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One of the useful and practical methods for solving quantum-mechanical many-body systems is to recast the
full problem into a form of the effective interaction acting within a model space of tractable size. Many of the
effective-interaction theories in nuclear physics have been formulated by use of the so-called Q̂ box introduced
by Kuo et al. It has been one of the central problems how to calculate the Q̂ box accurately and efficiently. We
first show that, introducing new basis states, the Hamiltonian is transformed to a block-tridiagonal form in terms
of submatrices with small dimension. With this transformed Hamiltonian, we next prove that the Q̂ box can be
expressed in two ways: One is in the form of a continued fraction and the other is a simple series expansion
up to second order with respect to renormalized vertices and propagators. This procedure ensures derivation
of an exact Q̂ box, if the calculation converges as the dimension of the Hilbert space tends to infinity. The Q̂

box given in this study corresponds to a nonperturbative solution for the energy-dependent effective interaction
which is often referred to as the Bloch-Horowitz or the Feshbach form. By applying the Ẑ-box approach based
on the Q̂ box proposed previously, we introduce a graphical method for solving the eigenvalue problem of the
Hamiltonian. The present approach has a possibility of resolving many of the difficulties encountered in the
effective-interaction theory.

DOI: 10.1103/PhysRevC.87.024001 PACS number(s): 21.30.Fe, 21.60.De, 24.10.Cn, 02.60.Cb

I. INTRODUCTION

In nuclear many-body physics various methods have been
proposed, on the basis of the shell model, to solve the
Schrödinger equations for nuclear many-body systems starting
with realistic nucleon-nucleon interactions. These methods,
which are called the ab initio calculations, include the
Green’s function Monte Carlo (GFMC) method [1,2], the
no-core shell model (NCSM) [3,4], the effective interaction
for hyperspherical harmonics (EIHH) method [5], the coupled
cluster method (CCM) [6–8], and the unitary-model-operator
approach (UMOA) [9–11]. Much effort has been made also to
diagonalize a matrix of a many-body shell-model Hamiltonian
in a huge dimensional Hilbert space on the basis of, or
alternatively to, the Lanczos method [12–14].

The shell-model calculations were carried out in the early
stage by introducing the phenomenological residual interac-
tion between two nucleons determined from the experimental
data [15,16]. These studies have been considered to be useful
in accounting for the variety of nuclear properties; such
studies were reviewed by Talmi [17]. The next stage of the
nuclear shell-model calculation was to employ a realistic
nucleon-nucleon (NN) interaction and to derive theoretically a
renormalized interaction which takes the repulsive short-range
correlations into account. The first attempt of this approach was
made by Dowson, Talmi, and Walecka [18] by applying the
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Brueckner reaction-matrix theory. Soon afterwards corrections
to the reaction matrix, such as the core-polarization effect, were
estimated by Bertsch [19].

A marked development was attained by Kuo and Brown
[20], who performed a second-order perturbative calculation
for deriving the effective interaction between two valence
nucleons outside the core 16O. They established that the
core-polarization effect has a crucial role in understanding the
nuclear properties. Their study attracted increased attention
to the evaluation of higher-order perturbative terms. The
third-order diagrams were calculated by Barrett and Kirson
[21], and many studies were made to sum up the specific
series of diagrams to all orders, which include the Padè
approximants [22,23], RPA [24], and the induced-interaction
method [25–27]. The theoretical formalism for deriving the
effective interaction was also developed on the basis of
the perturbation theory. The folded-diagram theory by Kuo,
Lee, and Ratcliff [28] was proposed and has been recognized
to be the basic formalism of deriving microscopically the ef-
fective interaction. Much effort has been devoted continuously
to progress in the effective-interaction theory and its practical
application [29–34]. The present status of these studies was
reviewed by recent articles of Coraggio et al. [35,36]. This
effective-interaction method has been developed to apply to
new fields of many-body physics such as quantum dots [37,38]
and many-boson systems [39].

Most of the effective-interaction theories given to date have
been formulated in terms of the Q̂ box introduced by Kuo
and his collaborators [32,40,41]. Originally the Q̂ box was
defined as the sum of linked and unfolded diagrams [28]. In
the algebraic or nondiagrammatical approach the Q̂ box is
equivalent to the energy-dependent effective interaction given
by Bloch and Horowitz [42] and Feshbach [43], which has
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been studied extensively in the Brillouin-Wigner perturbation
theory [44,45].

It has been established that the effective interaction can be
expressed as a series expansion in terms of the Q̂ box and
its energy derivatives. The series can be summed up by using
either the Krenciglowa-Kuo (KK) [46] or the Lee-Suzuki(LS)
[47–49] method. It has been known that, in general, the
two methods have different convergence properties: Many of
the numerical calculations have shown that the KK method
yields the eigenvalues for the eigenstates which have the
largest overlaps with the chosen model space. However, it
has been pointed out that the rigorous convergence condition
for the KK method has not yet been clarified [50]. On the
other hand the LS method reproduces the eigenvalues which
lie closest to the chosen unperturbed energy. Both of the
two approaches reproduce only some of the eigenvalues of
the original Hamiltonian. This restriction is not, in general,
desirable.

Another difficulty encountered in actual calculations is the
pole problem. The Q̂ box itself has poles at the energies
which are the eigenvalues of QHQ, where Q is the projection
operator onto the complement (Q space) of the model
space (P space). The presence of the poles causes often
instability in numerical calculations. Three of the present
authors and Fujii [51] have shown that it was indeed possible
to resolve these difficulties by introducing a new vertex
function Ẑ(E), called the Ẑ box. The Ẑ-box approach based
on the Q̂ box may have a possibility of resolving many
of the difficulties encountered in the effective-interaction
theory.

At present the most important remaining task would be to
establish a method of how to calculate the Q̂ box rigorously
and efficiently. The perturbative calculation method for the Q̂
box has been established and applied widely [28,32,46]. In the
derivation of the nuclear effective interaction, the convergence
of the order-by-order calculation was confirmed in many of
the numerical studies [35,36]. However, a basic problem of
the convergence of its perturbation expansion has not been
made clear theoretically for general cases. A main concern
of the present study is to propose a nonperturbative method
for obtaining a convergent result for any of the starting NN
interactions.

The formulation in the present study consists mainly of
two parts: The first one is to transform the Hamiltonian to
a block-tridiagonal form, where the dimensions of the block
submatrices are taken to be equal to or less than the dimension
of the P space. With the block-tridiagonalized Hamiltonian,
the next step is to derive a set of coupled equations for
determining the Q̂ box. We show that the coupled equations
can be solved by employing two different recursion methods:
The first solution is represented in the form of a continued
fraction, and the second one is expressed as a sum of terms
up to second order with respect to renormalized vertices
and propagators. In both of the methods the calculation of
the Q̂ box can be carried out without matrix inversion of
QHQ which is usually a huge-dimensional matrix. All the
procedures for obtaining the Q̂ box are reduced to calculations
of small-dimensional submatrices in the block-tridiagonalized
Hamiltonian.

Regarding the block tridiagonalization of the Hamiltonian,
the present approach has a common aspect to the so-called
block Lanczos method based on the theory of the Krylov
subspaces [13]. For a given model space P and a Hamiltonian
H , the subspaces leading to a block-tridiagonal form of H
are determined uniquely. Therefore, the subspaces given in
the present study are the same as those of Krylov. However,
the choice of basis states of each subspace is ambiguous. For
determining the basis states we employ a different calculation
procedure from the usual one in the block Lanczos method.
Different basis states are introduced, and we show that they
are suitable for the purpose of calculating not only the Q̂ box
but also the eigenstates of H .

