
gL(r)ρ(r)4πr2dr, (20)

where ρ (r) is the HF ground-state matter density distribution
and

gL (r) =
(

df

dr

)2

+ L (L + 1)

(
f

r

)2

. (21)

For the isovector (T = 1) operator FL of Eq. (17), the EWSR
is given by

m1(L, T = 1) = NZ

A2
m1 (L, T = 0) [1 + κ − κnp], (22)

where κ is the enhancement factor which is due to the momen-
tum dependence of the effective nucleon-nucleon interaction
and is given by

κ = (1/2)[t1(1 + x1/2) + t2(1 + x2/2)]

(h̄2/2m)(4NZ/A2)

× 2
∫
gL(r)ρp(r)ρn(r)4πr2dr∫

gL(r)ρ(r)4πr2dr
, (23)

14
15
16
17
18
19
20
21

40Ca

E CE
N

(M
eV

)

ISGQR (T0 E2) 

14
15
16
17
18
19
20
21

E CE
N

(M
eV

)

48Ca  

-1

0

1

2

0.5 0.6 0.7 0.8 0.9 1.0 1.1

48Ca - 40Ca 

ΔE
CE

N
 (M

eV
)

m*/m

(a)

(b)

(c)

FIG. 11. (Color online) Same as Fig. 7 except for the ISGQR as
a function of m∗/m.
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where ti and xi are the parameters of the Skyrme interaction.
The correction κnp, which arises because of the difference
in the profiles of the neutron and proton density distributions

[i.e., because ρn(r) − ρp(r) �= N−Z
A

ρ(r)], is given by

κnp = (N − Z)

A

A

NZ

∫
gL(r)[Zρn(r) − Nρp(r)]4πr2dr∫

gL(r)ρ(r)4πr2dr
.

(24)

We have carried out fully self-consistent Hartree-Fock-
based RPA calculations of the isoscalar giant monopole
resonance (ISGMR), dipole (ISGDR), quadrupole (ISGQR),
and the octopole (ISGOR) strength functions, adopting the
scattering operator of Eq. (16), and for the isovector giant
monopole resonance (IVGMR), dipole (IVGDR), quadrupole
(IVGQR), and octopole (IVGOR) strength functions, adopting
the scattering operator of Eq. (17), for 40Ca and for 48Ca, using
a wide range of 18 Skyrme-type effective interactions (Table I).
In the next section we present the results of our calculations
and compare with available experimental data.

C. Equation of state of nuclear matter

In the vicinity of the saturation density ρ0 of symmetric
NM, the EOS can be approximated by

E0[ρ] = E[ρ0] + 1

18
KNM

(
ρ − ρ0

ρ0

)2

, (25)

where E0 [ρ] is the binding energy per nucleon and KNM is
the incompressibility coefficient which is directly related to
the curvature of the EOS, KNM = 9ρ2

0
∂2E0
∂ρ2 |ρ0 . Similarly, the

EOS of asymmetric NM, with proton density ρp and neutron
density ρn, can be approximated by

E[ρp, ρn] = E0 [ρ] + Esym [ρ]

(
ρn − ρp

ρ

)2

, (26)

TABLE III. Properties of symmetric nuclear matter at nuclear saturation density ρ0 (fm3) associated with the Skyrme interactions of table.
Also shown are the total binding energy per nucleon E/A (MeV), isoscalar effective mass m∗/m, incompressibility modulus KNM (MeV), the
coefficients related to the symmetry energy density J (MeV), L (MeV), and Ksym (MeV), and the enhancement factor of the EWSR of the
IVGDR, κ .

