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The excited states of 25
� Mg with the � hyperon in p orbit are studied within the framework of the

antisymmetrized molecular dynamics for hypernuclei. We obtained five rotational bands in 25
� Mg in which the �

hyperon in p orbit is coupled to the ground and Kπ = 2+ bands of 24Mg. We predict that the corresponding bands
of 25

� Mg energetically split due to the triaxial deformation of the core nucleus 24Mg and the spatial anisotropy of
the p orbits of �.
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Since a hyperon is unaffected by the Pauli principle
governing the nucleons, it can be regarded as an impurity in
nuclei and modifies nuclear properties such as clustering and
deformation. For example, a � hyperon in s orbit reduces the
intercluster distance between α and d in 7

�Li, which was con-
firmed from the reduction of B(E2) [1–4]. Furthermore, many
authors have predicted the deformation change in p-sd shell
� hypernuclei by adding the � hyperon in s orbit [1,2,5–19].

In the case of the � hyperon in p orbit, on which we
focus in this study, it can be regarded as a probe of nuclear
deformation due to its spatial anisotropy. For example, in 9

�Be,
the splitting of the p states was predicted due to the axial
symmetric deformation (2α clustering) of 8Be [5,20]. Namely,
the � hyperon in p orbit generates two rotational bands in
which � moves along the parallel and perpendicular directions
of the 2α clustering [20]. In other words, the anisotropy
of the p orbit and axially symmetric deformation of 8Be lead
to the splitting of the p states. From this fact, we may deduce
that the p states will split into three in the case of triaxial
deformation, and we can probe triaxial deformation of the
core nucleus by the observation of three different p states in
� hypernuclei.

24Mg is one of the candidates of triaxially deformed nuclei
with the presence of the low-lying 2+

2 state [21–26]. Therefore,
we expect that the p states of 25

� Mg will split into three with
different spatial density distribution of the � hyperon. To
investigate the splitting of p states of 25

� Mg and its relation to
triaxial deformation, we have employed the antisymmetrized
molecular dynamics for hypernuclei (HyperAMD) [27]. The
HyperAMD with generator coordinate method (GCM) has
been successfully applied to investigate the excitation spectra
and B(E2) values of 25

� Mg with the � hyperon in s orbit [28].
The Hamiltonian used in this study is given as

Ĥ = ĤN + Ĥ� − T̂g, (1)

ĤN = T̂N + V̂NN + V̂Coul, (2)

Ĥ� = T̂� + V̂�N . (3)

Here, T̂N , T̂�, and T̂g are the kinetic energies of nucleons, a
� hyperon, and the center-of-mass motion, respectively. We
have used the Gogny D1S [29] interaction as an effective
nucleon-nucleon interaction V̂NN . The Coulomb interaction
V̂Coul is approximated by the sum of seven Gaussians. As an
effective �N interaction V̂�N , we have used the central forces
of the YNG-NF [30] and YNG-NSC97f [31] interactions with
Fermi momentum kF = 1.2 fm−1, which gives the binding
energy of a � in s orbit in 25

� Mg: B� = 16.0 MeV for YNG-
NF, and B� = 12.9 MeV for YNG-NSC97f. It is found that
both YNG-NF and NSC97f interactions give quantitatively the
same results. Therefore, the following discussions are based
on the results obtained with the YNG-NF interaction.

The intrinsic wave function of a single � hypernucleus
composed of A nucleons and a � hyperon is described by
the parity-projected wave function, �π = P̂ π�int, where P̂ π

is the parity projector and �int is the intrinsic wave function
given as

�int = �N ⊗ ϕ, �N = 1√
A!

det{φi(rj )}, (4)

φi =
∏

σ=x,y,z

(
2νσ

π

) 1
4

exp
{−νσ (r − Zi)

2
σ

}
χiηi, (5)

ϕ =
M∑

m=1

cmφm (r) , (6)

φm =
∏

σ=x,y,z

(
2νσ

π

) 1
4

exp
{−νσ (r − zm)2

σ

}
χm, (7)

χi = αiχ↑ + βiχ↓, χm = amχ↑ + bmχ↓, (8)

ηi = proton or neutron, (9)

where φi is ith nucleon single-particle wave packet consisting
of spatial, spin χi , and isospin ηi parts. The single-particle
wave function of � (ϕ) is represented by a superposition of
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Gaussian wave packets, which is essential to describe the �
hyperon in p orbit. The variational parameters are the centroids
of Gaussian Zi and zm, width parameters νσ , spin directions
αi , βi , αm, and βm, and coefficients cm. We approximately
remove the spurious center-of-mass kinetic energy in the same
way as in Ref. [27].

