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Alternate, well-founded way to treat center-of-mass correlations:
Proposal of a local center-of-mass correlations potential
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The recently developed “internal” density functional theory provides an existence theorem for a local potential
that contains the center-of-mass correlations effects. The knowledge of the corresponding energy functional
would provide a much more effective way than projection techniques to treat these correlations. The aim of this
article is to construct such a functional. We propose a well-founded method, suitable for fermions as well as for
bosons, which does not require any free parameters.
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I. INTRODUCTION

One of the most obvious symmetries of isolated self-bound
systems (such as atomic nuclei, helium droplets, or molecular
systems where nuclei are treated explicitly) is translational
invariance. Translational invariance of self-bound Hamiltoni-
ans ensures Galilean invariance of the wave function, so that
the center-of-mass (c.m.) properties can be separated from
the “internal” properties (which are of experimental interest).
As a consequence, one laboratory coordinate is redundant for
the description of the internal properties, which produces c.m.
correlations.

A numerically manageable and successful way to describe
self-bound systems is to use mean-field-like calculations with
effective interactions. The corresponding equations are often
justified starting from the Hartree-Fock (HF) framework,
which sacrifices by construction “Galilean invariance for
the sake of the Pauli principle,” to quote Ref. [1]. As a
consequence, c.m. correlations are treated incorrectly (in an
equivalent manner, the redundant coordinate problem is treated
incorrectly). This introduces a spurious coupling between the
internal properties and the c.m. motion in an HF framework
that affects the energy and other observables [2].

A way to overcome this problem in the stationary case
is to perform the projected HF, where projection before
variation on c.m. momentum restores translational or Galilean
invariance of the wave function. Peierls and Yoccoz proposed
a single-projection method to restore translational invariance
[3]. Later, Peierls and Thouless proposed a double-projection
method to restore the more fundamental Galilean invariance
[4]. To our knowledge, all numerical calculations that treat
c.m. correlations by projection before variation have been
done using the Peierls and Yoccoz method [5–8], thus not
restoring the full Galilean invariance. Moreover, the price is
the abandonment of the independent-particle description and a
large numerical cost [1,4,9,10]. Indeed, projection techniques
require “an order of magnitude more computing time than
the underlying mean-field-like calculations,” to quote Ref. [7],
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which is prejudicial for the description of intermediate-sized
systems. This led to the development of various approximate
methods to treat c.m. correlations; see Ref. [11] for an
overview. For instance, a common method is to add a −〈 P2

2mN
〉

term in the energy functional (more details are given in
Sec. II C). But the success of those methods is not systematic,
and the approximations done not completely justified.

In the time-dependent case, the spurious c.m. motion
problem remains [12,13], but the situation is trickier, as the
projected HF method becomes unmanageable even for very
small self-bound systems [12]. It thus remains an open problem
to develop a rigorous and numerically inexpensive scheme
to treat c.m. correlations, which would go beyond standard
approximations and remain usable in the time-dependent case.

The search for such a scheme has not yet been pursued
extensively, perhaps because it is sometimes thought that the
c.m. correlations problem concerns only very small self-bound
systems. But c.m correlations can have a non-negligible effect
even for intermediate-sized systems. For instance, it has been
shown that c.m. correlations are non-negligible for all nuclei
heavier than 16O [6,7,14]. This reinforces the necessity to
develop a numerically manageable method to treat them.

A rigorous alternative and a priori numerically much less
costly way to take these correlations into account has been
revealed by the recently developed “internal” density func-
tional theory (DFT) and Kohn-Sham (KS) scheme [15–17].
Differing from the standard DFT [18–21], it is formulated
in the c.m frame of a self-bound system and proves that the
c.m. correlations can be included in the energy functional and
thus in a local KS potential [15–17]. In addition to the fact
that it gives a much more fundamental justification than the
HF framework for the use of mean-field-like calculations with
effective interactions for the description of self-bound systems,
it shows that there would be no need for a c.m. projection if
the ultimate functional were known. The internal DFT gives
an existence theorem but not a constructive method. The aim
of the present article is to propose such a constructive method.

The article is organized as follows. Section II provides a
brief review of the internal DFT formalism and underlines
the limitations of the commonly used methods to treat c.m.
correlations. Section III develops a new general form for a local
c.m. correlations potential that introduces no free parameter.
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Finally, Sec. IV gives convincing numerical results on various
model systems.

II. THE INTERNAL DFT AND C.M.
CORRELATIONS FUNCTIONAL

A. Brief review of the internal DFT formalism

We start from a self-bound system composed of N identical
particles of mass m and follow the considerations of Ref. [15].
The coordinates of the particles in any chosen inertial frame of
reference (such as the laboratory) are denoted {ri}. The c.m.
coordinate of the system is denoted

R = 1

N

N∑
j=1

rj .

The system is described by the following translationally
invariant N -body Hamiltonian:

H =
N∑

i=1

p2
i

2m
+

N∑
i,j=1
i>j

u(ri − rj ) +
N∑

i=1

vint(ri − R), (1)

composed of the usual kinetic energy term, a two-body
potential u which describes the particle-particle interaction
(generalization of the following considerations to three-body,
etc., interactions is straightforward) and an arbitrary trans-
lationally invariant potential vint. The latter potential is an
“internal” potential, i.e., it is defined in the c.m. frame and acts
only on the internal properties. Of course, the potential is 0
in the purely isolated self-bound case. Nevertheless, its form
is suitable for modeling the internal effects of fields used in
experiments (polarization potentials, etc.) [16].

We introduce the Jacobi coordinates ξα , defined
as ξ1 = r2 − r1, ξ2 = r3 − r2+r1

2 , . . . , ξN−1 = N
N−1 (rN − R).

This permits us to separate the Hamiltonian (1) into H =
HCM + Hint, where HCM = −h̄2/(2mN )�R is a one-body
Hamiltonian describing the c.m. motion and acting in the
R space only, and Hint is an (N − 1) body-Hamiltonian
describing the internal properties and acting in the {ξα} space
only:

Hint =
N−1∑
α=1

τ 2
α

2μα

+ U (ξ1, . . . , ξN−1) + V int(ξ1, . . . , ξN−1).

Hint contains the interaction u and the potential vint, because
they can be rewritten as functions of the {ξα} only [denoted
U (ξ1, . . . , ξN−1) and V int(ξ1, . . . , ξN−1), respectively] and
the internal kinetic energy, which is expressed in terms of
the conjugate momentum τα of ξα and the reduced masses
μα = m α

α+1 . As [HCM,Hint] = 0, the eigenstate ψ of H can
be written as a product of the form

ψ(r1, . . . , rN ) = �(R) ψint(ξ1, . . . , ξN−1), (2)

where � and ψint are defined by the equations

− h̄2

2M
�R� = Ecm� , (3)

Hintψint = Eintψint. (4)

� is the c.m. wave function that describes the motion of the
isolated system as a whole in any inertial frame of reference.
Because �(R) is the solution of the free Schrödinger equation,
it should be an arbitrary stationary plane wave, i.e., infinitely
spread and not normalizable. This leads to the delocalization
of R and arbitrary c.m. energy. This does not correspond to
experimental situations where the system is no longer isolated:
interactions with other systems of the experimental apparatus
localize the c.m. However, this is not a problem, as internal
properties that are of experimental interest are fully described
by ψint. Note that ψint is, by definition, always normalizable for
the ground state of a self-bound system. The internal density
associated with ψint is [15,22,23]

ρint(r) = N

(
N

N − 1

)3 ∫
dξ1 · · · dξN−2

×
∣∣∣∣ψint

(
ξ1, . . . , ξN−2,

Nr
N − 1

)∣∣∣∣
2

= N

∫
dr1 · · · drN δ(R)|ψint(r1, . . . , rN )|2

× δ(r − (ri − R)). (5)

ρint(r) is normalized to N and r is defined in the c.m. frame (see
the δ relation in the previous equation).1 Note that even if ψint

can be written as a function of the (N − 1) Jacobi coordinates
only, it can also be written as a function of the N coordinates
ri . In this case, one of the coordinates would be redundant [24],
which is expressed by the δ(R) in the previous equation.

The stationary internal DFT theorem demonstrated in
various ways in Refs. [15,25,26] states that for a nondegenerate
ground state and a given kind of particle, ψint can be expressed
as a unique functional of ρint, i.e., ψint[ρint]. As a consquence,
the ground-state internal energy of a self-bound system Eint =
(ψint[ρint]|Hint|ψint[ρint]) can also be expressed as a unique
functional of ρint.

A practical way to compute ρint is given by the internal
KS scheme, developed in Ref. [15]. To set up this scheme,
we assume that there exists, in the c.m. frame, a local single-
particle potential (i.e., an N -body noninteracting system) that
can reproduce the exact density ρint of the interacting system.
We develop ρint on the corresponding basis {ϕi

int} of one-body
orbitals expressed in the c.m. frame:

ρint(r) =
N∑

i=1

∣∣ϕi
int(r)

∣∣2. (6)

We refer the reader to Ref. [17], Sec. III C, for a justification
of the introduction of N orbitals in the KS scheme, even if
only (N − 1) coordinates are sufficient to describe internal
properties. We implicitly supposed that the particles are
fermions, but a KS scheme to describe boson condensates
can be set up in a similar manner by choosing all the ϕi

int to be
identical.