The construction of the present article is as follows: In
Sec. II some basic elements of the effective-interaction theory
are reviewed. Section III is devoted to the formulation of
rigorous calculation of the Q̂ box. A set of coupled equations
for determining the Q̂ box are given. The equations are solved
by employing recursion methods and two kinds of solutions
for the Q̂ box are derived. In Sec. IV, a method is given for
the problem of how to calculate eigenstates of H within the
framework of the effective-interaction theory. In Sec. V a short
review of the Ẑ-box theory is given. In Sec. VI, by applying the
Ẑ-box theory, we make a numerical calculation with a model
Hamiltonian to assess the present approach. We propose a
graphical method and show that it works well for finding the
eigenvalues of H . A summary of the present study and some
remarks are given in the last section. In Appendices A and B
the derivatives of the Q̂ box are given for the two recursive
solutions, which are necessary for calculating the Ẑ box.

II. EFFECTIVE-INTERACTION THEORY BY MEANS OF
SIMILARITY TRANSFORMATION

Let us begin with a Hamiltonian H defined in a Hilbert
space. We divide the space into a model space (P space) and its
complementary space (Q space). When all the eigenvalues of
an operator Heff given in the P space coincide with those of H ,
we call Heff an effective Hamiltonian. In the following, we do
not impose any particular conditions on H and states belonging
to the P space nor assume degeneracy of their unperturbed
energies.

There are various ways of constructing Heff . We adopt the
following standard one. First we introduce an operator ω that
maps states in the P space and those in the Q space to each
other, with the properties [48]

ω = QωP, (2.1)

ωn = 0 (n � 2). (2.2)

The operator ω defines a similarity transformation of H ,

H̃ = e−ωHeω. (2.3)

This reduces to

H̃ = (1 − ω)H (1 + ω) (2.4)

by virtue of Eq. (2.2).
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The condition that PH̃P be a model-space effective
Hamiltonian Heff is that H̃ should be decoupled between the
P and Q spaces as

QH̃P = 0. (2.5)

This condition is rewritten as

QHP + QHQω − ωPHP − ωPHQω = 0, (2.6)

with the aid of Eqs. (2.1) and (2.4). This equation for ω was
first derived by Okubo [52] in a different way. Once a solution
ω to Eq. (2.6) is given, Heff is written as

Heff = PHP + PHQω. (2.7)

Dividing PHP into the unperturbed part PH0P and the
interaction PV P , we write

PHP = PH0P + PV P. (2.8)

The model-space effective interaction Veff is defined as

Veff = Heff − PH0P = PV P + PHQω. (2.9)

From the definition of Heff and Veff we see that a central part
of determining them is to find a solution for ω in Eq. (2.6).

Since Eq. (2.6) is a nonlinear matrix equation for ω,
it is difficult to find a general solution. The following
formal solution, however, has been known and is enough for
applications. We rewrite Eq. (2.6) as

QHP + QHQω − ωHeff = 0, (2.10)

using Eq. (2.7). Here the eigenvalue equation for Heff is given
by

Heff|φk〉 = Ek|φk〉. (2.11)

If the operator ω is a solution to Eq. (2.6), we can verify
that the eigenstates {|φk〉} belong to the P space and each
eigenvalue Ek coincides with one of those of H . The effective
Hamiltonian Heff is not Hermitian in general; the eigenstates
{|φk〉, k = 1, 2, . . . , d} are not orthogonal to each other.
Then we introduce the adjoint states {〈φ̃k|, k = 1, 2, . . . , d}
according to the biorthogonality condition

〈φ̃k|φk′ 〉 = δkk′ , (2.12)

where d is the dimension of the P space. The projection
operator onto the P space is written as

P =
d∑

k=1

|φk〉〈φ̃k|. (2.13)

Then, using Eqs. (2.10)–(2.13), ω is given by

ω =
d∑

k=1

1

Ek − QHQ
QHP |φk〉〈φ̃k|, (2.14)

and from Eq. (2.7) Heff becomes

Heff = PHP +
d∑

k=1

PHQ
1

Ek − QHQ
QHP |φk〉〈φ̃k|.

(2.15)

Here we introduce an operator in the P space called the Q̂
box,

Q̂(E) = PHP + PHQ
1

E − QHQ
QHP, (2.16)

where E is an energy variable. The Q̂ box thus defined
is equivalent to the energy-dependent effective Hamiltonian
referred to as the Bloch-Horowitz [42] and/or the Feshbach
[43] forms. In terms of Q̂(E), Heff is expressed as

Heff =
d∑

k=1

Q̂(Ek)|φk〉〈φ̃k|, (2.17)

from which the following self-consistent equation can be
derived:

Q̂(Ek)|φk〉 = Ek|φk〉. (2.18)

The Heff in Eq. (2.17) is just a formal solution in the sense that
unknown Ek , |φk〉, and 〈φ̃k| appear on the right-hand side, but
the following method of solving is available: In order that the
solutions to Eq. (2.11) coincide with those given by Eq. (2.17),
they self-consistently satisfy the iterative equation

Q̂
(
E

(n)
k

)∣∣φ(n+1)
k

〉 = E
(n+1)
k

∣∣φ(n+1)
k

〉
, (2.19)

where E
(n+1)
k and |φ(n+1)

k 〉 are the (n + 1)th order eigenvalue
and eigenstate of the Q̂ box, respectively, given by the nth
order eigenvalue E

(n)
k . There have been a lot of studies about the

convergence of this iterative method [46–50]. But the condition
of convergence is rather complicated and it has been known
that only some specific solutions are obtained.

In addition, Q̂(E) has poles at energies {εq}, where εq is
one of the eigenvalues of QHQ,

QHQ|q〉 = εq |q〉. (2.20)

These singularities of the Q̂ box lead to some difficulties
in numerical calculations [51]. These arguments suggest that
some further improvements are desired for the Q̂-box method
although it has been applied widely to practical problems.

III. CALCULATION OF THE ̂Q BOX BY MEANS OF
RECURRENCE RELATIONS

Most of the effective-interaction theories formulated so far
are based on the Q̂ box. The Q̂ box has been calculated
via the perturbative expansion methods, but their convergence
properties and accuracies have not been well understood yet.
This is because, as a matter of fact, it is impossible to solve
the eigenvalue problem of QHQ or to calculate the inverse
of (E − QHQ) when the dimension of the Q space is huge.
The accuracy of the Q̂ box determines that of Heff and Veff ,
because errors that arise in the calculations of operators and/or
matrices in the P space with small dimension are considered
to be negligible.

In the following subsections we describe a method of
how to calculate accurately and efficiently the Q̂ box. We
first transform H to a block-tridiagonal form. With this
transformed Hamiltonian we derive a set of coupled equations
for determining the operator ω. We shall show that these
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coupled equations can be solved in two ways by introducing
two types of recurrence relations. The properties of two
solutions for the Q̂ box are discussed.

A. Block tridiagonalization of Hamiltonian

We transform the Hamiltonian H into a tractable form by
changing basis vectors. First we introduce

YP = PHQ × QHP. (3.1)

The YP is an operator in the P space, which is Hermitian
and positive semidefinite, that is, y

(1)
k � 0 in the eigenvalue

equation

YP |pk〉 = y
(1)
k |pk〉. (3.2)

Suppose that d1 eigenvalues are nonzero among {y(1)
k }. In terms

of the eigenvectors {|pk〉, k = 1, 2, . . . , d1} with nonzero
eigenvalues, we define normalized vectors {|q(1)

k 〉} in the Q
space as∣∣q(1)

k

〉 = 1√
y

(1)
k

QHP |pk〉 (k = 1, 2, . . . , d1). (3.3)

They are orthogonal to each other and span the d1-dimensional
subspace Q1 in the Q space. Then the projection operator onto
the Q1 space becomes

Q1 =
d1∑

k=1

∣∣q(1)
k

〉〈
q

(1)
k

∣∣. (3.4)

The complement of the Q1 space in the Q space is given by

Q1 = Q − Q1. (3.5)

Equation (3.3) indicates that

QHP =
d1∑

k=1

√
y

(1)
k

∣∣q(1)
k

〉〈pk|, (3.6)

then we have

QHP = Q1HP (3.7)

which leads to

Q1HP = 0. (3.8)

Thus the image H (P ) by the mapping H is given as a sum of
the P and Q1 spaces as depicted in Fig. 1.