By using the frictional cooling method, the variation param-
eters are so determined as to minimize the total energy under
the constraints. Two kinds of constraints are simultaneously
imposed on the variational calculation. The first is imposed on
nuclear quadruple deformation parameters β and γ to obtain
the intrinsic wave functions of 25

� Mg for given deformation
parameters as in our previous work [28]. The other is imposed
on the � single-particle wave function to obtain p states by
adding the constraint potential, Vf = λ

∑
f |ϕf 〉〈ϕf |, which

forbids the � hyperon from occupying the orbit ϕf with
sufficiently large value of λ. The actual calculational procedure
is as follows. First, we perform the variational calculation
with the constraint on the nuclear deformation but without
the constraint on the � single-particle wave function to
obtain the lowest energy state of 25

� Mg for given values of
β and γ . Then, denoting the � single-particle orbit obtained
by this calculation as ϕ1, we perform another variational
calculation with the second constraint, Vf = λ|ϕ1〉〈ϕ1|, as
well as the constraint on the nuclear deformation. This
variational calculation generates a second lowest energy state
whose � single-particle wave function is denoted as ϕ2,
and we complete the calculation for the s-orbit states. We
further proceed in the calculation by adding the constraint
Vf = λ

∑
f =1,2 |ϕf 〉〈ϕf |, which produces the third lowest

energy state (i.e., the lowest p state) ϕ3. By continuing this
procedure, we obtain two s orbits (ϕ1 and ϕ2) and six p orbits
(ϕ3, . . . , ϕ8).

After the variation, we projected out an eigenstate of the
total angular momentum,

�Jπ
MKf (β, γ ) = P̂ J

MK�π
f (10)

= P̂ J
MKP̂ π (�N (β, γ ) ⊗ ϕf ), (11)

f = 3, 4, . . . , 8, (12)

where P̂ J
MK is the total angular momentum projector.

We calculate the mixing among the different K states that
have the same intrinsic deformation (β, γ ) in the same way as
our previous work [28],

�Jπ
f (βi, γi) =

J∑
K=−J

fK�Jπ
MKf (βi, γi), (13)

and call it the K-mixed state. Finally, the K-mixed states with
different deformations (βi, γi) and p states of the � hyperon
are superposed (GCM),

�Jπ
α =

∑
i,f =3,...,8

gi,α,f �Jπ
f (βi, γi), (14)

where quantum numbers other than total angular momentum
and parity are represented by α. The coefficients gi,α,f and
eigenenergies E are determined by the Hill-Wheeler equation.

We introduce B�, which is the energy difference between
the Jπ state of 25

� Mg and the ground state of 24Mg, after the

FIG. 1. (Color online) Intrinsic density distributions of (a) ϕp1,
(b) ϕp2, and (c) ϕp3 at (β = 0.48, γ = 21◦) which corresponds to the
peak of the GCM overlap for the ground state of 24Mg. Contour lines
show the nuclear density distributions, while color plots show the
distributions of � in each panel.

GCM calculation,

B� = E(24Mg(g.s.)) − E
(25
� Mg(Jπ )

)
. (15)

To analyze the GCM wave function, we calculate the GCM
overlap defined by

OJπ
α (β, γ ) = max

f =3,...,8

∣∣〈�Jπ
f (β, γ )

∣∣�Jπ
α

〉∣∣2
. (16)

Since the GCM overlap shows the contribution to the GCM
wave function from the K-mixed states with quadruple
deformation (β, γ ), it shows the distribution of the deformation
for each excited state.

The � single-particle energies as a function of β and γ,
which are defined as

εf (β, γ ) = 〈
�π

f (β, γ )
∣∣ĤN + Ĥ�

∣∣�π
f (β, γ )

〉
− 〈

�π
N (β, γ )

∣∣ĤN

∣∣�π
N (β, γ )

〉
, (17)

f = 3, 4, . . . , 8, (18)

are, of course, twofold degenerate, and hence we obtain three
p states with different spatial distribution which we denote as
ϕp1, ϕp2, and ϕp3 in ascending order of their single-particle
energies, εp1 (=ε3 = ε4), εp2 (=ε5 = ε6), and εp3 (=ε7 = ε8).
Here, �π

N (β, γ ) = P̂ π�N (β, γ ) is obtained for 24Mg by the
energy variation with the (β, γ ) constraints.

