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Momentum distributions, spin-dependent observables, and the D2 parameter for 3He breakup
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Using a recent parametrization of the fully antisymmetric three-nucleon wave function, based on the Paris and
CD-Bonn potentials, we analyze the momentum distributions of constituents in 3He as well as the spin-dependent
observables for (3He, d) and (3He, p) breakup reactions. Special attention is paid to the region of small relative
momenta of the 3He constituents, where a single parameter, D2, has a determining role for the spin-dependent
observables in the d + p channel. This fact results in some useful relations between experimental observables.
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I. INTRODUCTION

Momentum distributions of one and two nucleon fragments
in 3He give important information about nuclear systems
more complicated than the deuteron. They cast light on such
interesting problems as the nucleon-nucleon interaction at
short distances, the role of three-body interactions (the 3N
forces), and non-nucleonic degrees of freedom in nuclei.

Precise data are currently available on the momentum
distributions of the proton and the deuteron obtained with
electromagnetic [1–4] and hadronic probes [5–7]. Data on
the energy dependence of the differential cross sections of
backward elastic 3He(p,3He)p scattering, which are related
to the same momentum distributions, also exist [8,9]. Further-
more, the spin-correlation parameter Cyy for this reaction was
recently measured for first time [9]. Finally, the tensor polar-
ization of the deuteron (sometimes called its “alignment”) in
the 12C(3He, d) reaction was also measured [10,11]. Both this
and the Cyy data [9] are sensitive to the spin structure of 3He.

For a long time the lack of useful parametrizations of the
three-nucleon wave function has made the theoretical analysis
of these data difficult. However, a convenient parametrization
of the fully antisymmetric three-nucleon wave function based
on the Paris [12] and CD-Bonn [13] potentials has recently
been presented [14], which we use here to calculate the
momentum distributions in 3He, as well as the spin-dependent
observables, within the framework of the spectator model for
the 3He breakup reactions. Special attention is paid to the
study of the two-body 3He → d + p channel. We compare
our results with other theoretical works and with existing
experimental data.

In our analysis of spin-dependent observables for (3He, d)
and (3He, p) reactions, we carefully consider their behavior in
the region of small (below ∼150 MeV/c) internal momenta
of the 3He fragments, where a single quantity, known in the
literature as the D2 parameter, completely determines both
the sign and the momentum dependence of the observables.
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Several relations between experimental observables in this
region were obtained from this consideration. These provide
useful checks on the consistency of the experimental database
of spin-dependent observables because at low relative mo-
menta of the 3He fragments the model used for the breakup
reactions works reasonably well.

The paper is organized as follows. In Sec. II we discuss the
parametrization of the three-nucleon wave function used in the
later work. Distributions of one- and two-nucleon constituents
in 3He are evaluated and compared with the results of other
calculations in Sec. III. Various spin-dependent observables for
(3He, d) and (3He, p) breakup are considered and discussed
in Sec. IV. In Sec. V we compare our results with experiment
within the “minimal relativization scheme” and discuss briefly
the limitations of our approach. Conclusions and discussion
are presented in Sec. VI.

II. THE PARAMETRIZATION OF THE THREE-NUCLEON
WAVE FUNCTION

We here give a review of the parametrization of the 3He
wave function [14]. Working in the framework of the so-called
channel spin coupling scheme (Ref. [15]), the authors of
Ref. [14] restricted themselves to five partial waves,∣∣{[(�s)j 1

2

]
KL

}
1
2

〉
, (1)

where �, j , and s are the orbital, total, and spin angular
momenta for the pair (the second and third nucleons), and
L and K are the relative orbital angular momentum for the
spectator (the first nucleon) and the channel spin, respectively.
Coulomb effects are not included. The appropriate quantum
numbers of the partial waves are collected in Table I.

We use the standard definition of the Jacobi coordinates
r and ρ in the three-particle system and the corresponding
momenta p and q:

r1 = R + 2
3ρ, p1 = 1

3 P + q ,

r2 = R − 1
3ρ + 1

2 r, p2 = 1
3 P − 1

2 q + p ,

r3 = R − 1
3ρ − 1

2 r, p3 = 1
3 P − 1

2 q − p .

(2)
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Here R is the coordinate of the nucleus center of mass (with
P being the total momentum of the nucleus), ρ is the radius
vector from the center of mass of the nucleon pair to the
nucleon 1 (the corresponding momentum is q), and r is the

separation between the nucleons in the pair (the corresponding
momentum is p).

Explicitly, the wave function of 3He in momentum space
reads

�σ (p, q ) =
∑

ξ

{
1

4π
δξσ

∑
τ3,t3

〈
1

1

2
τ3t3

∣∣∣∣12 1

2

〉
ψ1(p, q) |00; 1τ3〉 χξt3 +

∑
s3

[
1

4π

〈
1

1

2
s3ξ

∣∣∣∣12σ

〉
ψ2(p, q)

−
√

1

4π

∑
L3K3

〈
1

1

2
s3ξ

∣∣∣∣32K3

〉 〈
3

2
2K3L3

∣∣∣∣12σ

〉
Y2L3 (̂q )ψ3(p, q)

−
√

1

4π

∑
�3M

〈12s3�3|1M〉
〈
1

1

2
Mξ

∣∣∣∣12σ

〉
Y2�3 (̂p )ψ4(p, q)

+
∑

�3ML3K3

〈12s3�3|1M〉
〈
1

1

2
Mξ

∣∣∣∣32K3

〉 〈
3

2
2K3L3

∣∣∣∣12σ

〉
Y2L3 (̂q )Y2�3 (̂p )ψ5(p, q)

]
|1s3; 00〉 χξ 1

2

}
, (3)

where σ and ξ are the spin projections of 3He and the spectator
nucleon, t3 is the isospin projection of the spectator nucleon,
M is the projection of the total angular momentum of the pair,
and χξt3 and |ss3; ττ3〉 are the spin-isospin wave functions of
the spectator nucleon and the pair, respectively.