Next, a similar manipulation replacing P and Q with Q1

and Q1, respectively, leads to another orthogonal system. We
introduce

YQ1 = Q1HQ1 × Q1HQ1, (3.9)

and write its eigenvalue equation as

YQ1

∣∣q ′(1)
k

〉 = y
(2)
k

∣∣q ′(1)
k

〉
. (3.10)

The eigenvectors {|q ′(1)
k 〉} belong to the Q1 space and ac-

cordingly are given as linear combinations of {|q(1)
k 〉, k =

P

P Q1 Q1 = Q − Q1

H

FIG. 1. The image H (P ) by the mapping H . Here, H denotes
the Hamiltonian, P the model space, and Q1 the Q-space part of the
image H (P ).

1, 2, . . . , d1} in Eq. (3.3). Suppose also that d2 eigenvalues are
nonzero among {y(2)

k }. New orthogonal bases∣∣q(2)
k

〉 = 1√
y

(2)
k

Q1HQ1

∣∣q ′(1)
k

〉
(k = 1, 2, . . . , d2) (3.11)

are derived. The d2-dimensional subspace Q2 is defined
by them and the projection operator onto the Q2 space is
expressed as

Q2 =
d2∑

k=1

∣∣q(2)
k

〉〈
q

(2)
k

∣∣. (3.12)

The projection operator Q2 has the properties

Q2HP = 0, (3.13)

Q1HQ1 = Q2HQ1, (3.14)

Q2HQ1 = 0, (3.15)

where Q2, the complementary space to Q1 + Q2 in the Q
space, is written as

Q2 = Q − Q1 − Q2. (3.16)

Repeating these manipulations leads to the following:
Decompose the Q space as

Q = Q1 + Q2 + · · · + Qn + · · · . (3.17)

Basis vectors of a subspace Qm, namely, {|q(m)
k 〉, k =

1, 2, . . . , dm}, define the projection operator

Qm =
dm∑
k=1

∣∣q(m)
k

〉〈
q

(m)
k

∣∣. (3.18)

The basis vectors {|q(m)
k 〉} are given as follows: Introduce YQm−1

as

YQm−1 = Qm−1HQm−1 × Qm−1HQm−1 (3.19)

with

Qm−1 = Q − (Q1 + Q2 + · · · + Qm−1). (3.20)

Its eigenvalue equation is

YQm−1

∣∣q ′(m−1)
k

〉 = y
(m)
k

∣∣q ′(m−1)
k

〉
. (3.21)

024001-4



FORMULATION OF AN EFFECTIVE INTERACTION IN . . . PHYSICAL REVIEW C 87, 024001 (2013)

In general new orthogonal bases∣∣q(m)
k

〉 = 1√
y

(m)
k

Qm−1HQm−1

∣∣q ′(m−1)
k

〉
(3.22)

are derived from the eigenvectors {|q ′(m−1)
k 〉} with nonzero

eigenvalues {y(m)
k }. They span the subspace Qm. When all

the eigenvalues {y(m)
k } are zero, the procedure ends because

the eigenstates of H reside in the subspace P + Q1 + Q2 +
· · · + Qm−1. Here we note that we are not interested in any
eigenstates that are decoupled from the states in the P space.
With the projection operators Qm and Qm−1 we obtain, from
Eq. (3.22), an expression written as

QmHQm−1 =
dm∑
k=1

√
y

(m)
k

∣∣q(m)
k

〉〈
q

′(m−1)
k

∣∣. (3.23)

We conclude from the above discussion that

PHQm = QmHP = 0 (m � 2), (3.24)

QmHQm+k = Qm+kHQm = 0 (k � 2) (3.25)

hold for the subspaces {P,Q1,Q2, . . . ,Qm, . . . }. This means
that the given Hamiltonian H is transformed to a block-
tridiagonal matrix

H =

⎛⎜⎜⎜⎜⎜⎜⎝

PHP PHQ1 0 0 · · ·
Q1HP Q1HQ1 Q1HQ2 0 · · ·

0 Q2HQ1 Q2HQ2 Q2HQ3 · · ·
0 0 Q3HQ2 Q3HQ3 · · ·
...

...
...

...
...

⎞⎟⎟⎟⎟⎟⎟⎠,

(3.26)

where each block matrix is at most d dimensional. Thus
the image H (Qm) by the mapping H is a sum of adjacent
subspaces Qm−1, Qm, and Qm+1 as depicted in Fig. 2.

From Figs. 1 and 2 it is easy to see that the image of the
mapping H of the P space becomes

H (P ) = P + Q1. (3.27)

The image of the successive mapping is given by

H 2(P ) = H (P + Q1) = P + Q1 + Q2 (3.28)

P Q1 Qm−1 Qm Qm+1

Qm

H

· · · · · ·

FIG. 2. The image H (Qm) by the mapping H for m � 2. The
Qm−1, Qm, and Qm+1 are the subspaces of the Q space which
constitute the image H (Qm).

and generally

Hm(P ) = P + Q1 + Q2 + · · · + Qm. (3.29)

The above relations mean that the mapping Hm(P )
generates an additional subspace Qm. The sequence
{P,H (P ), . . . , Hm(P )} is called the Krylov subspaces [13]. It
may be clear that the subspaces {P,Q1, . . . ,Qm} determine a
unique block-tridiagonal form of H . In this sense the subspaces
introduced in the present approach are essentially the same as
those of Krylov. However, the basis states of each subspace
Qk are ambiguous. Determination of the basis states depends
on the purpose; that is, what problem we want to solve after
the block tridiagonalization of the Hamiltonian. We show, in
the later sections, that the basis states introduced in the present
study are useful for the formulation of the effective-interaction
theory.

B. Expression of the ̂Q box in terms of the ω operator

Here we define two operators

e(E) = Q(E − H )Q, (3.30)

χ (E) = 1

e(E)
QHP = 1

E − QHQ
QHP. (3.31)

In terms of χ (E), the Q̂ box in Eq. (2.16) is expressed as

Q̂(E) = PHP + PHQχ (E), (3.32)

and the solution ω in Eq. (2.14) to the decoupling equation (2.6)
is given by

ω =
d∑

k=1

χ (Ek)|φk〉〈φ̃k|, (3.33)

where |φk〉 and 〈φ̃k| have been defined in Eqs. (2.11) and (2.12).
Consequently calculating Q̂(E) reduces to calculating χ (E).
When the Q space is decomposed as in Eq. (3.17), also χ (E)
is as

χ (E) = χ1(E) + χ2(E) + · · · + χn(E) + · · · , (3.34)

where

χn(E) = Qn χ (E)P. (3.35)

Coupled equations for {χn(E)}
Q1 e(E){χ1(E) + χ2(E)} = Q1HP, (3.36)

Q2 e(E){χ1(E) + χ2(E) + χ3(E)} = 0, (3.37)
...