1More generally, we can introduce a δ(R − a) where a is an arbitrary
translation vector, which would lead to perfectly equivalent results.
We chose a = 0 for simplicity, so that the formalism is formulated in
the c.m. frame.
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The KS assumption implies ϕi
int[ρint] [21]; thus, we can

rewrite Eint as [15]

Eint[ρint] =
N∑

i=1

(
ϕi

int

∣∣∣∣ p2

2m

∣∣∣∣ϕi
int

)
+ EHXC[ρint]

+
∫

dr vint(r)ρint(r), (7)

where we have introduced the “interaction energy func-
tional”:2

EHXC[ρint] = 1

2

∫
dr dr′ γint[ρint](r, r′) u(r − r′)

+E�kin[ρint], (8)

where

E�kin[ρint]

=
(

ψint

∣∣∣∣∣
N−1∑
α=1

τ 2
α

2μα

∣∣∣∣∣ψint

)
−

N∑
i=1

(
ϕi

int

∣∣∣∣ p2

2m

∣∣∣∣ϕi
int

)
(9)

=
∫

dr1 · · · drNδ(R) ψ∗
int(r1, . . . , rN )

×
N∑

i=1

p2
i

2m
ψint(r1, . . . , rN ) −

N∑
i=1

(
ϕi

int

∣∣∣∣ p2

2m

∣∣∣∣ϕi
int

)
. (10)

EHXC traditionally contains the Hartree energy plus the quan-
tum exchange-correlations energy [15]. We do not explicitly
use this decomposition here because common functionals that
describe self-bound systems (such as the Skyrme force in
nuclear physics [2]) approximate EHXC as a whole.

We now give particular attention to the E�kin term. We
call the “interacting” kinetic energy the kinetic energy of
the self-bound system, i.e.,

∫
dr1 · · · drNδ(R) ψ∗

int(r1, . . . , rN )∑N
i=1

p2
i

2m
ψint(r1, . . . , rN ), and the “noninteracting” kinetic

energy the kinetic energy of the KS system, i.e.,∑N
i=1(ϕi

int| p2

2m
|ϕi

int). We see from Eq. (10) that E�kin is the
difference between those two energies. It thus contains the
exchange and “standard” correlations3 part of the “interacting”
kinetic energy term, but also its c.m. correlations part [owing
to δ(R)]. It is the only term of the functional that explicitly con-
tains the c.m. correlations and represents the main difference
from the traditional DFT.

Varying Eint[ρint], Eq. (7), with respect to ϕi∗
int, and imposing

orthonormality of the {ϕi
int} leads to “internal” KS equations(

− h̄2

2m
� + UHXC[ρint] + vint

)
ϕi

int = εiϕ
i
int, (11)

where UHXC[ρint](r) = δEHXC[ρint]/δρint(r) is local as ex-
pected. Equations (11) have the same form as the traditional
KS equations formulated for non–translationally invariant
Hamiltonians [19], but we have justified their use in the c.m.

2γint(r, r′) is the local part of the two-body internal density matrix
defined in Ref. [15], which is trivially a functional of ρint.

3Henceforth, “standard” correlations mean all correlations except
the c.m. correlations.

frame for self-bound systems described with translational-
invariant Hamiltonians and shown that the functional form
of UHXC[ρint] differs by the inclusion of c.m. correlations [15].

Moreover, we see from Eq. (10) that one has to be
cautious with the meaning that is given to the noninteracting
kinetic energy in mean-field-like calculations. Indeed, the
noninteracting kinetic energy cannot be considered as a first-
order approximation of the interacting kinetic energy in the
general case. The difference is equal to E�kin, which can
be large when c.m. correlations effects are strong, i.e., for
small and intermediate-sized self-bound systems. For large
self-bound systems, E�kin decreases (in relative value) so
that the noninteracting and interacting kinetic energies values
approach each other.

Finally, we mention that the internal DFT formalism has
been generalized to time-dependent self-bound systems in
Ref. [16], for instance, for the description of the collision of
two nuclei or laser irradiation, and multicomponent self-bound
systems in Ref. [17] for the description of self-bound systems
composed of different kinds of particles (atomic nuclei,
mixtures of 3He and 4He droplets, and molecular systems
where the nuclei are treated explicitly). The latter work permits
us to recover the traditional DFT formalism when one kind of
particle is much heavier than the others [17], underlining why
the traditional DFT is well suited to describe electrons (only)
in molecular systems but not to describe self-bound systems.

B. Proposed method to obtain a c.m. correlations functional

We split the EHXC functional defined by Eq. (8) in a more
interesting way for our purpose:

EHXC[ρint] = Estand
HXC[ρint] + Ecm[ρint]. (12)

Estand
HXC is the “standard” many-body interaction energy (we

recall that “standard” means every interaction energy except
that of the c.m. correlations), which is mostly described by
the parametrized functionals commonly used for mean-field-
like calculations of self-bound systems (see Refs. [2,9] for
a description of functionals used for nuclear systems and
Ref. [27] for a description of functionals used for helium
droplet systems).

Ecm is the pure c.m. correlations energy, which is, by
construction, mostly not taken into account in commonly used
functionals (except through a renormalization of the mass
in the noninteracting kinetic energy term), which can affect
the results; see Ref. [11]. The goal of this article is to build
a well-founded form for Ecm that can be used to describe
all self-bound systems by simple addition to the commonly
used functionals (which rigorously implies a refitting of those
functionals) and is numerically manageable.

The idea is simple: we start from EHXC, Eq. (8), and
neglect all the “standard” interaction terms. Then, by definition
(12), we are left with Ecm. This is equivalent to starting
from E�kin, Eq. (10), and neglecting all the exchange and
standard correlations terms. We thus have to find a good
approximation of E�kin to proceed. We propose to search for
an approximation as a functional of the KS orbitals ϕi

int. We
adopt this approach because it provides a lot of flexibility
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while being fully coherent with DFT (indeed, the KS orbitals
are functionals of the internal density, i.e., ϕi

int[ρint], as soon
as they satisfy KS equations [21], which can be constrained
explicitly by use of the optimized effective potential (OEP)
method [28–30]).

C. The commonly used form for the c.m. correlations functional

We first show how the proposed method permits us to
recover the commonly used −〈 P2

2mN
〉 form for Ecm and to

understand its limitations. We rewrite E�kin, Eq. (9), in the
following equivalent way:4:

E�kin[ρint]

=
∫

dRδ(R)

(
ψint

∣∣∣∣∣
N−1∑
α=1

τ 2
α

2μα

∣∣∣∣∣ψint

)
−

N∑
i=1

(
ϕi

int

∣∣∣∣ p2

2m

∣∣∣∣ϕi
int

)

=
∫

dRdξ1 · · · dξN−1 (
√

δ(R)ψint(ξ1, . . . , ξN−1))∗

×
N−1∑
α=1

τ 2
α

2μα

(
√

δ(R)ψint(ξ1, . . . , ξN−1))

−
N∑

i=1

(
ϕi

int

∣∣∣∣ p2

2m

∣∣∣∣ϕi
int

)

=
∫

dr1 · · · drN (
√

δ(R)ψint(r1, . . . , rN ))∗

×
(

N∑
i=1

p2
i

2m
− P2

2mN

)
(
√

δ(R)ψint(r1, . . . , rN ))

−
N∑

i=1

(
ϕi

int

∣∣∣∣ p2

2m

∣∣∣∣ϕi
int

)
. (13)

√
δ(R)ψint(r1, . . . , rN ) is interpreted as the c.m.-frame N-body

“wave function” [recall that ψint has the dimension of an
(N − 1)-body wave function; see Eq. (2)]. This wave function
is obviously not translationally invariant [δ(R) fixes the c.m. in
position space and amounts to moving in the c.m. frame] and
antisymmetric under the exchange of two particles (as ψint is
antisymmetric). It is non-null only for the {ri} that satisfy
R =∑N

i=1 ri = 0, so that the {ri} become the c.m.-frame
coordinates.

Within the internal DFT formalism, the commonly used
approximation to treat c.m. correlations can be recovered by
supposing that the KS Slater determinant, denoted ψaux, is a
good first-order approximation of the c.m.-frame N-body wave
function:√

δ(R)ψint(r1, . . . , rN ) ≈ ψaux(r1, . . . , rN ), (14)

4We mention that the square root of the δ function is not defined. To
be perfectly rigorous, we should have introduced lim�aux→δ

√
�aux(R),

where �aux is a normalized function, instead of
√

δ(R). We neverthe-
less use the latter notation to lighten the text, which does not affect
the conclusions.

where

ψaux(r1, . . . , rN ) = 1√
N !