E/A ρ0 m∗/m KNM J L Ksym κ

SGII 15.59 0.159 0.79 215.0 26.80 37.63 −145.90 0.49
KDE0 16.11 0.161 0.72 228.8 33.00 45.22 −144.78 0.30
KDE0v1 16.23 0.165 0.74 227.5 34.58 54.70 −127.12 0.23
SKM∗ 15.78 0.160 0.79 216.7 30.03 45.78 −155.94 0.53
SK255 16.33 0.157 0.80 255.0 37.40 95.00 −58.33 0.54
SkI3 15.96 0.158 0.58 258.1 34.80 100.52 73.04 0.25
SkI4 15.92 0.160 0.65 247.9 29.50 60.39 −40.56 0.25
SkI5 15.83 0.156 0.58 255.7 36.70 129.33 159.57 0.25
SV-bas 15.90 0.160 0.90 234.0 30.00 45.21 −221.75 0.40
SV-min 15.91 0.161 0.95 222.0 30.01 44.76 −156.57 0.08
SV-m56-O 15.81 0.157 0.56 254.6 27.00 49.96 −45.04 0.60
SV-m64-O 15.82 0.159 0.64 241.5 27.01 30.63 −144.76 0.60
SLy4 15.97 0.160 0.70 229.9 32.00 45.96 −119.73 0.25
SLy5 15.98 0.160 0.70 229.9 32.03 48.27 −112.76 0.25
SLy6 15.92 0.159 0.69 229.8 31.96 47.44 −112.71 0.25
SkMP 15.56 0.157 0.65 230.9 29.88 70.31 −49.82 0.71
SkP 15.93 0.162 1.00 200.8 32.98 45.21 −266.60 0.30
SkO’ 15.75 0.160 0.90 222.3 31.95 68.93 −78.82 0.15
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TABLE IV. Pearson correlation coefficients among the various NM properties and spin-orbit strength W0 with the centroid energies of the
isoscalar T 0 giant resonances of multipolarities L = 0–3.

m∗/m KNM J L Ksym κ W0(xw = 1)

L0 T 0 Ca 40 ECEN −0.75 0.95 0.07 0.56 0.78 0.20 0.00
L0 T 0 Ca 48 ECEN −0.79 0.88 0.02 0.56 0.80 0.24 0.30
L0 T 0 
ECEN −0.31 0.07 −0.11 0.16 0.25 0.18 0.73
L1 T 0 Ca 40 ECEN −0.84 0.74 −0.20 0.30 0.64 0.47 0.24
L1 T 0 Ca 48 ECEN −0.89 0.71 −0.11 0.25 0.62 0.25 0.46
L1 T 0 
ECEN −0.30 0.14 0.11 −0.02 0.12 −0.28 0.54
L2 T 0 Ca 40 ECEN −0.97 0.81 −0.03 0.40 0.76 0.22 0.48
L2 T 0 Ca 48 ECEN −0.97 0.75 −0.06 0.36 0.74 0.22 0.57
L2 T 0 
ECEN −0.20 −0.26 −0.20 −0.18 −0.02 0.00 0.52
L3 T 0 Ca 40 ECEN −0.96 0.80 −0.05 0.35 0.73 0.23 0.41
L3 T 0 Ca 48 ECEN −0.98 0.73 −0.08 0.33 0.72 0.27 0.59
L3 T 0 
ECEN −0.11 −0.25 −0.13 −0.07 −0.01 0.16 0.56

where Esym [ρ] is the symmetry energy at matter density ρ,
approximated as

Esym [ρ] = J + 1

3
L

(
ρ − ρ0

ρ0

)
+ 1

18
Ksym

(
ρ − ρ0

ρ0

)2

,

(27)

where J = Esym[ρ0] is the symmetry energy at saturation

density ρ0, L = 3ρ0
∂Esym

∂ρ
|ρ0 , and Ksym = 9ρ0

∂2Esym

∂ρ2 |ρ0 .
Table III contains the values of the physical quantities

of symmetric nuclear matter associated with these Skyrme
interactions: the binding energy per nucleon E/A, the sat-
uration matter density ρ0, the effective mass m∗/m, the
incompressibility coefficient of SNM, KNM, the coefficients
associated with the symmetry energy density J , L, and Ksym

at saturation density ρ0 [Eq. (27)] and κ , the NM value of the
enhancement factor of the EWSR of the IVGDR, Eq. (22),
obtained from Eq. (23) with using the NM saturation matter
density.