Qn e(E){χn−1(E) + χn(E) + χn+1(E)} = 0, (3.38)
...

are derived from Eq. (3.31) using Eqs. (3.7), (3.24), and (3.25).
Since the Q̂ box is expressed as

Q̂(E) = PHP + PHQ1χ1(E) (3.39)

by using Eq. (3.7), calculating the Q̂ box reduces to calculating
χ1(E).
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C. Expansion in terms of continued fraction

We show that the Q̂ box is expanded by a continued fraction
[53] of small-dimensional matrices by solving Eqs. (3.36)–
(3.38). We assume χm(E) = 0 for m � 2; then we have

χ1(E) = 1

e1(E)
Q1HP (3.40)

from Eq. (3.36), where

e1(E) = Q1(E − H )Q1. (3.41)

Hereafter we use the notation

em(E) = Qm(E − H )Qm. (3.42)

The solution (3.40) gives the Q̂ box in the first approximation
as

Q̂(1)(E) = PHP + PHQ1
1

e1(E)
Q1HP. (3.43)

Next we have

χ2(E) = 1

e2(E)
Q2HQ1χ1(E) (3.44)

from Eq. (3.37) by assuming χm(E) = 0 for m � 3. Substitu-
ing this into Eq. (3.36) leads to

χ1(E) = 1

e1(E) − Q1HQ2
1

e2(E)Q2HQ1
Q1HP, (3.45)

and then the Q̂ box is given as

Q̂(2)(E)

= PHP + PHQ1
1

e1(E) − Q1HQ2
1

e2(E)Q2HQ1
Q1HP

(3.46)

in the second approximation. Repeating similar manipulations,
we finally have a general form

Q̂(E)

= PHP + PHQ1
1

e1 − H12
1

e2−H23
1

e3−H34
1

e4−··· H43
H32

H21
Q1HP

(3.47)

with em = em(E) and

Hij = QiHQj . (3.48)

Here we consider a case in which the Q space for a
system of interest is well described by finite number of
subspaces. We denote the maximum of n by N in Eq. (3.17).
We introduce {̃en(E)} given through a descending recurrence
relation starting from n = N as

ẽn−1(E) = en−1(E) − Hn−1,n

1

ẽn(E)
Hn,n−1, (3.49)

where we define

ẽN (E) = QN (E − H )QN. (3.50)

FIG. 3. Diagrammatical expression of the Q̂ box in terms of
the renormalized propagator [̃e1(E)]−1 which is composed of the
continued fraction. The H denotes the Hamiltonian. The P and Q1

are the projection operators onto the model space and the Q1 space,
respectively, where the Q1 space is the Q-space part of the image
H (P ). The thick line expresses the propagation of Q1-space states
with the propagator [̃e1(E)]−1.

From Eq. (3.49) we have a sequence ẽN−1(E), ẽN−2(E), . . . ,
and ẽ1(E). Then the Q̂ box is expressed as

Q̂(E) = PHP + PHQ1
1

ẽ1(E)
Q1HP. (3.51)

Diagrammatical expression of Q̂(E) is shown in Fig. 3.
It is a remarkable fact that the above result for the Q̂ box
indicates the existence of the renormalized inverse propagator
ẽ1(E) such that the Q̂ box can be represented by a sum of only
two terms, namely, the unperturbed part and the second-order
term.

If the dimension of the Q space is finite, the number of
the subspaces {Qm} is also finite and the Q̂ box given in
Eq. (3.51) is exact. On the other hand, if the dimension of
the Q space is infinite, the number of the subspaces {Qm} is,
in general, infinite. For this case we introduce a truncation
of the Q space. We consider a finite-dimensional subspace
Q1 + Q2 + · · · + QN , where the subspaces {Qm, 1 � m �
N} lead to a block-tridiagonal form of H as in Eq. (3.26).
The operator ẽ1(E) that is determined through the recurrence
relation in Eq. (3.49) starting with n = N is a function of N

and we write it as ẽ
(N)
1 (E). If ẽ

(N)
1 (E) converges as N tends to

infinity, we can write the Q̂ box as

Q̂(E) = PHP + PHQ1
1

ẽ
(∞)
1 (E)

Q1HP, (3.52)

where

ẽ
(∞)
1 (E) = lim

N→∞
ẽ

(N)
1 (E). (3.53)

We discuss the meaning of Eq. (3.52) in more detail.
We consider an application of the present formalism to the
calculation of the effective interaction between two valence
nucleons outside a core, such as 16O. Many of the numerical
calculations have shown that the second-order diagrams make
dominant contributions [54,55] and the third- and higher-order
terms are less important. It should be pointed out that, in
many of such calculations, the experimental single-particle
(s.p.) energies have been employed. As shown in Eqs. (3.51)
and (3.52) the Q̂ box can be expressed finally as the second-
order diagrams with the unchanged (not renormalized) vertex
PHQ1 (=PHQ) and the renormalized inverse propagator
ẽ1(E). This fact means that, if we use a proper ẽ1(E), the
exact Q̂ box can be given by the second-order term. There is a
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possibility that ẽ1(E) can be replaced approximately with the
energy denominator determined from the experimental s.p.
energies. We mention that the expression of the Q̂ box in
Eqs. (3.51) or (3.52) would give an explanation for the reason
why the second-order diagrams make dominant contributions
and lead to fairly good agreement with the experimental
spectra.

D. Expansion in terms of renormalized vertices
and propagators

We here consider a method of calculation by an ascending
recurrence relation for {χn(E)} and derive another solution
for the Q̂ box. By using Eqs. (3.30) and (3.48), the coupled
equations Eqs. (3.36)–(3.38) for the operators {χn(E)} are
written as

e1(E)χ1(E) = H10 + H12χ2(E), (3.54)

e2(E)χ2(E) = H21χ1(E) + H23χ3(E), (3.55)
...

en(E)χn(E) = Hn,n−1χn−1(E) + Hn,n+1χn+1(E), (3.56)

...

with

H10 = Q1HP. (3.57)

Equations (3.56) is a linear relation of three operators χn−1, χn,
and χn+1, which can be cast into those of two operators as
follows: First we rewrite (3.54) as

χ1(E) = α1(E) + β1(E)χ2(E) (3.58)

with

α1(E) = 1

e1(E)
H10, (3.59)

β1(E) = 1

e1(E)
H12. (3.60)

By substituting this into Eq. (3.55), χ2(E) is expressed as linear
with χ3(E),

χ2(E) = α2(E) + β2(E)χ3(E), (3.61)

where

α2(E) = 1

e2(E) − H21
1

e1(E)H12
H21

1

e1(E)
H10

= 1

e2(E) − H21β1(E)
H21α1(E), (3.62)

β2(E) = 1

e2(E) − H21
1

e1(E)H12
H23

= 1

e2(E) − H21β1(E)
H23. (3.63)

In general, we define the operators αn(E) and βn(E) that obey
the following ascending recurrence relations:

αn(E) = 1

en(E) − Hn,n−1βn−1(E)
Hn,n−1αn−1(E), (3.64)

βn(E) = 1

en(E) − Hn,n−1βn−1(E)
Hn,n+1. (3.65)

We then have a linear relation

χn(E) = αn(E) + βn(E)χn+1(E). (3.66)

Equations (3.64) and (3.65) determine {αn(E), βn(E), n =
1, 2, . . . } with the initial values α1(E) and β1(E) in Eqs. (3.59)
and (3.60), respectively. We finally have a solution for χ1(E)
as

χ1(E) = α1(E) + β1(E)α2(E) + · · ·
+β1(E)β2(E) · · · βn−1(E)αn(E) + · · ·

=
∞∑

k=1

{
k−1∏
m=1

βm(E)

}
αk(E). (3.67)

Consequently the Q̂ box is given by

Q̂(E) = PHP + PHQ1

[ ∞∑
k=1

{
k−1∏
m=1

βm(E)

}
αk(E)

]
.