Note, that in Eq. (3) we use the following convention for
angular momentum summation:

j + 1
2 → K, K + L → 1

2 . (4)

Other conventions are often used in the literature, for example:

j + 1
2 → K, L + K → 1

2 , (5)

and
1
2 + j → K, L + K → 1

2 . (6)

The convention of Eq. (5) was used, in particular, in Ref. [16],
whereas that of Eq. (6) was exploited in Ref. [17].

Due to the properties of the Clebsch-Gordan coeffi-
cients under permutations, for example, 〈 3

2 2 K3 L3| 1
2ξ 〉 =

−〈2 3
2 L3 K3| 1

2ξ 〉, some of the wave function components
have opposite signs in different conventions. For example,
using Eq. (5) rather than Eq. (4) would result in ψ3(p, q) →
−ψ3(p, q) and ψ5(p, q) → −ψ5(p, q). Similarly, the use
of Eq. (6) instead of Eq. (4) would give ψ2(p, q) →
−ψ2(p, q), ψ3(p, q) → −ψ3(p, q), ψ4(p, q) → −ψ4(p, q),

TABLE I. Quantum numbers of the 3He partial waves. Here s, τ ,
�, and j are spin, isospin, orbital, and total angular momenta of the
pair; L and K are relative angular momenta for the spectator and the
channel spin, respectively.

Channel No. Label � s jπ K L τ

1 1s0S 0 0 0+ 1/2 0 1
2 3s1S 0 1 1+ 1/2 0 0
3 3s1D 0 1 1+ 3/2 2 0
4 3d1S 2 1 1+ 1/2 0 0
5 3d1D 2 1 1+ 3/2 2 0

and ψ5(p, q) → −ψ5(p, q), while ψ1(p, q) would not change
sign.

The partial waves are approximated by the following
functions of the two momenta p and q:

ψν(p, q) = vν
1 (p)wν

1(q) + vν
2 (p)wν

2(q), (7)

where

vν
i (p) =

5∑
n=1

aν
n,i

p2 + (mν
n,i

)2 , wν
i (q) =

5∑
n=1

bν
n,i

q2 + (Mν
n,i

)2 .

(8)

The parameters are restricted by the usual constraints for S
and D waves:

5∑
n=1

aν
n,i =

5∑
n=1

bν
n,i = 0. (9)

There are additional constraints for D waves:
5∑

n=1

aν
n,i

(
mν

n,i

)2 =
5∑

n=1

bν
n,i

(
Mν

n,i

)2 = 0,

(10)
5∑

n=1

aν
n,i(

mν
n,i

)2 =
5∑

n=1

bν
n,i(

Mν
n,i

)2 = 0.

The full 3He wave function is normalized by the condition

5∑
ν=1

∫ ∞

0
dq

∫ ∞

0
dpq2p2 |ψν(p, q)|2 = 1. (11)

III. MOMENTUM DISTRIBUTIONS

A. One-nucleon distributions

Assuming final plane waves, the one-nucleon momentum
distribution in a partial channel ν becomes

ρν(q) = 3

4π

∫ ∞

0
dpp2 |ψν(p, q)|2 , (12)
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FIG. 1. One-nucleon momentum distributions in partial channels for the Paris [12] (a) and CD-Bonn [13] (b) potentials. Long-dashed lines,
1s0S; solid lines, 3s1S; short-dashed lines, 3d1S; dotted lines, 3s1D; and dash-dotted lines, 3d1D.

where the coefficient of 3 is the square of a spectroscopic
factor. The distributions for each partial channel are displayed
in Fig. 1. It is important to note that the distributions for the
1s0S and 3s1S channels are very similar in both their magnitude
and their momentum dependence.

The values of the partial channel probabilities, defined as

Pν = 1

3

∫
d3qρν(q) =

∫
dpdqp2q2|ψν(p, q)|2, (13)

are given in Table II.
The momentum distribution of a nucleon N with spin and

isospin projections ξ and t3 in 3He with spin projection σ is

Nσ (ξ t3)(q) = 3
∑
ss3ττ3

∫
d3p

∣∣χ †
ξ t3

〈ss3ττ3|�σ (p, q)
∣∣2. (14)

In the neutron case, Eq. (14) reduces to1

nσξ (q) = δσξ

1

2π

∫ ∞

0
[ψ1(p, q)]2 p2dp

= 2

3
δσξρ1(q) ≡ δσξn(q). (15)

Note that the number of neutrons Nn in 3He is given by
the integral Nn = ∫

d3qn(q) = 1 and that the ψ1 component
must be normalized as∫

dpdqp2q2[ψ1(p, q)]2 = 1

2
. (16)

1It must be noted that normalizations of the proton (Np) and neutron
(Nn) momentum distributions in Table 7 of Ref. [18] differ from
those used here; they can be compared with our n(q) and p(q) after
multiplication by a renormalization factor of (2π )−3.