Figure 1 shows the intrinsic density distributions of the ϕp1,
ϕp2, and ϕp3. All of them correspond to the p orbit, because
they have a node. The ϕp1 is parallel to the longest axis of
the nuclear deformation, while ϕp2 and ϕp3 are parallel to the
middle and shortest axes, respectively. Therefore the magnetic
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FIG. 2. (Color online) � single-particle energy defined by Eq. (17) for (a) ϕp1, (b) ϕp2, and (c) ϕp3. Open circles show the peak of the
single-particle energy on the (β, γ ) plane for each orbit. (d) � single-particle energies for ϕp1 (solid), ϕp2 (dashed), and ϕp3 (dotted) along the
loop shown in (a)–(c). This loop starts from and heads back to the origin (β = 0, γ = 0◦) via (β = 0.48, γ = 0◦) and (β = 0.48, γ = 60◦).

quantum number of the orbital angular momentum of each �
hyperon, lz, is lz = 0 for ϕp1 and lz = 1 for ϕp2 and ϕp3.

The single-particle energies of the � hyperon (εp1, εp2,
and εp3) as function of β and γ are shown in Figs. 2(a)–2(c).
Their behaviors are different from each other, i.e., the εp1

has a minimum with prolate deformation [εp1(β = 0.68, γ =
2◦) = −7.15 MeV], while εp2 and εp3 have oblate and spheri-
cal minima [εp2(β = 0.40, γ = 57◦) = −5.26 MeV, εp3(β =
0.0) = −4.02 MeV], respectively. The dependences of the �
single-particle energies on the nuclear quadruple deformation
are clearly seen in Fig. 2(d), where they are plotted along
the path on the (β, γ ) plane shown in Figs. 2(a)–2(c). At
prolate deformation (γ = 0◦), ϕp1 is most deeply bound, and
ϕp2 and ϕp3 are energetically degenerated. This is similar
to the p states of 9

�Be where the ϕp1 corresponds to the
lowest p state, the so-called supersymmetric [5] (or genuine
hypernuclear [20]) state. With oblate deformation (γ = 60◦),
ϕp1 and ϕp2 are degenerate, and ϕp3 which is parallel to the
symmetric axis of the deformation is more weakly bound than
the others. In the triaxially deformed region (0◦ < γ < 60◦),
the � single-particle energies are different from each other
for ϕp1, ϕp3, and ϕp3 due to triaxial deformation. Thus, the p
states split into two with axially symmetric deformation and
they split into three with triaxial deformation. Therefore we
can expect that three p states appear in 25

� Mg. However, the
above discussions neglect the energy of the nucleon part which
is also changed as function of β and γ , and we need to take it

into account by performing the GCM calculation. It is noted
that the � binding energy B� is different from the absolute
value of εf (β, γ ). Their definitions are quite different from
each other. In Eq. (17), εf (β, γ ) is defined as the difference
between the intrinsic energies of 25

� Mg and 24Mg for each
(β, γ ), while B� [Eq. (15)] is the energy difference between
each state of 25

� Mg and the 24Mg ground state after the angular
momentum projection and GCM calculation, which should be
compared with the observations.

Figures 3(a)–3(b) show the excitation spectra of 24Mg
and 25

� Mg, respectively, obtained with the GCM calculation.
Excitation energies of the band head states are listed in
Table I. It is expected that an α + 21

� Ne decay channel is the
lowest threshold lying in between 8.3 and 12.5 MeV, which
is estimated from the observed B� values of 16

� O [11,32] and
28
� Si [33]; i.e., we assume that B� of 21

� Ne is in between them.
Therefore, some of the p states may be bound. Five rotational
bands are obtained as the p states of 25

� Mg. They are generated
by the coupling of the � hyperon in p orbit (ϕp1, ϕp2, and ϕp3)
to the ground and Kπ = 2+ side bands of 24Mg. Coupling
of ϕp1, ϕp2, and ϕp3 to the ground band of 24Mg generates
the three bands built on the (1/2−