(3.68)

In order to rewrite {αn(E)}, {βn(E)}, and the Q̂ box in terms
of {ei(E)} and {Hij }, we introduce another inverse propagator
em(E) defined through the recurrence relation

em(E) = em(E) − Hm,m−1
1

em−1(E)
Hm−1,m (3.69)

with the initial value

e1(E) = e1(E) = Q1(E − H )Q1. (3.70)

We note that em(E) in Eq. (3.69) obeys an ascending recurrence
relation, which differs from ẽm(E) in Eq. (3.49). In terms of
{em(E)}, the operators {αn(E)} and {βn(E)} are written as

α1(E) = 1

e1(E)
H10, (3.71)

α2(E) = 1

e2(E)
H21

1

e1(E)
H10, (3.72)

...

αn(E) = 1

en(E)
Hn,n−1

1

en−1(E)
Hn−1,n−2 · · · H21

1

e1(E)
H10,

(3.73)
...

β1(E) = 1

e1(E)
H12, (3.74)

β2(E) = 1

e2(E)
H23, (3.75)

...
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βn(E) = 1

en(E)
Hn,n+1, (3.76)

...

Then the Q̂ box in Eq. (3.68) is expressed explicitly as

Q̂(E) = PHP + H01
1

e1(E)
H10 + H01

1

e1(E)
H12

1

e2(E)

×H21
1

e1(E)
H10 + · · · + H01

1

e1(E)
H12 · · · Hn−1,n

× 1

en(E)
Hn,n−1 · · · H21

1

e1(E)
H10 + · · · . (3.77)

A simpler expression of the Q̂ box can be obtained by utilizing
{Hk(E)} defined through

Hk(E) = H01
1

e1(E)
H12

1

e2(E)
H23 · · · 1

ek−1(E)
Hk−1,k

= Hk−1(E)
1

ek−1(E)
Hk−1,k (3.78)

with the initial value

H 1(E) = PHQ1. (3.79)

The Hk(E) interconnecting the P and Qk spaces is a d × dk

matrix. The Q̂(E) in Eq. (3.77) is further reduced to

Q̂(E) = PHP + H 1(E)
1

e1(E)
H

†
1(E) + · · ·

+Hn(E)
1

en(E)
H

†
n(E) + · · ·

= PHP +
∞∑

k=1

Hk(E)
1

ek(E)
H

†
k(E). (3.80)

This expression can be interpreted as that the Q̂ box is given
by a sum up to second order in the usual perturbation theory as
schematically depicted in Fig. 4 in terms of the renormalized
inverse propagators {ek(E)} and the renormalized vertices
{Hk(E)}.

Equation (3.80) shows clearly that there exist the renor-
malized inverse propagators {ēk(E)} and the renormalized
vertices {H̄k(E)} such that the Q̂ box can be represented by
a second-order perturbation form which is the lowest-order
interaction terms.

If a system with a Hamiltonian H can be well described in
a finite-dimensional space, the Q̂ box in Eq. (3.77) is given
by a sum of a finite number of terms and should coincide with
the result in Eq. (3.51). Compairing two solutions for the Q̂

FIG. 4. Diagrammatical expression of the Q̂ box in terms of the
renormalized vertices Hk(E) and the propagators [ek(E)]−1. Other
notations are the same as in Fig. 3.

box, we have an expression of the renormalized propagator
{̃e1(E)}−1 as

1

ẽ1(E)

= 1

e1(E)
+ 1

e1(E)
H12

1

e2(E)
H21

1

e1(E)
+ · · ·

+ 1

e1(E)
H12 · · ·HN−1,N

1

eN (E)
HN,N−1 · · ·H21

1

e1(E)
,

(3.81)

where N is the number of the subspaces {Qk}. The above
ẽ1(E) can be a solution to the recursive equation (3.49) and
gives an expansion formula in terms of {Hk−1,k}, {Hk,k−1},
and {ek(E)} which are defined with the subspaces {Qk}.
Recall that the calculation of the Q̂ box is reduced to that
of ẽ1(E) as in Eq. (3.51). The expression of {̃e1(E)}−1 in
Eq. (3.81) makes it clear how the subspaces {Qk} contribute
to ẽ1(E) and, equivalently, to the Q̂ box. Therefore, when we
consider introducing an approximation in a practical problem,
Eq. (3.81) would provide us with a basic formula for {̃e1(E)}−1.

IV. RECURSIVE SOLUTION FOR THE χ (E) OPERATOR

We here discuss how to calculate the operator χn(E) in
Eq. (3.35) which are necessary for obtaining a true eigenstate,
namely, |	k〉 with the eigenvalue E = Ek . The basic equations
for determining {χn(E)} have been given in Secs. III B and
III D. In the similarity-transformation theory for the effective
interaction, the relationship between |	k〉 and the model-space
eigenstate |φk〉 is

|	k〉 = eω|φk〉 = |φk〉 + ω|φk〉. (4.1)

Using Eq. (3.33) for ω in terms of χ (Ek), |	k〉 is also expressed
as

|	k〉 = |φk〉 + χ (Ek)|φk〉. (4.2)

Therefore, if we want to obtain |	k〉, we have to solve
χ (Ek). We decompose χ (Ek) into {χn(Ek)} as in Eq. (3.34).
The sequence {χ1(Ek), χ2(Ek), . . .} obeys Eqs. (3.54)–(3.56).
From Eq. (3.56) the following recurrence relation is obtained
for {χn(Ek)};

χn+1(Ek)

= Kn+1,n{en(Ek)χn(Ek) − Hn,n−1χn−1(Ek)} (n � 2),

(4.3)

where Kn+1,n is defined as

Kn+1,n =
dn+1∑
k=1

1√
y

(n+1)
k

∣∣q(n+1)
k

〉〈
q ′(n)

k

∣∣. (4.4)

It is easy to see, using Eqs. (3.23) and (3.48) for Hn,n+1,

Kn+1,n × Hn,n+1 = Qn+1, (4.5)

from which Eq. (4.3) is derived. For the calculation of {χn(Ek)}
with n � 3, χ1(Ek) and χ2(Ek) are necessary as initial values.
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In this stage we suppose that Q̂(Ek) is given beforehand and
use Eq. (3.39) to obtain

χ1(Ek) = K10(Q̂(Ek) − PHP ) (4.6)

with

K10 =
d1∑

k=1

1√
y

(1)
k

∣∣q(1)
k

〉〈pk|, (4.7)

where 〈pk| and |q(1)
k 〉 are given in Eqs. (3.2) and (3.3),

respectively. In a similar manner, the operator χ2(Ek) is solved,
using Eq. (3.54), as

χ2(Ek) = K21{e1(Ek)χ1(Ek) − H1,0} (4.8)

with

K21 =
d2∑

k=1

1√
y

(2)
k

∣∣q(2)
k

〉〈
q ′(1)

k

∣∣, (4.9)

where 〈q ′(1)
k | and |q(2)

k 〉 are given in Eqs. (3.10) and (3.11),
respectively. Substituting χ1(Ek) and χ2(Ek), the sequence
χ3(Ek), χ4(Ek), · · · are obtained from the recurrence relation
in Eq. (4.3).