Here and below we use pσξ and nσξ instead of Nσ (ξ, 1
2 ) and

Nσ (ξ,− 1
2 ), respectively.

The resulting neutron momentum distributions, n(q), for the
Paris and CD-Bonn potentials are shown in Fig. 2(a). We also
compare the results with variational calculations [18] based on
the Argonne and Urbana potentials.

Using the results given in Appendix, we get the following
for the momentum distribution of protons with spin projection
1
2 and − 1

2 in the 3He having spin projection + 1
2 :

p 1
2

1
2
(q, θ ) = 1

3
[ρ1(q) + ρ2(q) + ρ4(q)]

+1

2

(
cos2 θ + 1

3

)
[ρ3(q) + ρ5(q)]

+
√

2

(
1

3
− cos2 θ

)
[ρ23(q) + ρ45(q)] ,

p 1
2 − 1

2
(q, θ ) = 2

3
[ρ2(q) + ρ4(q)]

+ 1

2

(
− cos2 θ + 5

3

)
[ρ3(q) + ρ5(q)]

−
√

2

(
1

3
− cos2 θ

)
[ρ23(q) + ρ45(q)] , (17)

where θ is the angle between the z axis (the quantization axis)
and the proton momentum q. The function ρμν(q) is defined

TABLE II. The partial channel probabilities Pν in 3He.

1s0S
3s1S

3s1D
3d1S

3d1D

Paris 0.5000 0.4600 0.0282 0.0103 0.0015
CD-Bonn 0.5000 0.4658 0.0231 0.0102 0.0009

024002-3



A. P. KOBUSHKIN AND E. A. STROKOVSKY PHYSICAL REVIEW C 87, 024002 (2013)

10−6

10−6

10−6

10−6

10−6

10−6

10−6

10−6

10−6

0 0.2 0.4 0.6 0.8 1

n
(q

)
(G

eV
/c

)−
3

q (GeV/c)

(a)

10−4

10−3

10−2

10−1

100

101

102

103

104

0 0.2 0.4 0.6 0.8 1

p(
q )

(G
eV

/c
)−

3

q (GeV/c)

(b)

FIG. 2. The neutron (a) and proton (b) momentum distributions. The solid and dashed curves are for the Paris and CD-Bonn potentials,
respectively. The solid and open circles represent results of variational calculations [18] obtained using the Urbana and Argonne potentials,
respectively.

as

ρμν(q) = 3

4π

∫ ∞

0
dpp2ψμ(p, q)ψν(p, q), μ 	= ν. (18)

(When μ = ν it is sufficient to retain a single index.)
The momentum distribution of the proton, given by the

sum of p 1
2

1
2
(q, θ ) and p 1

2 − 1
2
(q, θ ), does not depend upon the

angle θ :

p(q) = p 1
2

1
2
(q, θ ) + p 1

2 − 1
2
(q, θ )

= 1
3ρ1(q) + ρ2(q) + ρ3(q) + ρ4(q) + ρ5(q). (19)

Figure 2(b) displays the proton momentum distribution calcu-
lated using four potentials.

From Eqs. (16), (17), and (19) and the normalization
condition of Eq. (11), it follows immediately that the number
of protons in 3He is Np = ∫

d3qp(q) = 2.

B. Two-nucleon momentum distributions

We define the two-body amplitudes Adp(M, ξ, σ, q) as

Adp(M, ξ, σ, q)

=
√

3
∫

d3rd3ρ�
†
d (M, r)χ †

ξ 1
2

exp (−iρ · q) �σ (r, ρ)

= (2π )
3
2

√
3
∫

d3p ψd
†(M, p)χ †

ξ 1
2
�σ (p, q)

= (2π )
3
2

{√
1

4π

〈
1

1

2
Mξ

∣∣∣∣12σ

〉
u(q)

−
∑
K3L3

〈
1

1

2
Mξ

∣∣∣∣32K3

〉〈
2

3

2
L3K3

∣∣∣∣12σ

〉
Y2L3 (̂q)w(q)

}
,

(20)

where
√

3 is the spectroscopic factor, �d (M, r) and ψd (M, p)
are the deuteron wave functions in coordinate and momentum
space, respectively, M and ξ are spin projections of the
deuteron and the proton, and

u(q) =
√

3
∫ ∞

0
dpp2 [ud (p)ψ2(p, q) + wd (p)ψ4(p, q)] ,

(21)
w(q) = −

√
3
∫ ∞

0
dpp2 [ud (p)ψ3(p, q) + wd (p)ψ5(p, q)] ,

where ud (p) and wd (p) are the deuteron S and D wave
functions, respectively.2

Equation (20) allows us to relate the amplitudes
A00

dp(1,− 1
2 , 1

2 , q) and A22
dp(1,− 1

2 , 1
2 , q) of Schiavilla et al. [18]

to the wave functions u(q) and w(q):

u(q) =
(

1

2π

) 3
2 A00

dp

(
1,− 1

2 , 1
2 , q

)〈
1 1

2 1 − 1
2

∣∣ 1
2

1
2

〉
=
(

1

2π

) 3
2
√

3

2
A00

dp

(
1,−1

2
,

1

2
, q

)
,

w(q) =
(

1

2π

) 3
2 A22

dp

(−1,− 1
2 , 1

2 , q
)〈

1 1
2 − 1 − 1

2

∣∣ 3
2 − 3

2

〉 〈
3
2 2 − 3

2 2
∣∣ 1

2
1
2

〉
=
(

1

2π

) 3
2
√

5

2
A22

dp

(
−1,−1

2
,

1

2
, q

)
. (22)