1 , 3/2−
1 ), (1/2−

2 , 3/2−
2 ), and

(1/2−
3 , 3/2−

5 ) states, respectively. In the lowest band built on
the (1/2−

1 , 3/2−
1 ) states, the contribution from ϕp1 to the GCM

wave function is dominant, and the distribution of the GCM
overlap as functions of β and γ is similar to the ground band of
24Mg as shown in Fig. 4. Therefore, we call it GB⊗ϕp1, where

FIG. 3. Calculated excitation spectra of the ground band Kπ = 0+ and side band Kπ = 2+ of 24Mg (a), and the p states of 25
� Mg (b). The

dashed line in (b) shows the 24Mg + � threshold energy calculated by Eq. (15).
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TABLE I. Excitation energies (Ex) and B� defined by Eq. (15) of each state in 25
� Mg (Ex and B� in MeV). (β, γ ) corresponding to the peak

of the GCM overlap are also listed (γ in degrees).

Configuration J π Ex B� β γ Configuration J π Ex B� β γ

24Mg(0+
1 ) ⊗ϕp1 1/2−

1 9.55 6.43 0.48 21 24Mg(2+
1 ) ⊗ϕp1 5/2−

1 10.90 5.08 0.48 21
24Mg(0+

1 ) ⊗ϕp2 1/2−
2 13.30 2.68 0.43 15 24Mg(2+

1 ) ⊗ϕp2 5/2−
4 15.20 0.78 0.45 31

24Mg(0+
1 ) ⊗ϕp3 1/2−

3 18.80 −2.82 0.53 27 24Mg(2+
1 ) ⊗ϕp3 5/2−

8 20.91 −4.93 0.64 41
24Mg(2+

2 ) ⊗ϕp1 5/2−
3 15.05 0.93 0.53 27

24Mg(2+
2 ) ⊗ϕp2 5/2−

6 19.08 −3.10 0.48 21

GB denotes the ground band of 24Mg. Since the bands built
on the (1/2−

2 , 3/2−
2 ) and (1/2−

3 , 3/2−
5 ) states have the largest

contributions from ϕp2 and ϕp3, respectively, and ϕp1 does not
contribute to these bands, we call them GB⊗ϕp2 and GB⊗ϕp3.
Therefore, the p states coupled to the ground band of 24Mg
split into three bands. The p states coupled to the Kπ = 2+
band of 24Mg are built on the (3/2−

4 , 5/2−
3 ) and (5/2−

6 , 7/2−
6 )

states having the largest contributions from ϕp1 and ϕp2,
respectively, which we call SB⊗ϕp1 and SB⊗ϕp2. We do not
obtain the SB⊗ϕp3 band generated by the coupling between
ϕp3 and Kπ = 2+ band of 24Mg in this calculation. The B(E2)
values also support this band classification. Namely, the B(E2)
values are larger for the intraband transitions as shown in
Table II, while the interband B(E2) values are rather small
(�10 e2fm2).

The band structure of the p states shown in Fig. 3(b)
is approximately understood by the strongcoupling between
the magnetic quantum numbers of 24Mg (Jz) and the orbital
angular momentum of � (lz). Since lz = 0 for ϕp1, coupling
of ϕp1 to the ground band of 24Mg generates a Kπ = 0−

FIG. 4. (Color online) Color plot (grayscale) shows the distribu-
tion of the GCM overlap. The definition of the GCM overlap is given
by Eq. (16). (a)–(d) correspond to the ground state 0+ of 24Mg and
the band head states 1/2−

1 , 1/2−
2 , and 1/2−

3 of 25
� Mg, respectively.

Open circles represent the peak positions of the GCM overlap for
each state.

band which has band members, 1−, 3−, 5−, . . . states, without
spin 1/2 of �. Each doublet of the GB⊗ϕp1 band, such as
(1/2−

1 , 3/2−
1 ), is generated by the weak coupling of the spin of

� to the band members of the Kπ = 0− band. Similarly, the
SB⊗ϕp1 band is understood as the Kπ = 2− band without the
spin 1/2 of �, due to the coupling of ϕp1 (lz = 0) to the side
band Kπ = 2+ of 24Mg. For ϕp2 and ϕp3 with lz = 1, coupling
of lz = 1 to the ground band of 24Mg generates the Kπ = 1−
bands as the GB⊗ϕp2 and GB⊗ϕp3 bands. The SB⊗ϕp2 band
is also explained by the strong-coupling picture in which the
Kπ = 1− and Kπ = 3− bands should exist. In this work, only
the Kπ = 3− band appears in Fig. 3(b), which is because
each state of the Kπ = 1− band of SB⊗ϕp2 is mixed with the
GB⊗ϕp3 band which is also the Kπ = 1− band. By analysis
of the GCM overlap, it is found that the GB⊗ϕp3 band has a
sizable amount of ϕp2 components (about 20% at maximum),
while the contributions from ϕp3 are larger (about 40% at
maximum). It is noted that the band structure of GB⊗ϕp1 and
GB⊗ϕp2 is similar to the p states of 9