The eigenstate |	k〉 of H with the eigenvalue Ek is finally
given by

|	k〉 = |φk〉 +
∑

n

χn(Ek)|φk〉. (4.10)

The usual normalization in the effective-interaction theory
is 〈φk|φk′ 〉 = δk,k′ . Therefore, the normalized true eigenstate
denoted by |
k〉 is given by

|
k〉 = 1

Nk

|	k〉, (4.11)

where the normalization factor Nk is

Nk =
√

1 +
∑

n

〈φk|χ †
n(Ek)χn(Ek)|φk〉. (4.12)

V. THE ̂Z-BOX METHOD AND EFFECTIVE
HAMILTONIAN

The Ẑ box has been defined in the previous paper [51] as

Ẑ(E) = 1

1 − Q̂1(E)
[Q̂(E) − EQ̂1(E)] (5.1)

with

Q̂1(E) = dQ̂(E)

dE
= −PHQ

1

(E − QHQ)2
QHP, (5.2)

in order to overcome some defects that inevitably accompany
the Q̂-box approach. The Ẑ box has the following properties:

(i) The operator

Heff =
d∑

k=1

Ẑ(Ek)|φk〉〈φ̃k|, (5.3)

which is obtained by replacing Q̂(E) in Eq. (2.17) with
Ẑ(E), can be an effective Hamiltonian if {Ek, k =
1, 2, . . . , d} are the eigenvalues of H . Therefore, Ẑ(Ek)
satisfies the self-consistent equation

Ẑ(Ek)|φk〉 = Ek|φk〉. (5.4)

(ii) The derivative of Ẑ(E) is given by

dẐ(E)

dE
= 2

1 − Q̂1(E)
Q̂2(E)[Ẑ(E) − EP ] (5.5)

with

Q̂2(E) = 1

2!

d2Q̂(E)

dE2
= PHQ

1

(E − QHQ)3
QHP.

(5.6)

Then

dẐ(E)

dE

∣∣∣
E=Ek

|φk〉 = 0 (5.7)

holds for the eigenvalue Ek and the corresponding
eigenstate |φk〉 of Heff .

(iii) For the eigenvalue εq of QHQ determined by
Eq. (2.20), Ẑ(εq) satisfies the self-consistent equation

Ẑ(εq)|μq〉 = εq |μq〉. (5.8)

Here we note that |μq〉 belongs to the P space.
(iv) Contrary to Eq. (5.7),

dẐ(E)

dE

∣∣∣∣
E=εq

|μq〉 = 2|μq〉 (5.9)

holds for the derivative of Ẑ(E) at E = εq .

These properties lead to the conclusions that Ẑ(E) is finite
and differentiable even at E = εq , a pole of Q̂(E). Although
E = εq is also a solution of the self-consistent equation for
Ẑ(E), it can be easily discriminated from true eigenvalues {Ek}
of H with the aid of their derivatives in Eqs. (5.7) and (5.9).
The Ẑ-box method has been applied recently to a realistic
calculation of the effective interaction by Coraggio et al. [36].

In order to calculate the Ẑ box we need the first and
second derivatives of the Q̂ box. These derivatives can be
calculated analytically and are derived in Appendices A and
B corresponding to two expressions of the Q̂ box given in
Secs. III C and III D, respectively.

VI. MODEL CALCULATION

A. Graphical method for eigenvalues of H

We shall solve the eigenvalue problem for the Hamiltonian
H in the framework of the Ẑ-box theory. We note that the Ẑ
box is a d-dimensional operator acting in the P space and has
d eigenvalues. We have assumed that the operator Ẑ(E) for
an arbitrary energy variable E has d different eigenvalues. In
the present calculation we do not discuss the case that Ẑ(E)
has some degenerate eigenvalues. The eigenvalues of Ẑ(E) are
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functions of E. We write the eigenvalue equation for Ẑ(E) as

Ẑ(E)|ζk〉 = Fk(E)|ζk〉 (k = 1, 2, . . . , d). (6.1)

The above eigenvalue equation defines d functions
{Fk(E), k = 1, 2, . . . , d}. We label {Fk(E)} in order of energy
as F1(E) < F2(E) < · · · < Fd (E). From Eq. (5.4) we see that
the solutions for the eigenvalues of H can be obtained by
solving

Fk(E) = E. (6.2)

As shown in the previous section, Eq. (5.4) has two kinds
of solutions, namely, E = Ei and E = εj , where Ei and εj

are the eigenvalues of H and QHQ, respectively. We distin-
guish the eigenvalues {εj } from {Ei} according to the condition
that the energy derivative dẐ/dE takes different values
for E = Ei and E = εj . We define functions {F ′

k(E), k =
1, 2, . . . , d} as

F ′
k(E) =

〈
ζk

∣∣∣∣ dẐ

dE

∣∣∣∣ζk

〉
, (6.3)

where |ζk〉 is the eigenstate given in Eq. (6.1). The functions
{F ′

k(E)} take the values

F ′
k(E) = 0 for E = Ei, (6.4)

F ′
k(E) = 2 for E = εj . (6.5)

From the above properties of {F ′
k(E)} we see that the

eigenvalues {Ei} of H can be obtained by calculating the
solutions satisfying Eqs. (6.2) and (6.4) simultaneously. A
simple expression of the equation to be solved may be written
as

gk(E) =
{

Fk(E) − E

F0

}2

+ {F ′
k(E)}2 = 0, (6.6)

where F0 is a parameter chosen suitably such that the two
terms on the right-hand side take values of the same order of
magnitude.

The solutions to Eq. (6.6) can be obtained by a graphical
method. We define a function fk(E) as

fk(E) = 1

gk(E) + �2
, (6.7)

where � is a small number. The function fk(E) has the
properties

lim
E→Ei

fk(E) = 1

�2
(6.8)

and

lim
E→εj

fk(E) = 1

4 + �2
, (6.9)

for the eigenvalues Ei of H and εj of QHQ, which may be
obvious from Eqs. (6.2)–(6.6). If the parameter � is taken to
be small enough, the function fk(E) behaves like a resonance
at E = Ei . By drawing the graph of {fk(E), k = 1, 2, . . . , d}
and finding resonance positions, we obtain eigenvalues of H .

B. Numerical calculation

In order to obtain some assessments of the present approach
we study a model problem. We start with a model Hamiltonian
H of which matrix elements are given by

〈i|H |j 〉 = (αi + βi2)δij + γ xij (6.10)

with

xij = 2
{√√

2(i + j ) − [√√
2(i + j )

]} − 1, (6.11)

where [X] is Gauss’s notation which means the integer part of a
real number X. A set of {xij } are recognized as pseudorandom
numbers satisfying

−1 � xij � 1. (6.12)

The α, β, and γ are the dimensionless parameters chosen
suitably. The total dimension of H is taken to be Nh = 100.
As for the P space we choose a two-dimensional space (d = 2)
spanned by the two states which have the lowest and second
lowest diagonal energies of H . We here do not consider a case
that some of the eigenvalues {y(m)

k } in Eqs. (3.10) and (3.21)
become zero, because {xij } are pseudorandom numbers and H
does not have any definite symmetry. Therefore, the subspaces
{Qk, k = 1, 2, . . . , Nq} are all d dimensional and the number
of the subspace {Qk} is given by Nq = (Nh − 2)/2 = 49.

We first calculate the Q̂ box and its energy derivatives
Q̂1(E) and Q̂2(E) according to the continued-fraction method
and the renormalized vertex method formulated in Secs. III C
and III D, respectively. We have confirmed numerically that the
calculations using these two methods agree with each other.
With Q̂(E), Q̂1(E), and Q̂2(E) we calculate the Ẑ box and its
energy derivative dẐ(E)/dE according to Eqs. (5.1) and (5.5).