The u(q) and w(q) wave functions calculated from differ-
ent potentials are displayed in Fig. 3 and the momentum

2For the convention given by Eq. (5) one must replace w(q) by
−w(q). This notation was used, e.g., in Ref. [19].
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FIG. 3. The u(q) (a) and w(q) (b) wave functions of the relative deuteron-proton motion in 3He. The notations are the same as those in
Fig. 2.

distribution of the deuterons,

d(q) = u2(q) + w2(q), (23)

is shown in Fig. 4.
The effective numbers of the deuterons in 3He, Nd =∫

d3qq2d(q), are 1.39 and 1.36 for the Paris and CD-Bonn po-
tentials, respectively. These can be compared with Nd = 1.38
obtained in variational calculations [18] with both the Argonne
and Urbana potentials. The probabilities of the D wave in the
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FIG. 4. The momentum distribution of the deuterons in 3He. The
notations are the same as those in Fig. 2.

d + p configuration, PD = ∫
dq q2w2(q)/[

∫
dq q2(u2(q) +

w2(q))], are 1.53% and 1.43% for the Paris and CD-Bonn
potentials, respectively.

IV. SPIN-DEPENDENT OBSERVABLES

A. Tensor analyzing powers and the D2 parameter

In a plane-wave Born approximation the tensor analyzing
powers T20, T21, and T22 of the (d, t) and (d,3He) reactions at
low energies are determined by a single parameter, D2, used,
for example, in Refs. [16,20–22]:

D2 = 1

15

∫∞
0 drr4 U (r)∫∞
0 drr2 W (r)

= lim
q→0

w(q)

q2u(q)
, (24)

i.e., w(q)/u(q) ≈ q2D2 at small q. In Eq. (24), U (r) and W (r)
are the S and D waves of the d + p component of the 3He
wave function in configuration space. The D2 parameter is
closely related to the asymptotic D to S ratio for the p + d
partition of the 3He wave function, as is noted in Ref. [22].

The spin-dependent observables considered here depend
upon the bilinear forms of S and D waves of the 3He wave
function and the behavior of their ratio at small q is completely
governed by the D2 parameter. In Table III we compare this
parameter, calculated for the wave functions based on different
potentials, with the values derived from experiment.

TABLE III. D2(3N ) parameter (in fm2).

Paris CD-Bonn AV18 [18] Urbana [18] Experiment [22]

−0.2387 −0.2487 −0.27 −0.23 −0.259 ± 0.014
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B. Tensor polarization of the deuteron

We start by considering the tensor polarization of the
deuteron in (3He,d) breakup, which is defined as

ρ20 = 1√
2

dσ+ + dσ− − 2dσ0

dσ+ + dσ− + dσ0
, (25)

where dσ+, dσ−, and dσ0 are the breakup differential cross
sections for the deuteron with spin projections +1, −1, and
0 onto the quantization axis, which we take to be along the
deuteron momentum, i.e., q = (0, 0,−q). In the spectator
model the differential cross section of 3He fragmentation in
the deuteron with magnetic number M is proportional to

dσ (M) ∝
∑
ξ,σ

|Adp(M, ξ, σ, �q)|2, (26)

times a coefficient that is independent of M .
With this quantization axis, Y2L3 (̂q) ∼ δL30, and the cross

sections are proportional to

dσ+ = dσ− ∝ 1

2

∣∣∣∣Adp

(
1,−1

2
,

1

2

)∣∣∣∣2
∝ u2(q) + 1

2
w2(q) −

√
2u(q)w(q),

dσ0 ∝ 1

2

[∣∣∣∣Adp

(
0,

1

2
,

1

2

)∣∣∣∣2 +
∣∣∣∣Adp

(
0,−1

2
,−1

2

)∣∣∣∣2
]

∝ u2(q) + 2w2(q) + 2
√

2u(q)w(q), (27)

and

ρ20 = − 1√
2

2
√

2u(q)w(q) + w2(q)

u2(q) + w2(q)
. (28)

It is clear from Eq. (28) that, even in the case of the breakup
of an unpolarized 3He, the deuteron spectator emitted at 0◦ has
a tensor polarization. Note that at small q this results in ρ20 ≈
−2w(q)/u(q) = −2q2D2. The predictions for ρ20 obtained
with the 3He wave functions from the Paris and CD-Bonn
potentials are shown in Fig. 5.
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FIG. 5. Deuteron alignment calculated with 3He wave functions
for the Paris (solid) and CD-Bonn (dashed) potentials.