∑
P

(−1)pN
i=1ϕ

P (i)
int (ri).

(P are the possible permutations of the coordinates and p is the
number of transpositions of P .) Inserting this approximation
into (13) and following the method described in Sec. II B (the
standard correlations are, by construction, neglected and the
exchange terms naturally cancel), we obtain

E�kin → Ecm

[{
ϕk

int

}] = −
(

ψaux

∣∣∣∣ P2

2mN

∣∣∣∣ψaux

)

= −
N∑

i=1

(
ϕi

int

∣∣∣∣ p2

2mN

∣∣∣∣ϕi
int

)

− 1

2mN

N∑
i,j=1

(
ϕi

int|p|ϕi
int

)(
ϕ

j
int|p|ϕj

int

)
. (15)

We recover the commonly used form for the c.m. correlations
functional. Note that, in practice, the term in the last line in
Eq. (15) is often neglected to reduce the numerical cost [11].

The internal DFT formalism permits us to shed new light
on the validity of approximation (15). It holds if and only if
approximation (14) holds at least to first order. But in general
this cannot be the case because ψaux is far from being null when∑N

i=1 ri 	= 0. Moreover, ψaux contains a c.m. vibration typical
of Slater determinants [i.e., (ψaux|Pn|ψaux) 	= 0 for n � 2]
[1,2], whereas

√
δ(R)ψint does not contain such a vibration

[i.e., (ψ int|Pn|ψ int) = 0, ∀n]. Thus, we cannot expect to obtain
a systematically satisfying improvement with this form [11].

In the next section, we propose an improved form for
the c.m. correlations energy functional, where the c.m.
correlations [the δ(R) term] appear explicitly.

III. A GENERAL NEW FORM FOR A LOCAL C.M.
CORRELATIONS POTENTIAL

A. The idea and the result

We adopt a different point of view from that in Sec. II C. We
start with E�kin[ρint] written as in Eq. (10) [instead of Eq. (13)]
and do the replacement [instead of Eq. (14)]:

ψint(r1, . . . , rN ) → 1

�aux(R)
ψaux(r1, . . . , rN ), (16)

where �aux(R) is any non-null one-body “wave function” that
implicitly depends on the number of particles N . The reasons
for its introduction are as follows.

(i) ψint has the dimension of an (N − 1)–body
wave function, whereas the KS Slater determinant
ψaux(r1, . . . , rN ) has the dimension of an N -body wave
function. Dividing ψaux by �aux permits us to recover
the correct dimension while preserving antisymmetry.

(ii) The KS Slater determinant ψaux contains a c.m. vibra-
tion, whereas ψint must not contain such a vibration, as
mentioned in Sec. II C. This is not a problem from the
KS point of view, where ψaux represents nothing more
than an auxiliary quantity that must only reproduce the
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correct ρint. But if we want to replace ψint by a form
constructed from ψaux in Eq. (10), the c.m. vibration
has to be “subtracted” from ψaux. �aux represents the
proposed way to achieve this “subtraction.”

(iii) The δ(R) term, and thus the c.m. correlations, will
appear explicitly in the functional.

(iv) As we will see, the final result has a clear physical
meaning and leads to convincing numerical results,
which shows its pertinence.

In the particular harmonic oscillator case (i.e., when the
interaction u is parabolic), we always can achieve the sep-
aration ψaux(r1, . . . , rN ) = �aux(R) × F (ξ1, . . . , ξN−1) [13].
Thus, the �aux term introduced in Eq. (16) permits us to directly
“subtract” all the c.m. vibration contained in ψaux, and 1

�aux ψ
aux

leads to a good approximation of ψint.
However, in the general case, we do not expect 1

�aux ψ
aux to

be, strictly speaking, a good approximation of ψint. Indeed, ψint

is translationally invariant, whereas 1
�aux ψ

aux is not anymore.
In other terms, ψaux(r1, . . . , rN ) cannot be separated into

�aux(R) × F (ξ1, . . . , ξN−1). This is not a problem because in
every integral where ψint appears (which represent observ-
ables), a δ(R) term that breaks translational invariance also
appears explicitly. What we expect is that the replacement,
(16), i.e., the introduction of �aux, allows sufficient flexibility
to lead to a satisfying result for both Ecm and ρint. Then, even
if the subtraction is not “direct” because there is no separation
of the c.m. motion, it is “indirect” because it leads to the
correct final result. Note that, because of the δ(R) that appears
in all integrals that represent observables, only the values and
variations of �aux around R = 0 can contribute.

We now insert approximation (16) into (10) and keep
only the real part of the result [indeed, the straightforward
result leads to a complex E�kin in the general case, which
is fundamentally because form (16) cannot be rewritten as a
function of the {ξα} only]. We then obtain an approximation of
the exact E�kin where the “standard” correlations have been
neglected by construction. As discussed in Sec. II B, it remains
to neglect the exchange terms to obtain Ecm. The calculation
is detailed in Appendix A. The final result is

E�kin → Ecm

[{
ϕk

int

}] = − h̄2

2m

N∑
i=1

∫
dr ϕi∗

int(r)�rϕ
i
int(r) ×

(
1

|�aux(0)|2
∫

dr′ ∣∣ϕl 	=i
int (r′)

∣∣2 × fi,l 	=i

[{
ϕ

k 	=i,l
int

}]
(r + r′) − 1

)

− h̄2

2mN

1

�aux∗(0)
�R

1

�aux(R)

∣∣∣∣
R=0

×
∫

dr
∣∣ϕi

int(r)
∣∣2 ∫ dr′ ∣∣ϕl 	=i

int (r′)
∣∣2 × fi,l 	=i

[{
ϕ

k 	=i,l
int

}]
(r + r′)

+ Pure Imaginary
[{

ϕk
int

}]
, (17)

where the functional Pure Imaginary counteracts the pure imaginary part of the second and third lines of Eq. (17) and becomes
null in the real (stationary) case. We keep this functional for the general (time-dependent) case.

The “two-particle c.m. correlations functional” is defined as:

fi,l 	=i

[{
ϕ

k 	=i,l
int

}]
(r̃) = ND

∫
N

j=1
j 	=i,l

drj δ

(
N∑
k=1

k 	=i,l

rk + r̃

)
N

j=1
j 	=i,l

∣∣ϕj
int(rj )

∣∣2, (18)

where D is the dimension in which the calculation is done (D = 1, 2, or 3). In the following, we note fi,l 	=i instead of fi,l 	=i[{ϕk 	=i,l
int }]

to lighten the notations. The meaning and properties of this functional are detailed in Sec. III B.
The potentials Ul

cm corresponding to Ecm are defined by (l = 1 · · · N )

Ul
cm(r)ϕl

int(r) = δEcm

[{
ϕk

int

}]
δϕl∗

int(r)
= − h̄2

2m

⎧⎪⎨
⎪⎩�rϕ

l
int(r) ×

(
1

|�aux(0)|2
∫

dr′∣∣ϕm	=l
int (r′)

∣∣2fl,m	=l(r + r′) − 1

)

+ 1

|�aux(0)|2 ϕl
int(r)

N∑
i=1
i 	=l

∫
dr′ϕi∗

int(r
′)�r′ϕi

int(r
′) × fi,l 	=i(r + r′)

⎫⎪⎬
⎪⎭

− h̄2

2mN

1

�aux∗(0)
�R

1

�aux(R)

∣∣∣∣
R=0

× ϕl
int(r)

∫
dr′∣∣ϕm	=l

int (r′)
∣∣2 × fl,m	=l(r + r′)

+ δ

δϕl∗
int(r)

Pure Imaginary
[{

ϕk
int

}]
, (19)

where the last line is obviously null in the real (stationary)
case. Note that the potentials Ul

cm are not the same for
all states. This is because Ecm[{ϕk

int}] is orbital dependent,

which requires extra measures to recover a common potential
or, equivalently, to preserve orthonormalization. A way to
overcome this problem and remain fully coherent with DFT
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is to use the OEP method, which permits us to find the
potential common to all states that reproduces most accurately
the effect of the Ul

cm potentials. We refer the reader to
Refs. [28–30] for the exhaustive equations. As the full OEP
result is very costly numerically, it is often simplified. The
Krieger-Li-Iafrate (KLI) approach is a popular one, and in a
further step of simplification, the Slater approximation [31,32]
is used. As our goal is to find a numerically inexpensive form
for the local c.m. potential, we hereafter detail only the Slater
approximation:

USlat
cm (r) = 1

ρint(r)

N∑
i=l

∣∣ϕl
int(r)

∣∣2Ul
cm(r). (20)

B. Properties of fi,l �=i and numerical considerations

The definition, (18), of the two-particle c.m. correlations
functional fi,l 	=i shows that

(i) it is real and has the dimension of a density;
(ii) it is normalized to ND , i.e.,

∫
d r̃fi,l 	=i(r̃) = ND;

(iii) limr̃→±∞ fi,l 	=i(r̃) = 0; and
(iv) it is a “multiconvolution” of all single densities, unless

these are associated with orbitals i and l.