We next calculate the functions Fk(E) and F ′
k(E) given

in Eqs. (6.1) and (6.3), respectively. We finally obtain the
functions {fk(E), k = 1, 2, . . . , d} and draw graphs of these
functions. Since the dimension of the P space is taken to be
d = 2, we have two graphs of f1(E) and f2(E). These graphs
are shown in Fig. 5. From these figures we can specify the

-2

-1

 0

 1

 2

 3

 4

 5

 0  2  4  6  8  10

lo
g 1

0f
k(

E
)

E

f1(E)
f2(E)

FIG. 5. Resonance-like behavior of the functions f1(E) and f2(E)
in the case of α = 1.2, β = 0.2, γ = 1.4, � = 10−2, and F0 = 1.0.
The values of E at the resonance positions correspond to the
eigenvalues of the Hamiltonian.
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eigenvalues of H as the resonance positions. From Fig. 5, we
can estimate four eigenvalues of H on the interval [0, 10].

The accurate solution, namely Ei , can be obtained in the
following way: We suppose that the solution Ei lies on the
interval [a, b] and there are no other solutions on this interval.
The parabolic-interpolation method [56] is applied here. If the
difference |E − Ei | is sufficiently small, the approximate form
of gk(E) in Eq. (6.6) becomes a parabolic function written as

gk(E) = 1 + {F0F
′′
k (Ei)}2

F 2
0

(E − Ei)
2. (6.13)

Therefore we approximate gk(E) to be a parabolic function and
solve the energy Ei to give the minimum of gk(E). We note
here that the parabolic function A(x − α)2 passing through
two points (a, gk(a)) and (b, gk(b)) takes the minimum at the
point α given by

α = a
√

gk(b) + b
√

gk(a)√
gk(a) + √

gk(b)
, (6.14)

where we have assumed a < α < b. We utilize this fact to
solve Eq. (6.6).

The calculation procedure employed in this numerical
calculation is as follows:

(i) Determine an interval [a, b] on which only one solution
Ei exists.

(ii) Divide [a, b] into equal intervals and define five points
(E1, E2, E3, E4, E5) as

Ek = a + (k − 1)�E, 1 � k � 5 (6.15)

with �E = (b − a)/4.
(iii) Consider all the intervals [Ei,Ej ] by selecting Ei and

Ej among {E1, E2, . . . , E5} and calculate

Eij = Ei

√
gk(Ej ) + Ej

√
gk(Ei)√

gk(Ej ) + √
gk(Ei)

. (6.16)

(iv) There are ten combinations of the energies {Eij }.
Arrange {Eij } in order of energy and write them as
u1 < u2 < · · · < u10.

E

FIG. 6. Illustration of determining a new interval for finding the
minimum point of the function gk(E). If gk(um) is the minimum value
among {gk(un), n = 1, 2, . . . , 10}, then the new interval is given by
[a, b] = [um−1, um+1].

TABLE I. Correct digits of the lowest two eigenvalues of H

calculated by the parabolic-interpolation method. The parameters α,
β, and γ are taken to be the same as in Fig. 5. Initial intervals are taken
to be [a, b] = [0.0, 1.0] and [2.5, 3.5] for E1 and E2, respectively.

Ei No. of repeats Calculated value

E1 1 0.365
2 0.365550
3 0.365550151994574

E2 1 2.999
2 2.9994240
3 2.99942408730107

(v) Calculate the values {gk(un), n = 1, 2, . . . , 10} and
find the minimum gk(um) as shown in Fig. 6. We
determine a new interval [a, b] according to

a = um−1, b = um+1 if 2 � m � 9,

a = a, b = u2 if m = 1, (6.17)

a = u9, b = b if m = 10.

(vi) Repeat the procedure until the convergence, |gk(um)| <
δ, is attained for an appropriate small number δ.

In Table I we show the results for the lowest two eigen-
values of H calculated by the above-mentioned parabolic-
interpolation method. The convergence is markedly fast. With
three changes of the interval [a, b], convergence is reached
with accuracy better than 10 decimal places.

As has been shown in Eq. (3.80), the Q̂ box is given by a
sum over the number k. In this model calculation the maximum
number of k is equal to Nq = 49. Introducing a number
Kmax, we consider a truncation as k � Kmax in the calculation
of the Q̂ box in Eq. (3.80). It would be interesting to examine
the dependence of the calculated eigenvalues of H on Kmax.
The results are shown in Figs. 7 and 8. It is clear that, as Kmax

approaches to Nq = 49, the eigenvalues converge to the exact
values. These results suggest a possibility of introducing a
new way of truncation in the series expansion for the Q̂ box,
instead of making it according to the magnitude of energies of
intermediate states as in the usual perturbative calculations.

0 10 20 30 40 500.35

0.40

0.45

0.50

0.55

Kmax

E 1

FIG. 7. Convergence of E1 as a function of Kmax. The Kmax

denotes the block dimension which means the number of the
subspaces {Qk, k = 1, 2, . . . , Kmax} taken into the calculation. In
this model calculation Kmax is in the range 1 � Kmax � 49. The exact
value of E1 is 0.36555. . . as given in Table I.
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0 10 20 30 40 502.95

3.00

3.05

3.10

3.15

3.20

3.25

Kmax

E 2

FIG. 8. Convergence of E2 as a function of Kmax. The exact value
of E2 is 2.9994. . . . Other notations are the same as in Fig. 7.

VII. CONCLUDING REMARKS

We have proposed a new approach to the effective inter-
action and/or Hamiltonian acting within a model space P . In
the present stage of the effective-interaction theory one of the
central problems has been how to calculate accurately the Q̂
box which has been used as a building block of the formulation.
The main concern of the present study has been to derive a new
method of calculating the Q̂ box as accurately as possible even
if the original Hamiltonian H is given in a huge-dimensional
space.

The formulation consists of two steps: The first one is
to transform a given Hamiltonian H to a block-tridiagonal
form by dividing the complementary space Q of the P space
into subspaces {Qk, k = 1, 2, . . . } with tractable dimensions.
If the subspaces are chosen suitably the Hamiltonian is
transformed to a block-tridiagonal form. With the Hamiltonian
thus transformed, the next step is to derive coupled equations
for determining the Q̂ box. By solving these coupled equations
we have proved that the Q̂ box can be represented in two ways:
The first one is that the Q̂ box is expanded into the form of
a continued fraction in terms of the submatrices which are
the elements of the block-tridiagonalized Hamiltonian. It has
been proved that if a quantum system can be well described
by a Hamiltonian given in a finite dimensional space, the
continued fraction can be reduced to only one term with a
renormalized propagator which can be calculated by using a
descending recurrence relation. The other solution is obtained
by using ascending recurrence relations for solving the coupled
equations. The resultant Q̂ box can be shown to be given by
only two terms such as PHP and a sum of second-order
terms with respect to renormalized vertices and propagators.
This reduction of the Q̂ box has clarified that there exists a
method of determining renormalized vertices and propagators
such that the Q̂ box can be given by a sum of terms up to
second order.

Given the Q̂ box, we have applied the Ẑ-box method for
solving the eigenvalue problem of a Hamiltonian H . We have
introduced functions of energy variable E as {fk(E), k =
1, 2, . . . , d} such that fk(E) behaves like a resonance at E =
Ei which is one of the eigenvalues of H . Here the number
d is the dimension of the model space. In this approach the
eigenvalues of H can be given by the resonance positions of
the functions {fk(E), k = 1, 2, . . . , d}. This approach enables
us to solve the eigenvalue equation of H in a graphical way.

We here emphasize that there would be an applicability of
the present approach to solving the eigenvalue problem for a
Hamiltonian given in a huge-dimensional shell-model space,
because the calculation procedures include only manipulations
of matrices with dimensions less than or equal to d.