III. RESULTS

We now present results of our fully self-consistent HF-
based RPA calculations of the strength functions and cen-
troid energies of isoscalar and isovector giant resonances
of multipolarities L = 0–3 in 40Ca and 48Ca, obtained for
18 widely used Skyrme-type interactions shown in Table I:
SGII [23], KDE0 [24], KDE0v1 [24], SKM∗ [25], SK255 [26],
SkI3 [40], SkI4 [40], SkI5 [40], SV-bas [41], SV-min [41],
SV-m56-O [42], SV-m64-O [42], SLy4 [43], SLy5 [43], SLy6
[43], SkMP [44], SkP [45], and SkO’ [46]. These interactions
are associated with the ranges of NM properties (see Table III):
E/A = 15.56–16.33 MeV, ρ0 = 0.156–0.165 fm−3, KNM =
201–258 MeV, J = 26.80–37.40 MeV, L = 31–129 MeV,
Ksym = −267 − 160 MeV, m∗/m = 0.56–1.00, and κ =
0.08–0.71.

In Figs. 1–4 we display the HF-based RPA results (solid
lines) for the distribution of the energy-weighted strength nor-
malized to one [ES(E)/EWSR] for the isoscalar and isovector
giant resonances of multipolarities L = 0–3 in 40Ca and 48Ca,

obtained using the KDE0 [24] interaction that is representative
of the strength distributions for the rest of the interactions.
For the purpose of comparison with experiment a Lorenzian
smearing of a 3 MeV width was used in the calculation. The
experimental data [19,21] are shown as histograms.

To investigate the sensitivity of the energies of the giant
resonances in 40Ca and 48Ca to NM properties (Table III)
we calculated the Pearson correlation coefficients (a measure
of linear correlation) between the centroid energies ECEN,
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FIG. 13. (Color online) Same as Fig. 7 except for the IVGMR as
a function of KNM. The experimental data are taken from Ref. [10,47].
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Eq. (19), and the properties of NM. We used a small
smearing width (0.05 MeV) to insure accuracy for ECEN. For a
proper comparison with experiment, we used the experimental
excitation energy ranges in determining the centroid energies.
We use the excitation energy range of 9.5–40 MeV [19,21]
for the ISGMR and the ISGQR and the range of 20–
40 MeV [19,21] for the ISGDR. For the ISGOR we use the
appropriate excitation energy range of 20–60 MeV. We use the
excitation energy range of 0–60 MeV for the IVGMR [10,47],
the range of 0–40 MeV for the IVGDR [48–50], the range of
9–60 MeV for the IVGQR [51], and the range of 25–60 MeV
for the IVGOR (see also Figs. 1–4).

A. ISGMR

In Fig. 5 we compare the experimental data [19,21] of the
ISGMR centroid energies of 40Ca (a), 48Ca (b), and the energy
difference, 
ECEN = ECEN(48Ca) – ECEN(40Ca), between 48Ca
and 40Ca (c) with the results of fully self-consistent HF-based
RPA calculations (solid circles), obtained using the 18 Skyrme
interactions of Table I. The results obtained with violation of
self-consistency, by neglecting the Coulomb and the spin-orbit
particle-hole interactions in the RPA calculations, are shown
in Fig. 5(d). The calculated values are plotted as a function of
KNM. The experimental values of ECEN = 19.18 ± 0.37 MeV
for 40Ca, ECEN = 19.88 ± 0.16 MeV for 48Ca [19,21], and
their differences are shown in Fig. 5 as the regions between the
dashed lines. A very strong correlation between ECEN of 40Ca
and ECEN of 48Ca can be seen with KNM. This is expected,
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FIG. 14. (Color online) Same as Fig. 13 except as a function of J .

because the ISGMR centroid energy is very sensitive to the
value of KNM [1,3,8]. The ISGMR centroid energies for 40Ca
are all higher than the experimental value 19.18 ± 0.37 MeV.
The 48Ca ISGMR centroid energies are more consistent
with the experimental value 19.88 ± 0.16 MeV. While the
experimental data show that the ISGMR in 40Ca lies at lower
energy than in 48Ca, 17 of the Skyrme interactions (Table I)
show the ISGMR in 40Ca at a higher energy than in 48Ca, while
the 18th interaction (SkI3) shows them at essentially the same
energy in 40Ca and 48Ca. For not fully self-consistent RPA
calculations, the results for some interactions leads to spurious
agreement with the experimental data for the 48Ca–40Ca energy
difference as can be seen in Fig. 5(d). We also found a medium
correlation between the ISGMR energies and the effective
mass m∗/m, which is a reflection of the strong correlation
between KNM and m∗/m seen in Fig. 6 (see also Ref. [8]).
Figure 6 also shows the correlation of the saturation symmetric
NM density ρ0 and the symmetry energy coefficient J with
KNM.