Points (i)–(iii) permit us to make explicit the physical
meaning of 1

ND fi,l 	=i(r + r′): it is the probability that particle
l 	= i has position r′, given that particle i has position r. Indeed,
because of the c.m. correlations, the positions of those particles
are not independent; every single orbital ϕi

int is coupled to every
single orbital ϕ

l 	=i
int through fi,l 	=i . This coupling appears in the

c.m. correlations energy, (17), and potentials, (19).
To better understand this coupling, note that fi,l 	=i can be

rewritten as

fi,l 	=i(r̃)

= 2Dδ(r̃) if N = 2,

= 3D
∣∣ϕk 	=i,l

int (−r̃)
∣∣2 if N = 3,

= ND

∫
N

j=1
j 	=i,l,m

drj
N

j=1
j 	=i,l,m

∣∣ϕj
int(rj )

∣∣2 (21)

×
∣∣∣∣∣ϕm

int

(
−

N∑
k=1

k 	=i,l,m

rk − r̃

)∣∣∣∣∣
2

if N � 4,

. . .

Constant, for very large N (limit of a Fermi gas).

We see that, in the two-particle case, f1,2 is proportional to the
steep δ function. Thus, if particle 1 has position r, particle 2
will have position −r, so that the c.m. remains stuck at R = 0.
In the three-particle case, fi,l 	=i has a larger width, because
the introduction of a third particle allows more freedom to the
motion of the two other particles, while preserving R = 0. For
N � 4, the width of fi,l 	=i will increase as N grows, because
of the multiconvolution form of fi,l 	=i . Indeed, a larger number
of particles allows more liberty to the motion of two of them
while preserving R = 0. For very large N , the system tends
to a Fermi gas, so that fi,l 	=i tends to become constant and
delocalized in the whole space, i.e., the motions of the particles

tend to become independent. The c.m. correlations can then
be neglected, as expected.

Practically speaking, we see that the numerical cost of
the whole scheme lies in the calculation of fi,l 	=i for N � 4,
i.e., the calculation of the multiconvolution of Eq. (21). At
first sight, it seems to be disadvantageous for large N . But
a mathematical property of the convolutions under Fourier
transforms makes it manageable. In Appendix B, we recall the
so-called “multiconvolution theorem.” Its direct application to
fi,l 	=i for N � 4 gives

fi,l 	=i(r̃) = ND × T −1
[
N

k=1
k 	=i,l

T
[∣∣ϕk

int

∣∣2]](−r̃),

where T denotes the Fourier transform as defined in
Appendix B, Eq. (B1). This permits us to drastically shorten
the numerical calculation of fi,l 	=i , which becomes manageable
even for large systems. Indeed, once all the T [|ϕk

int|2] are
calculated, fi,l 	=i is given by the inverse Fourier transform of
their direct product, so that the numerical cost of fi,l 	=i equals
the numerical cost of (N + 1) fast Fourier transforms when
N � 4.

C. Properties of �aux and numerical considerations

To completely characterize Ecm, we still need to charac-
terize the values of |�aux(0)|2 and 1

�aux∗(0)�R
1

�aux(R) |R=0; see
Eq. (17).

1. First step: Value of |�aux(0)|2

|�aux(0)|2 is imposed by the normalization condition on
approximation (16) we used for ψint:5

1 = (ψint|ψint) =
∫

dr1 · · · drNδ(R)|ψint(r1, . . . , rN )|2

⇒ |�aux(0)|2 =
∫

drdr′∣∣ϕi
int(r)

∣∣2∣∣ϕl 	=i
int (r′)

∣∣2fi,l 	=i(r + r′).

(22)

Numerically speaking, this condition will be satisfied self-
consistently, starting from a reasonable initial value for
|�aux(0)|2 and rescaling it at every numerical loop so that it
satisfies the last line in Eq. (22).

2. Second step: Value of 1
�aux∗(0) �R

1
�aux(R) |R=0

To characterize this value, we define a pertinent continuous
set of normalized functions {�aux(R)} that are twice derivable.
We then choose, at each numerical step, the particular
�aux function of the set whose norm squared in R = 0 is
the one that has been obtained in the first step (the set
should unambiguously define this value). Then we calculate

1
�aux∗(0)�R

1
�aux(R) |R=0 with it. This permits us to completely

define the c.m. correlation energy, (17), and potential, (19),
without introducing any free parameter.

5The last line in Eq. (22) is obtained by introducing the form, (16),
for ψint in the first line in Eq. (22) and neglecting the exchange terms.
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We mention a particular relation that should satisfy the �aux

functions chosen to constitute the set. Recall that �aux depends
implicitly on N . As demonstrated in Appendix C, �aux should
satisfy the following properties as N increases:

lim
N→+∞

|�aux(0)|2 → +∞,

lim
N→+∞

1

N
× 1

�aux∗(0)
�R

1

�aux(R)

∣∣∣∣
R=0

× |�aux(0)|2 → 0.

(23)

The remaining task is to choose a pertinent continuous set of
{�aux(R)} that satisfies those properties.

3. Practical proposition

The most simple [4] set for �aux that meets all the
previously mentioned criteria (and is exact in the case where
the interaction u is parabolic) is the Gaussian set:

�aux(R) =
(

KN

π

)D/4

exp

{
−KN

2

D∑
i=1

R2
i

}
, (24)

where Ri are the coordinates of R in D dimensions and KN

is the parameter that defines �aux for every given N . With this
form,

|�aux(0)|2 =
(

KN

π

)D/2

, (25)

1

�aux∗(0)
�R

1

�aux(R)

∣∣∣∣
R=0

= πD/2 × D × K
1−D/2
N . (26)

For a given system composed of N particles, |�aux(0)|2 is still
obtained at each numerical loop with the first step (Sec. III C1),
which defines KN by Eq. (25) and 1

�aux∗(0)�R
1

�aux(R) |R=0 by
Eq. (26).

We emphasize that the choice of a Gaussian set for �aux

absolutely does not constrain the ϕi
int to show a Gaussian

behavior (even asymptotically). Indeed, it simply gives a
method to define the value of 1

�aux∗(0)�R
1

�aux(R) |R=0 given the

value of |�aux(0)|2, where only the behavior of �aux around
R = 0 enters into account. The numerical results presented
thereafter show that the Gaussian set choice gives good
results. Nevertheless, the search for other sets, i.e., with other
variations around R = 0, should be continued to obtain the
most precise description of self-bound systems in fully realistic
calculations. This investigation goes beyond the scope of this
paper.

4. Initial condition

With this method, there is no need to analytically define KN

as a function of N ; KN is obtained numerically for every given
N as indicated previously. It would nevertheless be interesting
to obtain an approximate analytical form to start the numerical
iterations with a pertinent initial condition. With that aim, we
note that conditions (23), together with equalities (25) and

(26), implies the following conditions on KN :

lim
N→+∞

K
D/2
N → +∞, lim

N→+∞
1

N
KN → 0. (27)

A straightforward form for KN that satisfies those two
constraints is

KN = A × Na, where 0 < a < 1. (28)

In practice, a ∈ [0.6; 0.9] should be a reasonable choice in
nuclear physics.6

D. “By-products”

1. An explicit density functional for fermions

The functional proposed in Sec. III A is, by construction,
not an explicit functional of ρint (but an orbital-dependent
functional). It is well suited for stationary calculations but
not for time-dependent ones because the Slater approximation
does not permit us to preserve energy conservation, as this
approximation is not perfectly variational [33]. Only the
full time-dependent OEP result [34] will achieve energy
conservation, but with a much higher numerical cost. It would
be interesting to find an explicit functional of ρint that would
overcome this time-dependent case problem.

In this section, we propose a further step of approximation
that will allow us to obtain such a functional. We use the local
density approximation (LDA) on the result of Sec. III A, which
consists of assuming that the system is locally homogeneous
[21,35]. Despite its simplicity, this approximation has proven
to be very satisfying for the description of a wide range of
systems, and not just large ones [2,21]. To make the LDA, we
first make the replacement∣∣ϕi

int(r)
∣∣2 → 1

N
ρint(r) (29)

everywhere the single density terms |ϕi
int|2 appear in Ecm,

Eq. (17). In the obtained functional, the only remaining term
that is not an explicit functional of ρint is

∑N
i=1 ϕi∗

int(r)�rϕ
i
int(r).