C. Polarization transfer from 3He to d

We consider here the case when the quantization axes for the
3He and the deuteron are parallel and both are perpendicular
to the deuteron momentum. We define the coefficient of the
vector-to-vector polarization transfer from polarized 3He to
deuteron (whose vector polarization is under consideration) as

κd =
∑

ξ

[
dσ

(
1, ξ,

1

2

)
+ dσ

(
−1, ξ,−1

2

)
− dσ

(
1, ξ,−1

2

)
− dσ

(
−1, ξ,

1

2

)]/ ∑
M,ξ,σ

dσ (M, ξ, σ ), (29)

where dσ (M, ξ, σ ) ∝ |Adp(M, ξ, σ, �q)|2.
From invariance under space inversion we have∑

ξ

dσ

(
1, ξ,

1

2

)
=
∑

ξ

dσ

(
−1, ξ,−1

2

)
,

∑
ξ

dσ

(
−1, ξ,

1

2

)
=
∑

ξ

dσ

(
1, ξ,−1

2

)
, (30)

∑
ξ

dσ

(
0, ξ,

1

2

)
=
∑

ξ

dσ

(
0, ξ,−1

2

)
,

and Eq. (29) reduces to

κd =
∑

ξ

[
dσ
(
1, ξ, 1

2

)− dσ
(
1, ξ,− 1

2

)]∑
M,ξ,σ dσ

(
M, ξ, 1

2

) . (31)

It is straightforward to show that

dσ

(
1,

1

2
,

1

2

)
= dσ

(
−1,

1

2
,

1

2

)
= dσ

(
0,−1

2
,

1

2

)
= 0,

dσ

(
1,−1

2
,

1

2

)
∝
(

−
√

2

3
u + 1

2

√
1

3
w

)2

,

dσ

(
−1,−1

2
,

1

2

)
∝ 3

4
w2,

dσ

(
0,

1

2
,

1

2

)
∝
(

−
√

1

3
u + 1

2

√
2

3
w

)2

, (32)

and the polarization transfer coefficient becomes

κd = 2

3

(
u2 − w2 − uw/

√
2

u2 + w2

)
. (33)

We point out here that the expression given in Eq. (33) differs
from Eq. (5) of Ref. [23] by a factor 2. This factor was
erroneously lost in that paper.

Results of calculations with 3He wave functions from the
Paris and CD-Bonn potentials are shown in Fig. 6.

The observables κd and ρ20 are related by(
3

2
κd

)2

+
(

ρ20 + 1

2
√

2

)2

= 9

8
. (34)

Furthermore, at small q

κd ≈ 2

3

(
1 − q2D2√

2

)
≈ 2

3

(
1 + ρ20

2
√

2

)
, (35)

so that κd → 2/3 when q → 0.
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FIG. 6. Polarization transfer κd from 3He to d for the Paris (solid)
and CD-Bonn (dashed) potentials.

D. Polarization transfer from 3He to p

The polarization transfer from 3He to p is defined by

κp =
p 1

2
1
2
− p 1

2 − 1
2

p 1
2

1
2
+ p 1

2 − 1
2

, (36)

where the pσξ are given by Eq. (17). At θ = 90◦ this reduces
to

κp = ρ1 − ρ2 − ρ4 − 2(ρ3 + ρ5) + 2
√

2(ρ13 + ρ45)

ρ1 + 3(ρ2 + ρ3 + ρ4 + ρ5)
. (37)

For the d + p projection of the 3He wave function, the proton
momentum distributions are

p̃ 1
2

1
2
(q, 90◦) = 2π2

3

[
u2(q) −

√
2u(q)w(q) + 1

2
w2(q)

]
,

p̃ 1
2 − 1

2
(q, 90◦) = 2π2

3

[
2u2(q) +

√
2u(q)w(q) + 5

2
w2(q)

]
,

(38)

and hence

κ̃p = −u2 + 2
√

2uw + 2w2

3(u2 + w2)
. (39)

The behavior of κp and κ̃p is shown in Fig. 7.
It is easy to see that the observables κ̃p and ρ20 must

be related because the spin-dependent observables under
consideration are determined by the ratio of the two functions
u(q) and w(q). One then finds

κ̃p = − 1
3 (1 − √

2ρ20), (40)

so that at small q

κ̃p ≈ − 1
3 (1 − 2

√
2q2D2) (41)

and hence κ̃p → −1/3 when q → 0.
A linear combination of the two polarization transfer

coefficients has the following behavior at small q:

1 − (̃κp + 2κd ) ≈ 3q4(D2)2 ≈ 3
4 (ρ20)2 . (42)

As a final remark in this section, we point out that the
coefficient of polarization transfer from 3He to the neutron, κn,

-1.2
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κ
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FIG. 7. The coefficient of polarization transfer from 3He to the
proton. The 3He wave function used is based on the Paris potential
(a) and the CD-Bonn potential (b). Solid line: Full wave function.
Short-dashed line: Only the d + p projection (i.e., the κ̃p).

is equal to 1 in the spectator model. This follows immediately
from Eq. (15).

V. COMPARISON WITH EXPERIMENT

A. Minimal relativization scheme

To compare the calculated momentum distributions with
experiment, it is necessary to establish a connection between
the argument q of the 3He wave function and the measured
spectator momentum. This must be done in a way that allows
one to take into account relativistic effects in 3He.