To investigate the dependence of the energy difference

ECEN = ECEN(48Ca) – ECEN(40Ca) between the ISGMR
in 48Ca and in 40Ca on the symmetry energy density, Fig. 7
shows the results of our fully self-consistent HF-based RPA
calculations (solid circles), using the Skyrme interactions
(Table I) having nuclear matter symmetry energy coefficient
J = 26.80–36.7 MeV. No correlation is found between 
ECEN

and J . Similar results were obtained for L, Ksym, and KNM,
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FIG. 15. (Color online) Same as Fig. 13 except as a function of W0.
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which can be easily understood as a reflection of the correlation
of Ksym, J , and KNM with L shown in Fig. 8.

Figure 9 shows the correlation of the ISGMR centroid
energies with W0, the strength of the spin-orbit interaction.
There is a positive strong correlation between the 48Ca – 40Ca
energy difference and W0. Similar results were obtained for
the ISGDR, ISGQR, and ISGOR.

B. ISGDR

In Fig. 10 the results of the self-consistent HF-based RPA
calculations (solid circles) for the ISGDR centroid energies
of 40Ca (a), 48Ca (b), and the 48Ca – 40Ca energy difference
(c), are compared with the experimental data [19,21]. The
experimental values of ECEN = 23.36 ± 0.70 MeV for 40Ca,
ECEN = 27.30 ± 0.15 MeV for 48Ca and their difference are
shown in Fig. 10 as the regions between the dashed lines. The
HF-RPA energies, obtained for the interactions of Table I, are
plotted as a function of KNM. For all the Skyrme interactions of
Table I, the calculated ISGDR centroid energies are higher than
the experimental values by 1.5–6 MeV and the calculated 48Ca
– 40Ca energy difference, although positive, are smaller than
the experimental value. We note that the experimental results
for the fraction of the EWSR for the ISGDR in 48Ca and 40Ca
are 137 ± 20% and 62 ± 20% [19,21], respectively, compared
to the calculated values of 100%. Therefore, the comparison
between the ISGDR in 48Ca and 40Ca might be misleading
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FIG. 16. (Color online) Same as Fig. 7 except for the IVGDR.

The experimental data are taken from Refs. [48–50].

because only 62 ± 20% of the EWSR of the ISGDR in 40Ca
was found experimentally. A strong correlation is also found
between the ISGDR energy of 40Ca with both KNM and m∗/m
and similarly for 48Ca.

C. ISGQR

Figure 11 shows, as a function of m∗/m, our HF-based RPA
results (solid circles) of the ISGQR centroid energies ECEN,
of 40Ca (a), 48Ca (b), and the 48Ca–40Ca energy difference
(c), obtained using the Skyrme-type interactions of Table I.
The experimental values of ECEN = 17.84 ± 0.43 MeV for
40Ca [19], ECEN = 18.61 ± 0.24 MeV for 48Ca [21] and their
difference are shown in Fig. 11 as the regions between the
dashed lines. As seen in Fig. 11, a very strong correlation
exists between the ISGQR energy of 40Ca with m∗/m and
similarly for 48Ca. We find that interactions having m∗/m =
0.65–0.8 reproduce the experimental data of the ISGQR.

D. ISGOR

Figure 12 shows our HF-based RPA results (solid circles) of
the ISGOR centroid energies ECEN, of 40Ca (a), 48Ca (b), and
the 48Ca – 40Ca energy difference (c), using the Skyrme-type
interactions of Table I. A very strong correlation exists between
the ISGOR energy of 40Ca and 48Ca with m∗/m as can be seen
in Fig. 12. Using the result that interactions having m∗/m =
0.65–0.8 reproduce the experimental data of the ISGQR we
can predict the values of the ECEN of the ISGOR in 40Ca and
48Ca to be in the region of 30–34 MeV.
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For completeness we present in Table IV the values of the
Pearson correlation coefficients among the various NM prop-
erties and spin-orbit strength W0 with the centroid energies of
the isoscalar (T 0) giant resonances of multipolarities L = 0–3.
We find no correlations or very weak correlations between the
48Ca – 40Ca centroid energy differences of the isoscalar giant
resonances with the coefficients J , L, or Ksym, associated with
the density dependence of the symmetry energy and a strong
correlation with the value of W0.