As we consider a system composed of fermions, we can make
the Thomas-Fermi approximation [21], i.e., the replacement

N∑
i=1

ϕi∗
int(r)�rϕ

i
int(r) → −3

5
Cρ

5/3
int (r), (30)

6The corresponding energy associated with �aux is E�aux = − h̄2

2Nm

(�aux|�R|�aux) = h̄2

2Nm
D
4 KN = h̄2

2m
D
4 A × Na−1. E�aux is proportional

to Na−1. Even if E�aux has, strictly speaking, no physical meaning, it
is reasonable to assume that its variation according to N should ap-
proximately be proportional to the variation of the energy associated
with the c.m. vibration obtained in mean-field-like calculations (see
Ref. [11]). For the nuclear case, the c.m. vibration energy evaluated
for harmonic oscillator states is proportional to N−1/3; this variation
can be reproduced with a = 2/3. The c.m. correlation energy
evaluated with an a posteriori fit with mean-field-like calculations
is proportional to N−0.2; this variation can be reproduced with
a ≈ 0.8 [11].
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where C = ( 3π2

γ
)2/3 and γ is the degeneracy. We obtain as the final result the c.m. correlations energy written as an explicit

functional of ρint:

ELDA
cm [ρint] = h̄2

2m

∫
dr

3

5
Cρ

5/3
int (r)

(
1

|�aux(0)|2
∫

dr′ 1

N
ρint(r′) × f2[ρint](r + r′) − 1

)

− h̄2

2mN
�e

(
1

�aux∗(0)
�R

1

�aux(R)

∣∣∣∣
R=0

)∫
dr

1

N
ρint(r)

∫
dr′ 1

N
ρint(r′) × f2[ρint](r + r′), (31)

where the “two-particle average c.m. correlations functional” is defined by

f2(r̃) = 2Dδ(r̃) if N = 2,

= 3D 1

N
ρint(−r̃) if N = 3,

= ND 1

NN−2

∫
dr1 · · · drN−3 ρint(r1) × · · · × ρint(rN−3) ρint

(
−

N−3∑
k=1

rk − r̃

)
if N � 4,

. . .

Constant, for very large N (limit of a Fermi gas). (32)

(We note f2 instead of f2[ρint] to lighten the notation.) Considerations similar to those in Sec. III B permit us to interpret
1

ND f2(r + r′) as the average probability that one particle has position r′ given that another particle has position r.
The corresponding unique c.m. correlations potential is given by

δELDA
cm [ρint]

δρint(r)
= ULDA

cm [ρint](r) = h̄2

2m

{
Cρ

2/3
int (r) ×

(
1

|�aux(0)|2
∫

dr′ 1

N
ρint(r′)f2(r + r′) − 1

)

+ 1

|�aux(0)|2
∫

dr′ 3

5
Cρ

5/3
int (r′) × N − 1

N
f2(r + r′)

}

− h̄2

2mN
�e

(
1

�aux∗(0)
�R

1

�aux(R)

∣∣∣∣
R=0

)
×
∫

dr′ 1

N
ρint(r′) × f2(r + r′). (33)

Still, we see that the numerical cost lies in the calculation of f2 for N � 4. To reduce this cost, we use the “multiconvolution
theorem” recalled in Appendix B. Its direct application to f2 for N � 4 gives [using the definition Eq. (B1) for the Fourier
transform T ]

f2(r̃) = ND 1

NN−2
× T −1[(T [ρint])

N−2](−r̃).

This permits us to speed up drastically the numerical calculation of f2, which becomes manageable even for very large systems.
Indeed, we simply calculate T [ρint], raise it to power (N − 2), and calculate its inverse Fourier transform. Thus, the numerical
cost of the calculation of f2 is equal to two fast Fourier transforms for all N � 4.

Moreover, this scheme is perfectly variational, contrary to that in Sec. III A and, thus, is suitable for stationary calculations
as well as for time-dependent ones (it will achieve energy conservation if a time-independent vint is used).

2. An explicit density functional for bosons

Until now, we have only considered systems of fermions. The c.m. correlations energy functional for boson condensates is
obtained by replacing ϕi

int → ϕint, thus ρint = N |ϕint|2, in Eq. (17). Setting ϕint = √
ρint/N , we obtain

Ecm[ρint] = − h̄2

2m

∫
dr
√

ρint(r)�r

√
ρint(r) ×

(
1

|�aux(0)|2
∫

dr′ 1

N
ρint(r′) × f2(r + r′) − 1

)

− h̄2

2mN
�e

(
1

�aux∗(0)
�R

1

�aux(R)

∣∣∣∣
R=0

)
×
∫

dr
1

N
ρint(r)

∫
dr′ 1

N
ρint(r′) × f2(r + r′), (34)

where f2 is defined as in Eq. (32) and the corresponding c.m. correlations potential is given by

δEcm[ρint]

δρint(r)
= Ucm[ρint](r) = − h̄2

2m

{
1√

ρint(r)
�r

√
ρint(r)×

(
1

|�aux(0)|2
∫

dr′ 1

N
ρint(r′)f2(r + r′) − 1

)

+ 1

|�aux(0)|2
∫

dr′ √ρint(r)�r

√
ρint(r) × N − 1

N
f2(r + r′)

}

− h̄2

2mN
�e

(
1

�aux∗(0)
�R

1

�aux(R)

∣∣∣∣
R=0

)
×
∫

dr′ 1

N
ρint(r′) × f2(r + r′). (35)
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TABLE I. Energies of the various formalisms [in units where h̄ = m = 1; benchmark: total energy = 0.50 and interacting kinetic energy
(ψint| τ2

2μ
|ψint) = 0.25].

Formalism Noninteracting EH EC −〈 P2

2mN
〉 or E�kin Total energy

kinetic energy or Ecm

H only 0.353 0.353 0 0 0.71
H + standard correlations 0.5 0.25 0.25 0 1.00
H + standard correlations

+ standard c.m. correction 0.706 0.177 0.177 −0.353 0.71
Internal DFT with c.m. correlations functional 1.225 0.120 0.120 −0.918 0.55
Exact internal DFT 1.000 0.125 0.125 −0.750 0.50

This potential is common to all states, is an explicit functional
of ρint, and is strictly variational (so that it may be used in the
time-dependent case).

IV. NUMERICAL RESULTS

We consider one-dimensional (1D) calculations which will
allow us to better understand some features of the internal DFT
formalism and more easily include various particle-particle
interactions.

A. Model system composed of two particles
with a strong interaction

1. The model and the benchmark

We consider a self-bound system composed of two different
particles, to maximize the c.m. correlations effects. We
suppose that the two particles have the same mass m and
are coupled by a strong interaction, which models features
of a proton and a neutron. The first particle has laboratory
coordinates r (1), p(1), and the second particle has laboratory
coordinates r (2), p(2). The reduced mass is μ = m/2, and
the Jacobi coordinates are ξ = r (1) − r (2), τ = p(1) − p(2).
We suppose that the interaction between the two particles

 0
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Exact int. DFT
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FIG. 1. (Color online) Internal densities ρ
(l)
int of the various

formalisms. x axis: position, in units where h̄ = m = 1.

is parabolic (harmonic oscillator) so that the laboratory

Hamiltonian is H =∑2
i=1

p(i)2

2m
+ 1

4mω2(r (1) − r (2))2, and the
internal Hamiltonian is

Hint = τ 2

2μ
+ 1

2
μω2ξ 2. (36)

Its ground state can be written analytically (ψint should not be
antisymmetrized because we deal with two different particles):

ψint(ξ ) =
(

μω

πh̄

) 1
4

exp

{
−1

2

μω

h̄
ξ 2

}
. (37)

The corresponding energy is Eint = 1
2h̄ω and the c.m.-frame

one-body densities for each kind of particle are [R = (r (1) +
r (2))/2; l = 1 · · · 2] [17]

ρ
(l)
int(r) =

∫
dr (1)dr (2)δ(R)|ψint(r

(1) − r (2))|2δ(r − (r (l) − R))

= 2|ψint(2r)|2 =
√

2mω

πh̄
exp

{
−2mω

h̄
r2

}
. (38)

This is our benchmark.
It can be shown analytically using a harmonic oscillator

basis that the Hartree (H) solution (there is no exchange
because the two particles are different) leads to Eint = 1√

2
h̄ω

and ρ
(l)
int(r) =

√
mω√
2πh̄

exp(− mω√
2h̄

r2). Thus the H energy is 2/
√

2

(≈1.4) times more important than that of the benchmark,
and the density is 1.7 times more spread. The H solution is
much more delocalized than the benchmark because the c.m.
correlations are neglected.7

2. The internal DFT exact functional

Applying the multicomponent internal DFT formalism
developed in Ref. [17] (whose equations have a form relatively

7The c.m. correlations tend to localize the densities compared to
the independent particle approximation, which can be understood as
follows: if c.m. correlations are taken into account, when one particle
moves in a direction where the potential well is higher, the other
particle will have to move in the opposite direction where the potential
well is also higher. The first particle will thus feel the repulsion present
in the independent particle approximation, but also the repulsion felt
by the second particle through the c.m. correlations.
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TABLE II. Energies of the various formalisms in the N = 2 case [in units where h̄ = m = 1; benchmark: total energy = −0.59 and
interacting kinetic energy (ψint| τ2

2μ
|ψint) = 0.12].