In order to assess the present method we have made a test
calculation by introducing a 100×100 model Hamiltonian. We
have performed the calculation of the Q̂ box by employing
two methods, namely, the continued-fraction expansion and
the expansion with the renormalized vertices and propagators.
We have confirmed that both the two methods have reproduced
the exact eigenvalues of the original Hamiltonian H .

The present nonperturbative method would have another
possibility of application to the derivation of the effective
interaction to be used in the shell-model calculations. The
reduction of the Q̂ box to simple second-order diagrams
may attain a simplification of the calculation of the effective
interaction. We here note, however, that the present study is
based essentially on the algebraic approach to the effective
Hamiltonian. For the calculation of the effective interaction
among valence particles outside the core, it is necessary
to represent the Q̂ box in terms of linked diagrams. A
general relation is not clear between the present approach and
the linked-and-folded-diagram theory. Therefore, this formal
relation is an important problem to be clarified.
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APPENDIX A: DERIVATIVES OF THE ̂Q BOX IN EQ. (3.51)

The first and second derivatives of the Q̂ box are given,
respectively, by

dQ̂(E)

dE
= −PHQ1

1

ẽ1(E)
k̃1(E)

1

ẽ1(E)
Q1HP, (A1)

d2Q̂(E)

dE2
= 2PHQ1

1

ẽ1(E)
k̃1(E)

1

ẽ1(E)
k̃1(E)

1

ẽ1(E)
Q1HP

−PHQ1
1

ẽ1(E)
l̃1(E)

1

ẽ1(E)
Q1HP. (A2)

Here ẽ1(E), k̃1(E), and l̃1(E) are given through the following
recurrence relations: We consider the energy derivative of
ẽn(E) in Eq. (3.49) and write

k̃n(E) = dẽn(E)

dE
. (A3)

Noting a relation

d

dE

{
1

ẽn(E)

}
= − 1

ẽn(E)

dẽn(E)

dE

1

ẽn(E)

= − 1

ẽn(E)
k̃n(E)

1

ẽn(E)
, (A4)
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we can derive

k̃n(E) = Qn + Hn,n+1
1

ẽn+1(E)
k̃n+1(E)

1

ẽn+1(E)
Hn+1,n,

(A5)

where we have used the energy derivative of em(E) in
Eq. (3.42),

dem(E)

dE
= Qm. (A6)

The Hn,n+1 and Hn+1,n are defined in Eq. (3.48). For the
maximum number of n, denoted by N , k̃N (E) is given by

k̃N (E) = dẽN (E)

dE
= QN, (A7)

which is derived from Eq. (3.50) for ẽN (E). Starting with
k̃N (E), the recurrence relation determines a sequence k̃N (E),
k̃N−1(E), . . . , k̃1(E).

We write the second derivative of ẽn(E) as

l̃n(E) = d2ẽn(E)

dE2
= dk̃n(E)

dE
. (A8)

From Eq. (A5) for {̃kn(E)} a recurrence formula for {̃ln(E)}
can be derived as

l̃n(E) = −2Hn,n+1
1

ẽn+1(E)
k̃n+1(E)

1

ẽn+1(E)
k̃n+1(E)

× 1

ẽn+1(E)
Hn+1,n + Hn,n+1

1

ẽn+1(E)
l̃n+1(E)

× 1

ẽn+1(E)
Hn+1,n. (A9)

For the maximum number n = N the l̃N (E) is given, from
Eqs. (A7) and (A8), by

l̃N (E) = 0. (A10)

The recurrence formula Eq. (A9) determines a sequence
l̃N (E), l̃N−1(E), . . . , l̃1(E). Substituting the operators ẽ1(E),
k̃1(E), and l̃1(E) into Eqs. (A1) and (A2) the first and second
derivatives of the Q̂ box can be calculated.

Here it should be noted that the first and second derivatives
of the Q̂ box can be expressed by using only small-dimensional
matrices. The ẽ1(E), k̃1(E), and l̃1(E) are the operators on the
subspace Q1 which are represented by d1 × d1 matrices. The
operator PHQ1 is a mapping between the P and Q1 spaces
and has a d × d1 matrix representation.

APPENDIX B: DERIVATIVES OF THE ̂Q BOX IN EQ. (3.80)

We derive the first and second derivatives of the Q̂ box with
respect to energy variable E as

dQ̂(E)

dE
=

∞∑
k=1

{[H ′
k(E)λk(E)H

†
k(E) + H.c.]

+Hk(E)λ′
k(E)H

†
k(E)}, (B1)

d2Q̂(E)

dE2
=

∞∑
k=1

{2H
′
k(E)λk(E)H

′†
k (E) + [H

′′
k (E)λk(E)H

†
k(E)

+ H.c.] + 2[H
′
k(E)λ′

k(E)H
†
k(E) + H.c.]

+Hk(E)λ′′
k (E)H

†
k(E)} (B2)

with

H
′
k(E) = dĤk(E)

dE
, (B3)

H
′′
k (E) = d2Ĥk(E)

dE2
, (B4)

λk(E) = 1

ek(E)
, (B5)

λ′
k(E) = dλk(E)

dE
= − 1

ek(E)

dek(E)

dE

1

ek(E)
, (B6)

λ′′
k (E) = d2λk(E)

dE2
= 2

1

ek(E)

dek(E)

dE

1

ek(E)

dek(E)

dE

1

ek(E)

− 1

ek(E)

d2ek(E)

dE2

1

ek(E)
. (B7)

These expressions indicate that the calculation of the deriva-
tives of Q̂(E) is reduced to that of {Hk(E)}, {λk(E)}, and their
derivatives; {Hk(E)} is given through the recurrence relation
Eq. (3.78) and accordingly its derivatives are

H
′
k(E) = {H ′

k−1(E)λk−1(E) + Hk−1(E)λ′
k−1(E)}Hk−1,k,

(B8)

H
′′
k (E) = {H ′′

k−1(E)λk−1(E) + 2H
′
k−1(E)λ′

k−1(E)

+Hk−1(E)λ′′
k−1(E)}Hk−1,k, (B9)

and {λk(E)} is given by

λk(E) = {ek(E) − Hk,k−1λk−1(E)Hk−1,k}−1 (B10)

from Eqs. (3.69) and (B5), and accordingly its derivatives are

λ′
k(E) = −λ2

k(E) + λk(E)Hk,k−1λ
′
k−1(E)Hk−1,kλk(E),

(B11)

λ′′
k (E) = −[λ′

k(E)λk(E) + H.c.]

+{λ′
k(E)Hk,k−1λ

′
k−1(E)Hk−1,kλk(E) + H.c.}

+ λk(E)Hk,k−1λ
′′
k−1(E)Hk−1,kλk(E). (B12)

Their initial values are given in Eq. (3.79) for {Hk(E)},
H

′
1(E) = H

′′
1(E) = 0, and

λ1(E) = 1

e1(E)
= (E − Q1HQ1)−1, (B13)

λ′
1(E) = −(E − Q1HQ1)−2, (B14)

λ′′
1(E) = 2(E − Q1HQ1)−3. (B15)

The way of calculating the derivatives of the Q̂ box
is summarized as follows: First, {λk(E)} is calculated by
Eq. (B10), then its derivatives are determined by Eqs. (B11)
and (B12). Next {H ′

k(E)} and {H ′′
k (E)} are determined by

Eqs. (B8) and (B9); finally we obtain the derivatives of the
Q̂ box. Here λk(E), λ′

k(E), and λ′′
k (E) are dk × dk matrices,

while Hk(E), H
′
k(E), and H

′′
k (E) are d × dk matrices.
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