E. IVGMR

For the IVGMR, an isovector compression mode, we show
the HF-RPA results (solid circles), obtained using the Skyrme
interactions of Table I, for the centroid energies ECEN of 40Ca
(a), 48Ca (b), and the 48Ca – 40Ca energy difference (c) as a
function of KNM in Fig. 13 and as a function of J in Fig. 14. The
experimental value of ECEN = 31 ± 2 MeV for 40Ca [10,46]
is shown as the region between the dashed lines. We find a
medium correlation between ECEN of the IVGMR with KNM

and a weak correlation with J , L, or Ksym. It can be seen from
Fig. 14 that a stronger correlation between the IVGMR energy
and KNM is obtained for a fixed value of J (at 27 and 30 MeV).

Figure 15 shows the IVGMR centroid energies as a function
of W0, the strength of the spin-orbit interaction. A strong
positive correlation between the 48Ca – 40Ca energy difference
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The experimental data are taken from Ref. [51].

and the value of W0 is seen. Similar results were obtained for
the IVGDR and the IVGQR.

F. IVGDR

Figure 16 shows, as a function of J , our HF-based RPA
results (solid circles) of the IVGDR centroid energies ECEN

of 40Ca (a), 48Ca (b), and the 48Ca – 40Ca energy difference
(c), obtained using the Skyrme-type interactions of Table I.
The experimental values of ECEN = 19.8 ± 0.5 MeV for
40Ca, ECEN = 19.5 ± 0.5 MeV for 48Ca [48–50] and their
differences are shown in Fig. 16 as the regions between the
dashed lines. Weak correlations can be seen between ECEN of
40Ca and ECEN of 48Ca with J . Similar results were obtained
for L and Ksym.

Figure 17 shows the IVGDR centroid energies as a function
of κ , the enhancement factor in the EWSR of the IVGDR.
Strong positive correlations between the IVGDR centroid
energy of 40Ca and of 48Ca with κ are seen in the figure.

G. IVGQR

Figure 18 shows, as a function of m∗/m, the HF-based RPA
results (solid circles) of the IVGQR centroid energies ECEN of
40Ca (a), 48Ca (b), and the 48Ca – 40Ca energy difference (c),
obtained using the Skyrme-type interactions of Table I. The
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TABLE V. Pearson correlation coefficients among the various NM properties and spin-orbit strength W0 with the centroid energies of the
isovector T 1 giant resonances of multipolarities L = 0–3.

m∗/m KNM J L Ksym κ W0(xw = 1)

L0 T 1 Ca 40 ECEN −0.54 0.66 −0.33 0.10 0.31 0.61 0.01
L0 T 1 Ca 48 ECEN −0.64 0.62 −0.35 0.17 0.40 0.74 0.36
L0 T 1 
ECEN −0.25 −0.10 −0.06 0.16 0.22 0.31 0.70
L1 T 1 Ca 40 ECEN −0.34 0.31 −0.58 −0.40 −0.17 0.66 −0.07
L1 T 1 Ca 48 ECEN −0.36 0.28 −0.63 −0.40 −0.17 0.73 0.23
L1 T 1 
ECEN −0.01 −0.22 −0.09 0.09 0.07 0.14 0.67
L2 T 1 Ca 40 ECEN −0.64 0.52 −0.47 −0.14 0.16 0.68 0.43
L2 T 1 Ca 48 ECEN −0.70 0.49 −0.50 −0.14 0.19 0.73 0.66
L2 T 1 
ECEN −0.33 −0.10 −0.18 0.02 0.14 0.27 0.71
L3 T 1 Ca 40 ECEN −0.73 0.61 −0.33 0.04 0.36 0.60 0.37
L3 T 1 Ca 48 ECEN −0.71 0.56 −0.43 −0.07 0.26 0.65 0.42
L3 T 1 
ECEN 0.34 −0.42 −0.21 −0.41 −0.47 −0.08 −0.11

experimental data of ECEN = 31 ± 1.5 MeV for 40Ca [51]
is shown as the region between the dashed lines. Medium
correlations between m∗/m and ECEN of 40Ca and ECEN of
48Ca can be seen in Fig. 18.