Formalism Noninteracting EH × (1 − 1
N

) −〈 P2

2mN
〉 or Ecm Total energy

kinetic energy

H only 0.133 −0.626 0 −0.49
H + standard c.m. correction 0.260 −0.712 −0.065 −0.52
Internal DFT with c.m. correlations functional 0.535 −0.776 −0.418 −0.66

similar to that of the “one kind of particle” internal DFT
equations recalled in Sec. II A), we can rewrite the internal
energy (ϕ(1)

int and ϕ
(2)
int being the KS orbitals):

Eint
[
ρ

(1)
int , ρ

(2)
int

] =
2∑

l=1

(
ϕ

(l)
int

∣∣∣∣ p2

2m

∣∣∣∣ϕ(l)
int

)
+ EH

[
ρ

(1)
int , ρ

(2)
int

]
+EC

[
ρ

(1)
int , ρ

(2)
int

]+ E�kin
[
ρ

(1)
int , ρ

(2)
int

]
, (39)

where8

EH

[
ρ

(1)
int , ρ

(2)
int

] =
∫

drdr ′ρ(1)
int (r)ρ(2)

int (r ′)
1

4
mω2(r − r ′)2, (40)

EC

[
ρ

(1)
int , ρ

(2)
int

]
=
∫

dr dr ′γ (12)
int (r, r ′)

1

4
mω2(r − r ′)2 − EH

[
ρ

(1)
int , ρ

(2)
int

]
=
∫

dr
1

2

(
ρ

(1)
int (r) + ρ

(2)
int (r)

)
mω2r2 − EH

[
ρ

(1)
int , ρ

(2)
int

]
, (41)

E�kin
[
ρ

(1)
int , ρ

(2)
int

]
=
(

ψint

∣∣∣∣ τ 2

2μ

∣∣∣∣ψint

)
−

2∑
i=1

(
ϕ

(i)
int

∣∣∣∣ p2

2m

∣∣∣∣ϕ(i)
int

)

= −3

2
h̄ω + 3

2

∫
dr
(
ρ

(1)
int (r) + ρ

(2)
int (r)

)
mω2r2. (42)

EH is the H energy, EC is the “standard” correlations energy
linked to the particle-particle interaction, and E�kin is the
energy associated with the correlations contained in the
interacting kinetic energy. It is the only term that contains
explicitly the c.m. correlations.9

8To obtain these results, we pose ϕ
(i)
int =

√
ρ

(i)
int and use γ

(12)
int (r, r ′) =∫

dr (1)dr (2)δ(R)|ψint(r (1)−r (2))|2×δ(r − (r (1)−R))δ(r ′−(r (2)−R)) =
1
2 (ρ(1)

int (r) + ρ
(2)
int (r))δ(r + r ′).

9Note that even if, in the general case, the functional EC + E�kin is
universal [15,16], forms (41) and (42) are limited to the two-different-
particle case because exchange effects are not taken into account.
Thus they cannot be used to describe a system composed of an
arbitrary number of particles of each kind. The universal functional,
applicable to an arbitrary number of particles, is more involved but
should permit us to recover (41) and (42) to the limit of a system
composed by two different particles.

3. The c.m. correlations functional

We now approximate E�kin by the functional Ecm pro-
posed in Sec. III, with �aux(R) = (K

π
)1/4 exp{−K

2 R2}. We
obtain

Ecm

= − h̄2

2m

∫
dr

[
ϕ

(1)∗
int (r)�rϕ

(1)
int (r)

(
2

√
π

K

∣∣ϕ(2)
int (−r)

∣∣2 − 1

)

+ϕ
(2)∗
int (r)�rϕ

(2)
int (r)

(
2

√
π

K

∣∣ϕ(1)
int (−r)

∣∣2 − 1

)]

− h̄2

2m

√
Kπ

∫
dr
∣∣ϕ(1)

int (r)
∣∣2∣∣ϕ(2)

int (−r)
∣∣2. (43)

The corresponding local c.m. correlations potentials are
(l = 1, 2)

U (l)
cm(r)ϕ(l)

int(r) = − h̄2

2m

(
2

√
π

K

∣∣ϕ(m	=l)
int (−r)

∣∣2 − 1

)
�rϕ

(l)
int(r)

− h̄2

2m

(
2

√
π

K
ϕ

(m	=l)∗
int (−r)�rϕ

(m	=l)
int (−r)

+
√

Kπ
∣∣ϕ(m	=l)

int (−r)
∣∣2). (44)

(There is no need for the Slater approximation because we deal
with one particle only of each kind.)
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Int. DFT with c.m. cor ft

H+stand c.m. ft
H only

FIG. 2. (Color online) Internal density ρint/2 of the various
formalisms in the N = 2 case. x axis: position, in units where
h̄ = m = 1.
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TABLE III. “Internal DFT with c.m. correlations functional”
energies for various N ’s (in units where h̄ = m = 1).

N Noninteracting Ecm Total K Interacting
kinetic energy energy kinetic energy

2 0.535 −0.418 −0.66 1.94 0.117
3 0.463 −0.185 −1.90 1.74 0.278
4 0.702 −0.196 −3.97 2.74 0.507
5 1.014 −0.217 −6.84 4.01 0.799
6 1.390 −0.239 −10.56 4.54 1.151

Remember that, in making this approximation, we are
neglecting the “standard” correlations part of E�kin. In realistic
3D cases these correlations are mostly taken into account in
the parametrized functionals that are commonly used. In our
case, there is no simple way to include them in the rest of the
functional, so it will not be possible to perfectly match the
benchmark. Nevertheless, as they remain only a correction,
the benchmark should be reasonably matched, at least much
better than with the commonly used −〈 P2

2mN
〉 approximation

(see discussion in Sec. II C).

4. Numerical results

We use a unit system where h̄ = m = 1 and choose ω = 1.
Table I and Fig. 1 present numerical results for the following
formalisms:

(i) EH , called “H only”;
(ii) EH + EC , called “H + standard correlations”;

(iii) EH + EC − 〈 P2

2mN
〉, called “H + standard correl-

ations + standard c.m. correction”;
(iv) EH + EC + Ecm, called “internal DFT with c.m.

correlations functional” (we obtain K ≈ 3.9 with the
method described in Sec. III C);

(v) EH + EC + E�kin, called “exact internal DFT”;
and

(vi) benchmark (described in Sec. IV A1).

First, we see from Table I and Fig. 1 that the exact internal
DFT perfectly reproduces the total energy and densities of the
benchmark so that noninteracting v-representability [15,21] is
perfectly achieved. [This is not a surprise; when one deals with
only one particle of each kind, it is always possible to reach
ϕ

(l)
int =

√
ρ

(l)
int .]

From Table I, we see that the noninteracting kinetic energy
cannot be compared to the interacting kinetic energy. In

TABLE IV. “H only” energies for vari-
ous values of N (in units where h̄ = m = 1).

N Total energy

2 −0.491
3 −1.75
4 −3.79
5 −6.66
6 −10.37

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

-4 -3 -2 -1  0  1  2  3  4

Int. DFT with c.m. cor ft
H only

FIG. 3. (Color online) Internal density ρint/6 of the various
formalisms in the N = 6 case. x axis: position, in units where
h̄ = m = 1.

particular, there is a factor 4 between the “exact internal DFT”
noninteracting kinetic energy (=1) and the interacting kinetic
energy (=0.250). Indeed, as discussed in Sec. II A, it is the
“noninteracting kinetic energy + E�kin” that is comparable
to the interacting kinetic energy. Exact internal DFT then
perfectly reaches the benchmark: 1.000 − 0.750 = 0.250. The
internal DFT with Ecm gives 1.225 − 0.928 = 0.307, which
fairly well reproduces the benchmark, considering that the
“standard” correlations part of E�kin has been neglected. The
result with standard c.m. correction gives 0.706 − 0.353 =
0.353, which is worse.

From the point of view of the total energy, the “internal
DFT with c.m. correlations functional” is much closer to the
benchmark than the other approximate schemes. From the
point of view of the densities, Fig. 1 shows that the internal
DFT with c.m. correlations functional is very close to the
benchmark and represents a great improvements compared to
the other results. Nevertheless, we see some differences, which

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

-4 -3 -2 -1  0  1  2  3  4

N=3
N=4
N=5
N=6

FIG. 4. (Color online) f2 for N = 3 to 6. N = 2 is the δ function.
x axis: position, in units where h̄ = m = 1.
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are explained by the fact that the standard correlations part of
E�kin is not taken into account in our model.

B. Model system of identical bosons (smooth interaction)

We now consider a 1D system composed of N identical
bosons of mass m and positions {ri} without spin in a
condensate state and with an attractive two-body interaction
of the form (e > 0)

u(r − r ′) = − 1√
(r − r ′)2 + e

, (45)

where the greater e, the smoother the potential. This allows us
to model features of 4He droplets.