This connection can be made in the framework of the
so-called “minimal relativization scheme.” In this approach,
the relative momentum q between the pair and the spectator
nucleon, taken in the 3He rest frame, is replaced by the
relativistic internal momentum k = (k⊥, kl), which appears
in the light-cone dynamics. This is also referred to as the
dynamics in the infinite momentum frame (IMF). The IMF is
the limiting reference frame which is moving, with respect to
the laboratory frame, in the negative z direction with a velocity
that is close to the speed of light. The important question is
how the light-cone variable k is connected with the measured
momentum of the 3He fragment.
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In the IMF the nucleon momenta are parametrized as

p1 =
(

(1 − α)P + m2 + q2
⊥

4(1 − α)P , q⊥,

(1 − α)P − m2 + q2
⊥

4(1 − α)P
)

,

p2 =
(

βP + m2 + (p⊥ − 1
2 q⊥

)2
4βP , p⊥ − 1

2
q⊥,

(43)

βP − m2 + (p⊥ − 1
2 q⊥

)2
4βP

)
,

p3 =
(

(α − β)P + m2 + (p⊥ + 1
2 q⊥

)2
4(α − β)P , −p⊥ − 1

2
q⊥,

(α − β)P − m2 + (p⊥ + 1
2 q⊥

)2
4(α − β)P

)
,

with 0 � α � 1 and 0 � β � α. Here P � 3m is the IMF
momentum of 3He. The square of the 3N effective mass is

(M3N )2 = (p1 + p2 + p3)2

= αm2 + (1 − α)(M2N )2 + q2
⊥

α(1 − α)
, (44)

where (M2N )2 is effective mass squared of the pair:

(M2N )2 = (p2 + p3)2 = m2 + [p⊥ + ( β
α

− 1
2

)
q⊥
]2

β
α

(
1 − β

α

) . (45)

The relative momentum between the relativistic spectator
nucleon and the pair becomes

k = |k| =
√

λ
(M2

3N,M2
2N,m2

)
4M2

3N

, (46)

where λ(a, b, c) = a2 + b2 + c2 − 2ab − 2ac − 2bc.
It should be noted that if the relative momentum in the pair

is nonrelativistic,

β

α
≈ 1

2
, (47)

then the effective mass M2
2N ≈ 4m2. In this case the problem

is reduced to the relative motion of two particles with fixed
masses, m and M = 2m, having spins 1

2 and j , respectively.
We have calculated the average relative momentum squared

〈p2〉 in different partial waves and have found that 〈p2〉 <
0.08 (GeV/c)2 for the Paris potential and 〈p2〉 � 0.1 (GeV/c)2

for the CD-Bonn potential when q � 0.6 GeV/c. This justifies
the nonrelativistic description of the relative motion in the pair
and we therefore put (M2N )2 ≈ 4m2.

The IMF variables α and q⊥ must now be connected with
the appropriate kinematical variables measured in the (3He, p)
and (3He, d) breakup experiments. In the laboratory frame we
choose the z axis along the 3He momentum Pτ = (Eτ , 0⊥, P ).

In the case of the (3He, p) breakup the IMF variables α and
k⊥ are defined by

1 − α = Ep + pl

Eτ + P
, k⊥ = q⊥ , (48)

where p = (Ep, q⊥, pl) is the proton four-momentum (its
components are given here in the laboratory frame). For the
(3He, d) reaction the IMF variables are defined by

α = Ed + dl

Eτ + P
, k⊥ = −q⊥ , (49)

where d = (Ed,−q⊥, dl) is the deuteron four-momentum.
In both cases the relativistic internal momentum in 3He is

k = (k⊥, kl),
(50)

kl = ±
√

λ
(M2

3N,M2,m2
)

4M2
3N

− k2
⊥, k⊥ = ±q⊥.

The signs “−” and “+” are chosen for α < α0 and
α > α0, respectively; if α = α0 then kl = 0. Here α0 =√

4m2 + q2
⊥/(

√
m2 + q2

⊥ +
√

4m2 + q2
⊥ ).

In the framework of the IMF dynamics the effective
deuteron number is given by

N ef
d =

∫
d3kd(k)

=
∫ 1

0
dα

∫
d2k⊥

εp(k)εd (k)

α(1 − α)M3N

d(k), (51)

where εp(k) = √
m2 + k2, εd (k) = √

M2 + k2. The combina-
tion

d rel(α, �k⊥) = εp(k)εd (k)

α(1 − α)M3N

d(k) (52)

can be considered as the relativized momentum distribution of
the deuteron in 3He.

The invariant differential cross section for the A(3He, d)
breakup is given by

Ed

d3σ

dpd

= f
(d)
kin σpd rel(α, �k⊥), (53)

where

f
(d)
kin = λ

1
2
(
W,m2,M2

A

)
(1 − α)MAP

, (54)

W is the missing mass squared and MA is the mass of the target
nucleus.

Similarly, one can get the cross section for the A(3He, p)
breakup by

Ep

d3σ

dpp

= f
(p)
kin σd (1 − α)prel(α, �k⊥), (55)

where

f
(p)
kin = λ

1
2
(
W,M2,M2

A

)
2αMAP

(56)

and

prel(α, �k⊥) = εp(k)εd (k)

α(1 − α)M3N

p(k) (57)
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FIG. 8. The empirical momentum distribution of the deuterons (a) and the protons (b) in 3He. The solid and dashed lines are calculated with
the Paris and CD-Bonn potentials, respectively. Circles are for the empirical momentum distributions extracted within Eq. (53) (for deuterons)
and Eq. (55) (for protons) from Ref. [5]. Squares and triangles represent data extracted from Refs. [6,7], respectively. The empirical proton
momentum distribution is normalized to the calculated one for k < 100 MeV/c.

is the relativized momentum distribution of the protons. The
σp and σd factors appearing in Eqs. (53) and (55) play the roles
here of normalization factors. Their physical interpretation is
beyond the scope of the present paper.