H. IVGOR

Figure 19 shows, as a function of m∗/m, the HF-based RPA
results (solid circles) of the IVGOR centroid energies ECEN

of 40Ca (a), 48Ca (b), and the 48Ca – 40Ca energy difference
(c), obtained using the Skyrme-type interactions of Table I.
Medium correlations between m∗/m and ECEN of 40Ca and
ECEN of 48Ca can be seen in Fig. 19.

For completeness we present in Table V the values of
the Pearson correlation coefficients among the various NM
properties and spin-orbit strength W0 with the centroid ener-
gies of the isovector (T 1) giant resonances of multipolarities
L = 0–3.

As shown in Table V, only weak correlations exist between
the ECEN of the isovector giant resonances of 40Ca or 48Ca with
J , L, and Ksym. A strong correlation is found between the
48Ca – 40Ca centroid energy difference of the IVGMRs,
IVDGRs, and IVGQRs with W0. We also note the strong
correlation between the ECEN of the IVGDR and the value
of κ .

IV. CONCLUSIONS

We have presented results of our fully self-consistent HF-
RPA calculations using 18 commonly employed Skyrme-type
interactions of Table I, for the centroid energies of isoscalar
and isovector giant resonances of multipolarities L = 0–3
in 40Ca and 48Ca and compared with available experimental
data. We have investigated and discussed the sensitivity of the
ECEN of the giant resonances to various properties of NM. In
particular, we point out that

(i) For all the 18 Skyrme interactions used in our HF-based
RPA calculations (Table I) the 48Ca –40Ca centroid

energy differences of the ISGMR are smaller than the
experimental data. For 17 of the Skyrme interactions
used in our HF-based RPA calculations the 40Ca
ISGMR lies above that for 48Ca. The 18th interaction
(SkI3) predicts the ISGMR in about the same location
in both nuclei.

(ii) We have demonstrated the very strong to strong
correlations of the ECEN of the compression modes, the
ISGMR and the ISGDR, with the NM incompressibility
coefficient KNM and noted that the sensitivity of ECEN

to the effective mass is a reflection of the correlation
between m∗/m and KNM, existing in the Skyrme
interactions used in our calculations.

(iii) For all the adopted Skyrme interactions, the calculated
centroid energies of the ISGDR in 40Ca and 48Ca are
consistently higher than the experimental data (by about
1.5–6 MeV).

(iv) We have demonstrated the very strong correlation of
ECEN of the ISGQR and the ISGOR with m∗/m. We
have found that an agreement with the experimental
data for ECEN of the ISGQR in 40Ca and 48Ca is obtained
for a value of the effective mass in the range of m∗/m =
0.65–0.8. Using this result we can predict that the values
of the ECEN of the ISGOR in 40Ca and 48Ca should be
in the region of 30–34 MeV.

(v) We find no correlations or very weak correlations
between the 48Ca–40Ca centroid energy differences of
the isoscalar giant resonances of multipolarities L =
0–3 with the coefficients J , L, or Ksym, associated with
the density dependence of the symmetry energy. Similar
results were found for the isovector giant resonances of
multipolarities L = 0–3.

(vi) We find positive strong correlations between the
48Ca – 40Ca centroid energy differences (
ECEN) of
the isoscalar and isovector giant resonances with W0.

(vii) For the IVGMR, the isovector compression mode,
we find a medium correlation with KNM and a weak
correlation with J , L, or Ksym.

(viii) We find a weak correlation between the energies of the
IVGDR of 40Ca (and 48Ca) and the quantities associated
with the density dependence of the symmetry energy.
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(ix) We find a strong correlation between the energies of the
IVGDR of 40Ca (and 48Ca) and the value of κ .

(x) For the IVGQR and IVGOR we find a strong correlation
between ECEN and m∗/m.

The disagreement between the HF-RPA results and the
experimental data for the centroid energies of the ISGMR and
ISGDR in 40Ca and 48Ca remain unsolved problems which
call for possible extension of the EDF used in the work,

microscopic calculations of the excitation cross sections of
giant resonances [38,52], and/or going beyond the HF-RPA
theory. [53]
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