�Be predicted by Ref. [20],
because the prolate deformation is important for 25

� Mg as well
as triaxial deformation. Indeed, the GCM overlap is maximized
at (β = 0.48, γ = 22◦) for the ground state of 24Mg as shown
in Fig. 4(a).

We also investigate the deformation change of the 24Mg
ground state, due to the � hyperon in p orbit. Figure 4 shows
the distributions of the GCM overlap, defined by Eq. (16),
for the 1/2−

1 , 1/2−
2 , and 1/2−

3 states of 25
� Mg as well as the

ground state 0+ of 24Mg. The (β, γ ) value corresponding to
the peak of the GCM overlap is presented in Table I for each
state. It is found that ϕp1 keeps the triaxial deformation of
the 24Mg ground state unchanged, while ϕp2 slightly reduces
it. Indeed, the peak of the GCM overlap for the 1/2−

1 state
locates at the same position as the 24Mg ground state (β =
0.48, γ = 21◦). This is because ϕp1 is more deeply bound in
the prolate deformed region as shown in Fig. 2(a). This trend
of ϕp1 is different from the � hyperon in s orbit which reduces
the nuclear deformation [18,19,28]. On the other hand, the
deformation of the 1/2−

2 state is changed to (β, γ ) = (43, 15◦)
by ϕp2, while the behavior of Fig. 2(b) shows that ϕp2 is
deeply bound with oblate deformation. This is because the
energy surface of the 24Mg ground state is steep in the oblate
side.

For the 1/2−
3 state corresponding to ϕp3, the distribution

of the GCM overlap is quite different from the 1/2−
1 and

1/2−
2 states. Figure 4 and Table I show that the peak of

the GCM overlap for the 1/2−
3 state locates at (β, γ ) =

(0.45, 31◦), and the 1/2−
3 state has almost no component
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TABLE II. Intraband B(E2) values in units of e2fm4.

GB ⊗ ϕp1 GB ⊗ ϕp2 GB ⊗ ϕp3 SB ⊗ ϕp1 SB ⊗ ϕp2

Transitions B(E2) Transitions B(E2) Transitions B(E2) Transitions B(E2) Transitions B(E2)

5/2−
1 → 1/2−

1 95 3/2−
3 → 1/2−

2 73 3/2−
6 → 1/2−

3 66 5/2−
5 → 3/2−

4 145 7/2−
7 → 5/2−

6 139
7/2−

1 → 3/2−
1 122 5/2−

2 → 3/2−
2 116 5/2−

7 → 3/2−
5 103 7/2−

3 → 5/2−
3 161 9/2−

5 → 7/2−
6 150

9/2−
1 → 5/2−

1 127 5/2−
4 → 3/2−

3 37 5/2−
8 → 3/2−

6 51 7/2−
5 → 5/2−

5 111
11/2−

1 → 7/2−
1 136 7/2−

2 → 5/2−
2 42 7/2−

8 → 5/2−
7 57 9/2−

3 → 7/2−
3 124

5/2−
4 → 1/2−

2 52 5/2−
8 → 1/2−

3 57
7/2−

2 → 3/2−
2 65 7/2−

8 → 3/2−
5 72

in axially deformed region. This is consistent with the fact
that the 1/2−

3 state is generated due to the nuclear triaxial
deformation of 25

� Mg, originating in the energy splitting of the
� single-particle energy with triaxial deformation as shown
in Fig. 2(d).

In summary, we have investigated the level structure of the
p states in 25

� Mg based on the HyperAMD calculation. We have
employed the constraints on the single-particle wave function
of � as well as on (β, γ ) deformation, and obtained three
intrinsic p states with different spatial density distributions.
By performing the GCM calculation, five bands are obtained

as the p states of 25
� Mg. It is found that three of them are

generated by the coupling of the ground band of 24Mg and �
in each p orbit. Therefore the p state of 25

� Mg will split into
three due to triaxial deformation.
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