B. Empirical momentum distributions

Equations (53) and (55) connect differential cross sections
of the 3He breakup reactions with the relativized momentum
distributions. Despite the fact that these equations were
derived in the framework of the impulse approximation,
one may expect that momentum distributions extracted from
12C(3He,p) and 12C(3He,d) breakup data, using Eqs. (53)
and (55), include effectively effects beyond the impulse
approximation, in particular, coming from quark structure of
3He. We therefore call the extracted momentum distributions
“empirical momentum distributions” (EMDs) of the spectators
in 3He.

In Fig. 8 we show EMDs for protons and deuterons in
3He extracted from 12C(3He,p) and 12C(3He,d) breakup data
obtained for fragments emitted at zero angle and at pHe = 10.8
GeV/c [5]. These EMDs are compared with the results of
our calculations using the Paris and CD-Bonn potentials. The
empirical momentum distribution for the deuteron is also
compared with results of other experiments. Good agreement
between data and calculations is obvious at small k �
0.25 GeV/c, which indicates that in this region the spectator
model can be used to interpret the data. Note that the difference
between the light cone variable k and the spectator momentum
taken in the 3He rest frame is small in this region.

At very small k � 50 MeV/c there is an enhancement of the
extracted EMDs over theoretical curves. A natural explanation

of this enhancement appears to be a manifistation of Coulomb
effects in 12C(3He,p) and 12C(3He,d) with registration of the
spectator particle at zero angle.3 We neglect such Coulomb
effects because they take place only over a very narrow k region
and do not affect the data interpretation elsewhere. Similarly,
we neglect any possible final state interaction between the
outgoing protons and deuterons.

It was shown in Ref. [5] that at higher spectator momenta
the EMDs of deuterons and protons in 3He plotted versus
the relativized internal momentum k coincide well [which is
consistent with the presentations Figs. 2(b) and 4], while they
are significantly different when plotted versus the nonrelativis-
tic internal momentum (the spectator momentum in the 3He
rest frame). Such agreement only holds when the analysis is
done in terms of the relativized internal momentum k. This
indicates that the k variable is an adequate measure for the
internal relative momentum of the 3He constituents.

Data on (d, p) fragmentation [24], including those for
spin-dependent observables [25,26] and their analysis, resulted
in similar conclusions. At small k � 0.25 GeV/c the spectator
model can be used for the data analysis, the EMD of protons
in the deuteron agrees well with the proton momentum
distribution density calculated for known versions of the
deuteron wave function, while at higher k there is a strong
qualitative disagreement between calculations and the existing
set of data. We therefore expect that in the 3He breakup
for k � 250 MeV/c the reliability of the spectator model
predictions should be about the same as in the (d, p) case.

3See, e.g., Ref. [27], where a similar enhancement in the EMD of
protons in the deuteron was explained as an effect of the Coulomb
interaction on the mechanism of 12C(d, p) breakup.
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FIG. 9. Deuteron alignment ρ20 calculated with the 3He wave
functions for the Paris (solid) and CD-Bonn (dashed) potentials
compared with experimental data. The signs of the data points [10]
are reversed to bring them into accordance with the preliminary
results [11] of the same experiment, as well as with the sign of
experimental data on the D2 parameter for 3He.

The data points for momenta above k ∼ 0.25 GeV/c, where
the distances between the 3He constituents become compara-
ble to the nucleon radius or even less, systematically exceed
the calculated momentum distributions for both deuterons
and protons. This is once again very similar to the excess
of data over calculations in (d, p) fragmentation [24]. It was
interpreted as a manifestation of the Pauli principle at the
level of constituent quarks in the two-nucleon system [28].
It is possible that the observed enhancements in (3He, d)
and (3He, p) reactions have the same nature. In other words,
an extrapolation to this region of the wave function based
on phenomenological realistic NN potentials for pointlike
nucleons is hard to justify.

C. Tensor polarization of the deuteron

Data on the tensor polarization ρ20 of the deuteron in
the reaction 12C(3He, d) at several GeV have been published
[10,11]. It should, however, be noted that the preliminary
data [11] extracted from this experiment have the opposite
sign to those tabulated in the final data set [10].

On the other hand, the experimental value of the D2

parameter for 3He projected onto the d + p channel has the
opposite sign with respect to the experimental data on the
similar D2 parameter for the deuteron in the n + p channel.
Therefore the sign of the ρ20 under discussion must be opposite
to that of the tensor analyzing power in the d → p breakup.
Taking this into account, together with the contradiction in
signs of ρ20 between Refs. [10,11], it is tempting to conclude
that the data tabulated in Ref. [10] have the wrong sign. We
therefore use the data from Ref. [10] but with a reversed sign
and compare them in Fig. 9 with ρ20 calculated according Eq.
(28).

Our results for other spin-dependent observables in the
3He breakup cannot currently be compared with experiment
because the relevant data base for spin-dependent observables

is very scarce: at the present time there are no polarized 3He
beams with energies of several GeV/nucleon.