The internal DFT energy functional is given by (ϕint is the
one-body orbital describing the bosons and ρint = N |ϕint|2)

Eint[ρint] = N

(
ϕint

∣∣∣∣ p2

2m

∣∣∣∣ϕint

)
+ EH [ρint] ×

(
1 − 1

N

)
+EC[ρint] + Ecm[ρint], (46)

where EH [ρint] × (1 − 1
N

) represents the H energy, where
the self-interaction has been subtracted and EC[ρint] is the
standard correlations energy. We once again neglect EC

because we have no simple way to evaluate it as a functional of

ρint. Note that more is neglected than in the previous model (of
Sec. IV A), because EC contains all the standard correlations,
whereas in Sec. IV A we were able to keep a part of them. We
thus can expect that the benchmark will be a little less matched
here than in Sec. IV A; nevertheless, as EC is small (even if not
always completely negligible), the benchmark should remain
reasonably matched.

The c.m. correlations energy is defined as in Sec. III D2,
where �aux is defined as in Sec. III C:

Ecm[ρint] = − h̄2

2m

∫
dr
√

ρint(r)�r

√
ρint(r)

×
(√

π

K(N )

∫
dr ′ 1

N
ρint(r

′)f2(r + r ′) − 1

)

− h̄2

2mN

√
πK(N )

∫
dr

1

N
ρint(r)

×
∫

dr ′ 1

N
ρint(r

′)f2(r + r ′), (47)

and f2 is defined by Eq. (32). The internal KS equation is(
− h̄2

2m
� + UH [ρint] ×

(
1 − 1

N

)
+ Ucm[ρint]

)
ϕint = εϕint,

where

Ucm[ρint](r) = − h̄2

2m

{
1√

ρint(r)
�r

√
ρint(r) ×

(√
π

K(N )

∫
dr ′ 1

N
ρint(r

′)f2(r + r ′) − 1

)

+
√

π

K(N )

∫
dr ′ √ρint(r ′)�r

√
ρint(r ′) × N − 1

N
f2(r + r ′)

}

− h̄2

2mN

√
K(N )π

∫
dr ′ 1

N
ρint(r

′) × f2(r + r ′). (48)

For the N = 2 case, we can compute a benchmark. Indeed,
by use of Jacobi coordinates, the internal Hamiltonian can
be rewritten as Hint = τ 2

2μ
− 1√

ξ 2+e
, where μ = m/2 is the

reduced mass. It is then possible to calculate numerically the
exact many-body ground state ψint and the c.m.-frame one-
body density ρint(r) = 4|ψint(2r)|2.

The next results are given for:

(i) EH × (1 − 1
N

), called “H only.”

(ii) EH × (1 − 1
N

) − 〈 P2

2mN
〉, called “H + standard c.m.

correction.”
(iii) EH × (1 − 1

N
) + Ecm, called “internal DFT with c.m.

correlations functional.”
(iv) Benchmark (for the N = 2 case only).

Table II and Fig. 2 report the energies and densities for the
N = 2 case. We again see that the internal DFT noninteracting
kinetic energy cannot be compared to the interacting kinetic
energy. It is the internal DFT “noninteracting kinetic energy +

Ecm” (0.535 − 0.418 = 0.117) that is comparable to the
interacting kinetic energy (0.12). The result with standard
c.m. correction gives 0.260 − 0.065 = 0.195, which is worse.
We also see that the internal DFT with c.m. correlations
functional reproduces the benchmark fairly well, at least
much better than the other schemes. We nevertheless see
some differences, which are explained by the fact that EC

has been neglected. (See discussion at the beginning of this
section.)

Table III shows that the part of the c.m. correlations energy
in the total internal DFT energy decreases as N grows (63% for
N = 2; 2% for N = 6). As a consequence, and even if shell
effects play a role, the internal DFT noninteracting kinetic
energy tends to become closer to the interacting kinetic energy
as N grows (factor 4.6 for N = 2; factor 1.2 for N = 6).
The “H only” and internal DFT densities become closer as N
increases (see Fig. 3 for N = 6). Tables III and IV show that
the H only total energy also becomes closer to the internal
DFT total energy as N increases.
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Finally, we see from Table III that K grows as N grows and
from Fig. 4 that the maximum value of f2 also grows as N
grows (but the maximum value 1

ND f2 diminishes), confirming
the reasoning in Sec. III C.

V. CONCLUSION

The internal DFT provides an existence theorem for a
c.m. correlations energy functional associated with a local
potential. In this article, we have constructed such a functional,
without involving any free parameters. The use of this
functional is justified by the strong formal background, and
variants suitable for fermionic as well as bosonic systems
have been proposed. The resulting scheme is numerically
manageable and represents a well-founded alternative to
projection techniques to treat c.m. correlations. It can be
added directly to actual energy functionals, although a refitting
of them then would be necessary. Moreover, this scheme
permits us to recover the precise value of the interacting
kinetic energy and represents a manageable way to include the
c.m. correlations in time-dependent calculations of self-bound
systems.

We have presented convincing numerical results on 1D
model systems. These results show that the developed
functional represents a great improvement compared to the
“standard c.m. correction” commonly used in nuclear physics
(of the form −〈 P2

2mN
〉), especially from the point of view of

the energies. The next step will be to include the proposed
functional in realistic 3D calculations, for instance, in mean-
field-like calculations of nuclei with Skyrme interaction [2,9].
As the “standard” correlations are mostly taken into account
in the commonly used functionals, the 3D results should be
even more convincing than the 1D ones.

Even if the proposed Gaussian set for �aux has been proved
to give satisfying results, the search for other forms, i.e., with
other variations around R = 0, should continue to provide the
most precise description of atomic nuclei, helium droplets, or
small molecular systems where a quantum treatment of the
nuclei is necessary.
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APPENDIX A: DETAILS OF THE CALCULATION
THAT LEADS TO Ecm

We evaluate
∫

dr1 · · · drNδ(R)ψ∗
int(r1, . . . , rN ) ×∑N

i=1
p2

i

2m
ψint(r1, . . . , rN ) using approximation (16) for ψint and

obtain

∫
dr1 · · · drNδ(R)

1

�aux∗(R)
ψaux∗(r1, . . . , rN )

N∑
i=1

p2
i

2m

1

�aux(R)
ψaux(r1, . . . , rN )

= − h̄2

2m

1

|�aux(0)|2
1

N !

∑
P,P ′

(−1)p+p′
N∑

i=1

∫
dri F

P,P ′
i

[{
ϕk

int

}]
(ri) × ϕ

P (i)∗
int (ri)�ri

ϕ
P ′(i)
int (ri)

− h̄2

2m

1

N2

1

�aux∗(0)
�R

1

�aux(R)

∣∣∣∣
R=0

1

N !

∑
P,P ′

(−1)p+p′
N∑

i=1

∫
dri F

P,P ′
i

[{
ϕk

int

}]
(ri) × ϕ

P (i)∗
int (ri)ϕ

P ′(i)
int (ri)

= − h̄2

2m

1

|�aux(0)|2
N∑

i=1

{∫
dr Fi

[{
ϕ

k 	=i
int

}]
(r) × ϕi∗

int(r)�rϕ
i
int(r)

+ 1

N !

∑
P,P ′ 	=P

(−1)p+p′
∫

dr F
P,P ′ 	=P
i

[{
ϕk

int

}]
(r) × ϕ

P (i)∗
int (r)�rϕ

P ′(i)
int (r)

}

− h̄2

2mN

1

�aux∗(0)
�R

1

�aux(R)

∣∣∣∣
R=0

1

N

N∑
i=1

{∫
dr Fi

[{
ϕ

k 	=i
int

}]
(r) × ∣∣ϕi

int(r)
∣∣2

+ 1

N !

∑
P,P ′ 	=P

(−1)p+p′
∫

drFP,P ′ 	=P
i

[{
ϕk

int

}]
(r) × ϕ

P (i)∗
int (r)ϕP ′(i)

int (r)

}
, (A1)

where we have defined (D = 1, 2, or 3 is the dimension in which the calculation is done)

F
P,P ′
i

[{
ϕk

int

}]
(r) − ND

∫
N

j=1
j 	=i

drj δ

(
N∑
k=1
k 	=i

rk + r

)
N

j=1
j 	=i

ϕ
P (j )∗
int (rj )ϕP ′(j )

int (rj ),
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and its diagonal part,

Fi

[{
ϕ

k 	=i
int

}]
(r) = 1

N !

∑
P

F
P,P
i

[{
ϕk

int

}]
(r) = ND

∫
N

j=1
j 	=i

drj δ

(
N∑
k=1
k 	=i

rk + r

)
N

j=1
j 	=i

∣∣ϕj
int(rj )

∣∣2. (A2)

Fi is the probability that particle i has position r, according to the c.m. coupling with every other particle and their probability
distributions. In the following, we note Fi instead of Fi[{ϕk 	=i

int }] to lighten the notations.
FP,P ′ 	=P is caused solely by exchange effects. In the following, as explained in Secs. II B and III A, we neglect the pure

exchange effects and thus FP,P ′ 	=P . We obtain∫
dr1 · · · drNδ(R)ψ∗

int(r1, . . . , rN )
N∑

i=1

p2
i

2m
ψint(r1, . . . , rN )

→ − h̄2

2m

1

|�aux(0)|2
N∑

i=1

∫
dr Fi(r) × ϕi∗

int(r)�rϕ
i
int(r) − h̄2

2mN

1

�aux∗(0)
�R

1

�aux(R)

∣∣∣∣
R=0

× 1

N

N∑
i=1

∫
dr Fi(r) × ∣∣ϕi

int(r)
∣∣2.