VI. CONCLUSIONS

Using a recent parametrization [14] of the fully antisym-
metric three-nucleon wave function, based on the Paris and
CD-Bonn potentials, we have presented here an analysis of
the spin-dependent observables for (3He, d) and (3He, p)
reactions, paying special attention to their behavior at small
internal momenta of the 3He fragments. This dependence is
determined by a single parameter, known in the literature as
the D2 parameter. Some direct relations between experimental
observables at small internal momenta of the 3He fragments
were obtained from this fact.

These relations are useful for the database cross-checks;
at low internal momenta of the fragments of 3He, where the
model used for the breakup reactions works reasonably well,
they are rather strict. The D2 parameter completely determines
both the sign and the q dependence of the observables at small
(�150 MeV/c) internal momenta.

On the other hand, these relations show that the breakup
reactions with the lightest nuclei at intermediate energies
provide a new way of obtaining experimental data on the D2

parameter for these nuclei. This is complementary to the usual
methods that involve rearrangement reactions at low energies.

We emphasize that the different conventions regarding the
angular momentum summations for the 3N system result in
different forms for the formulas connecting spin-dependent ob-
servables with the 3He wave function components. Of course,
the final numerical results do not depend on the conventions
provided that the calculations are performed systematically
within one chosen scheme. However the occasional mixing of
the schemes leads unavoidably to erroneous results. Therefore
an explicit indication of the chosen angular momentum
summation scheme is important for the applications.4

Comparing the results of calculations of the deuteron
and proton momentum distributions in the 3He nucleus with
existing experimental data, we conclude that the model used
for the 3He breakup reactions works reasonably well for k �
250 MeV/c, but at higher momenta the data and calculations
are in systematic disagreement. This disagreement, i.e., the
enhancement of the experimental momentum distributions
over the calculated ones above k ∼ 0.25 GeV/c is very similar
to the enhancement of data over calculations observed for
the (d, p) fragmentation [24] at small emission angles. This
was interpreted for the two-nucleon system as a manifestation
of the Pauli principle at the level of constituent quarks [28].
In other words, an extrapolation to this region of the wave
function based on phenomenological realistic NN potentials
for pointlike nucleons is questionable even when relativistic
effects are taken into account within the framework of light
cone dynamics.

4Perhaps the lack of such indication explains why the sign of the
D wave, parametrized in Ref. [29] on the basis of values tabulated in
Ref. [18], is opposite to that of the original tables.
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APPENDIX: THE PROTON POLARIZATION IN THE
(3He, p) BREAKUP REACTION

The momentum distribution of a proton in 3He is given by

pσξ (q, θ ) = 3
∫

d3p

[
|χ †

ξ 〈0010|�σ (p, q)|2 +
∑
s3

|χ †
ξ 〈1s300|�σ (p, q)|2

]
, (A1)

where σ and ξ are magnetic quantum numbers for 3He and the proton, respectively, and θ is the angle between the quantization
axis and the proton momentum q. Let us consider the angular integration of the first and second terms in the square brackets of
Eq. (A1):∫

d�p|χ †
ξ 〈0010|�σ (p, q)|2 = 1

4π

1

3
δξ,σ ψ2

1 (p, q),

∑
s3

∫
d�p|χ †

ξ 〈1s300|�σ (p, q)|2 = 4π
∑
s3

∣∣∣∣ 1

4π

〈
1

1

2
s3ξ

∣∣∣∣12σ

〉
ψ2(p, q) −

√
1

4π

〈
1

1

2
s3ξ

∣∣∣∣32K3

〉〈
3

2
2K3L3

∣∣∣∣12σ

〉
Y1L3 (̂q)ψ3(p, q)

∣∣∣∣2

+
∑
M

∣∣∣∣−
√

1

4π

〈
1

1

2
Mξ

∣∣∣∣12σ

〉
ψ4(p, q) +

〈
1

1

2
Mξ |3

2
K3

〉〈
3

2
2K3L3

∣∣∣∣12σ

〉
Y1L3 (̂q)ψ5(p, q)

∣∣∣∣2
= 1

4π

∑
i=2,4

∑
ρ

∣∣∣∣〈11

2
ρξ |1

2
σ

〉
ψi(p, q) −

√
4π

〈
1

1

2
sρξ

∣∣∣∣32K3

〉〈
3

2
2K3L3|1

2
σ

〉
Y1L3 (̂q)ψi+1(p, q)

∣∣∣∣2.
(A2)

After straightforward calculations we arrive at∫
d�p

∣∣χ †
1
2
〈1s300|� 1

2
(p, q)

∣∣2 = 1

4π

{
1

3

[
ψ2

2 (p, q) + ψ2
4 (p, q)

]+ 1

2

(
1

3
+ cos2 θ

)[
ψ2

3 (p, q) + ψ2
5 (p, q)

]
+

√
2

(
1

3
− cos2 θ

)[
ψ2(p, q)ψ3(p, q) + ψ4(p, q)ψ5(p, q)

]}
,

∫
d�p

∣∣χ †
− 1

2
〈1s300|� 1

2
(p, q)

∣∣2 = 1

4π

{
2

3

[
ψ2

2 (p, q) + ψ2
4 (p, q)

]+ 1

2

(
5

3
− cos2 θ

)[
ψ2

3 (p, q) + ψ2
5 (p, q)

]
−

√
2

(
1

3
− cos2 θ

)[
ψ2(p, q)ψ3(p, q) + ψ4(p, q)ψ5(p, q)

]}
. (A3)
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