We now insert this result into E�kin, Eq. (10), and keep only the real part, i.e., �e(E�kin), as justified in Sec. III A. We are left
with only the c.m. correlations contribution,

E�kin → Ecm

[{
ϕk

int

}] = − h̄2

2m

N∑
i=1

∫
dr
(

1

|�aux(0)|2 Fi(r) − 1

)
× ϕi∗

int(r)�rϕ
i
int(r)

− h̄2

2mN

1

�aux∗(0)
�R

1

�aux(R)

∣∣∣∣
R=0

∫
dr Fi(r) × ∣∣ϕi

int(r)
∣∣2

+ Pure Imaginary
[{

ϕk
int

}]
, (A3)

where Pure Imaginary[ϕk
int}] is a pure imaginary functional

which counteracts the imaginary part of the first two lines of
(A3).

Fi is interesting in terms of the physics in energy con-
siderations, although it is not a fundamental quantity for the
potential (obtained by variation of Ecm). We thus introduce
a more fundamental quantity which appears in both the c.m.
correlations energy and potential, namely the “two-particle
c.m. correlations functional” defined in Eq. (18), which is
linked to Fi by the relation

∀l 	= i: Fi(r′) =
∫

dr
∣∣ϕl

int(r)
∣∣2fi,l 	=i(r + r′). (A4)

When (A4) is inserted into (A3), we obtain form (17) for the
c.m. correlation energy.

APPENDIX B: THE MULTICONVOLUTION THEOREM

We define the Fourier transform T of an integrable function
L : �e → �m as

∀r, s ∈ �e: T [L](s) =
∫

dr e−2πis.r L(r) (B1)

and the inverse Fourier transform T −1 of a function L̃ : �e →
�m as

∀r, s ∈ �e: T −1[L̃](r) =
∫

dse2πis.rL̃(s).

We start from (K + 1) integrable functions gi : �e → �m
and define the “multiconvolution”:

C[{gi}](r̃) =
∫

dr1 · · · drK g1(r1)

× · · · × gK (rK ) × gK+1

(
−

K∑
i=1

ri − r̃

)
.

We can show easily that

T [C](s) = K+1
i=1 T [gi](−s), (B2)

which leads to

C[{gi}](r̃) = T −1
[
K+1

i=1 T [gi](−s)
]
(r̃)

= T −1
[
K+1

i=1 T [gi]
]
(−r̃).

This is the “convolution theorem” [36] generalized to mul-
ticonvolutions, which states that the Fourier transform of a
multiconvolution is the product of the Fourier transforms of
each function that enters into the multiconvolution. Note that
this relationship is only valid for form (B1) of the Fourier
transform. For forms normalized in other ways, a constant
scaling factor will appear.

APPENDIX C: SOME PROPERTIES OF �aux

WHEN N BECOMES VERY LARGE

The limit where the c.m. correlations become negligible
is obtained when N becomes very large, as mentioned in
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Sec. III B. Indeed, fi,l 	=i then tends to become constant and
delocalized in the whole space. We define

lim
N→+∞

fi,l 	=i = Constant. (C1)

The normalization condition, (22), thus implies, when N is
very large,

lim
N→+∞

|�aux(0)|2

= lim
N→+∞

∫
dr dr′∣∣ϕi

int(r)
∣∣2∣∣ϕl 	=i

int (r′)
∣∣2fi,l 	=i(r + r′)

= Constant. (C2)

(Remember that �aux is implicitly dependent of N .) When
these results are inserted into Ecm, Eq. (17), we see that
its second line becomes null and that its third line becomes
proportional to 1

N
× 1

�aux∗(0)�R
1

�aux(R) |R=0 × |�aux(0)|2, which
must tend to 0 when N becomes very large so that Ecm can
be neglected. This implies the first relation that �aux should
satisfy:

lim
N→+∞

1

N
× 1

�aux∗(0)
�R

1

�aux(R)

∣∣∣∣
R=0

× |�aux(0)|2 → 0.

We denote R the region of space where the system has a
nonzero density and V the corresponding volume. For very

large systems, we have∣∣ϕi
int(r)

∣∣2 ≈ 1

V
for r ∈ R,

≈ 0 for r /∈ R. (C3)

Inserting those results in definition (21) of fi,l 	=i gives

fi,l 	=i(r) ≈ ND

V
for r ∈ R,

≈ 0 for r /∈ R. (C4)

In the general case, we have V < kN , where k is a constant (as
for saturating systems, like nuclear ones [2], where V becomes
close, but still inferior, to kN ). Thus,

lim
N→+∞

fi,l 	=i(r̃) = +∞, (C5)

whatever the dimension in which the calculation is done [but
limN→+∞ 1

ND fi,l 	=i(r) = limN→+∞ 1
V

= 0]. As a consequence
of Eqs. (C1), (C2), and (C5), we deduce a second relation that
�aux should satisfy:

lim
N→+∞

|�aux(0)|2 → +∞. (C6)
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[30] S. Kümmel and L. Kronik, Rev. Mod. Phys. 80, 3 (2008).
[31] J. B. Krieger, Y. Li, and G. J. Iafrate, Phys. Rev. A 45, 101

(1992).
[32] J. B. Krieger, Y. Li, and G. J. Iafrate, Phys. Rev. A 46, 5453

(1992).
[33] J. Messud, P. M. Dinh, P.-G. Reinhard, and E. Suraud, Ann.

Phys. (Berlin) 523, 270 (2011).
[34] C. A. Ullrich, U. J. Gossmann, and E. K. U. Gross, Phys. Rev.

Lett. 74, 872 (1995).
[35] R. G. Parr and W. Yang, Density-Functional Theory of Atoms

and Molecules (Oxford University Press, New York, 1989).
[36] Y. Katznelson, An Introduction to Harmonic Analysis

(Cambridge University Press, Cambridge, 2004).

024302-15

http://dx.doi.org/10.1007/s100500170036
http://dx.doi.org/10.1088/0370-1298/70/5/309
http://dx.doi.org/10.1016/0029-5582(62)91025-8
http://dx.doi.org/10.1016/0375-9474(83)90405-0
http://dx.doi.org/10.1016/0375-9474(83)90405-0
http://dx.doi.org/10.1016/0370-2693(84)90001-7
http://dx.doi.org/10.1016/0370-2693(84)90001-7
http://dx.doi.org/10.1016/0375-9474(91)90804-F
http://dx.doi.org/10.1088/0954-3899/36/10/105105
http://dx.doi.org/10.1103/RevModPhys.75.121
http://dx.doi.org/10.1103/RevModPhys.75.121
http://dx.doi.org/10.1140/epja/i2003-10108-1
http://dx.doi.org/10.1140/epja/i2003-10108-1
http://dx.doi.org/10.1140/epja/i2003-10109-0
http://dx.doi.org/10.1007/PL00013645
http://dx.doi.org/10.1007/PL00013645
http://dx.doi.org/10.1088/0954-3899/36/2/025101
http://dx.doi.org/10.1088/0954-3899/36/2/025101
http://dx.doi.org/10.1088/0305-4616/6/10/004
http://dx.doi.org/10.1007/s100500170036
http://dx.doi.org/10.1103/PhysRevC.80.054314
http://dx.doi.org/10.1103/PhysRevC.80.054314
http://dx.doi.org/10.1103/PhysRevC.80.054614
http://dx.doi.org/10.1103/PhysRevA.84.052113
http://dx.doi.org/10.1103/PhysRev.136.B864
http://dx.doi.org/10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1103/RevModPhys.71.1253
http://dx.doi.org/10.1103/PhysRevC.77.014311
http://dx.doi.org/10.1143/PTP.76.414
http://dx.doi.org/10.1016/0375-9474(96)00203-5
http://dx.doi.org/10.1103/PhysRevC.75.014306
http://dx.doi.org/10.1103/PhysRevC.76.067302
http://dx.doi.org/10.1007/s10909-005-9267-0
http://dx.doi.org/10.1103/PhysRev.90.317
http://dx.doi.org/10.1103/PhysRevA.14.36
http://dx.doi.org/10.1103/RevModPhys.80.3
http://dx.doi.org/10.1103/PhysRevA.45.101
http://dx.doi.org/10.1103/PhysRevA.45.101
http://dx.doi.org/10.1103/PhysRevA.46.5453
http://dx.doi.org/10.1103/PhysRevA.46.5453
http://dx.doi.org/10.1002/andp.201100002
http://dx.doi.org/10.1002/andp.201100002
http://dx.doi.org/10.1103/PhysRevLett.74.872
http://dx.doi.org/10.1103/PhysRevLett.74.872



