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We present the first ab initio coupled-cluster calculations of medium-mass nuclei with explicit chiral three-
nucleon (3N ) interactions. Using a spherical formulation of coupled cluster with singles and doubles excitations
including explicit 3N contributions, we study ground states of 16,24O, 40,48Ca, and 56Ni. We employ chiral nucleon-
nucleon (NN) plus 3N interactions softened through a similarity renormalization group (SRG) transformation at
the three-body level. We investigate the impact of all truncations and quantify the resulting uncertainties—this
includes the contributions from triple excitations, the truncation of the set of three-body matrix elements, and
the omission of SRG-induced four-body interactions. Furthermore, we assess the quality of a normal-ordering
approximation of the 3N interaction beyond light nuclei. Our study points towards the predictive power of chiral
Hamiltonians in the medium-mass regime.
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The ab initio description of medium-mass nuclei is one of
the most dynamic frontiers in nuclear structure theory today—
bridging the gap between accurate ab initio calculations for
light nuclei and the realm of approximate or phenomenological
approaches for heavy nuclei and nuclear matter. A number
of many-body methods are being developed and extended
towards the medium-mass regime. Coupled-cluster (CC)
theory has a pioneering role in this domain [1–3] and other
methods, like self-consistent Green’s function approaches [4]
or the in-medium similarity renormalization group [5,6], have
followed. Extensions of the no-core shell model (NCSM) [7],
like the importance-truncated NCSM [8,9], are connecting the
domains of light- and medium-mass nuclei.

A critical ingredient for all ab initio many-body approaches
is the Hamiltonian. At present, chiral effective field theory
(EFT) provides the most systematic approach to QCD-
based Hamiltonians for accurate nuclear structure calculations
[10,11]. Already the present generation of chiral Hamiltonians,
consisting of nucleon-nucleon (NN) interactions at next-
to-next-to-next-to-leading order (N3LO) [12,13] and three-
nucleon (3N ) interactions at next-to-next-to-leading order
(N2LO) [14], gives a very good description of p-shell nuclei
as demonstrated in ab initio NCSM calculations [15–18].
Ongoing developments in this sector, e.g., regarding chiral
3N interactions at N3LO [19–21] or a �-full formulation
of chiral EFT [22], will soon provide next-generation chiral
Hamiltonians with consistent NN and 3N interactions.

The inclusion of the 3N interaction is vital to realize
the predictive potential of chiral Hamiltonians but poses a
number of computational challenges. So far, there are no cal-
culations for medium-mass nuclei that include explicit chiral
3N interactions, without resorting to approximate or even
schematic reductions to effective two-body interactions [3,23].
A systematic though approximate inclusion of chiral 3N
interactions for medium-mass nuclei is the normal-ordering
scheme applied in Ref. [24].
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In this Rapid Communication we present ab initio coupled-
cluster calculations for medium-mass nuclei including explicit
3N interactions. We have developed a spherical implemen-
tation of coupled cluster with single and double excitations
for three-body Hamiltonians (CCSD3B), which enables us to
perform converged ground-state calculations for closed-shell
nuclei with full three-body interactions. In this framework we
study the ground-state energies of 16,24O, 40,48Ca, and 56Ni
using chiral NN + 3N Hamiltonians softened through simi-
larity renormalization group (SRG) transformations [18,25].
We systematically address all truncations introduced in the
many-body framework and the Hamiltonian and quantify
the resulting uncertainties in the ground-state energies. We
demonstrate that the overall uncertainty for the prediction of
ground-state energies in the medium-mass regime is of the
order of a few percent. Within these uncertainties the chiral
NN + 3N Hamiltonians used in this work predict ground-state
energies that are in agreement with experiments. This is a
remarkable result, since no information beyond the few-body
domain (A � 4) was used to fix the parameters of the chiral
interactions.

Coupled-cluster method. In single-reference CCSD the
ground state |�〉 of a many-body Hamiltonian is parametrized
by the exponential ansatz

|�〉 = eT |�〉 (1)

with T = T1 + T2, where Tn are excitation operators of the
form

Tn = 1

(n!)2

∑

a1 ...an
i1 ...in

〈a1 . . . an|tn|i1 . . . in〉 a†
a1

. . . a†
an

ain . . . ai1 ,

(2)

acting on a single Slater-determinant reference state |�〉.
Coupled-cluster theory is conveniently formulated in terms

of Hamiltonians that are normal ordered with respect to |�〉.
If the original Hamiltonian

H = h1 + h2 + h3 (3)
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FIG. 1. One example diagram contributing to the CCSD3B
T2 amplitude equations in the m scheme (a) and the spherical
scheme (b).

consisting of one-, two-, and three-body contributions is cast
into normal-ordered form,

H = 〈�|H |�〉 + hNO
1 + hNO

2 + hNO
3 , (4)

contributions from the n-body part hn of the original
Hamiltonian enter the matrix elements of the normal-ordered
operators hNO

k of particle ranks k � n.
Neglecting the three-body part hNO

3 of the normal-ordered
Hamiltonian (4) and thus only including contributions of
the three-body interaction that have been demoted to lower
particle ranks through normal-ordering leads to the normal-
ordering approximation (NO2B) discussed in Refs. [24,26].
In this Rapid Communication we include the complete 3N
interaction; i.e., we include the normal-ordered three-body
part hNO

3 beyond the NO2B approximation explicitly. The
CCSD energy and amplitude equations including the full 3N
interaction can be written as

�E = �ENO2B + 〈�| hNO
3 eT |�〉C, (5)

0 = T1,NO2B + 〈
�a

i

∣∣hNO
3 eT |�〉C, (6)

0 = T2,NO2B + 〈
�ab

ij

∣∣hNO
3 eT |�〉C, (7)

where �ENO2B and Tn,NO2B denote the standard CCSD
equations for two-body Hamiltonians [27] corresponding to
the NO2B approximation. Thus, the inclusion of the residual
three-body operator hNO

3 generates a set of additional terms in
the CCSD equations.

Expressions for Eqs. (5)–(7) in the m scheme are presented
in a factorized form in Ref. [26]. We rederived these equations
in a straightforward unfactorized way, resulting in more but
simpler terms. Already for two-body Hamiltonians the basis
sizes and particle numbers for m-scheme CC calculations are
severely limited by the number of amplitudes and matrix
elements that need to be handled. It is well known that the
range of the CC method can be greatly extended by exploiting
spherical symmetry and using an angular-momentum coupled
formulation [28]. We have developed such an efficient spheri-
cal implementation of CCSD3B. Proceeding along the lines of
Ref. [28], we couple the external lines of the diagrams, cut open
internal lines and perform angular momentum recouplings
in order to express diagrams in terms of angular-momentum
coupled matrix elements of the operators involved. For exam-
ple, one of the computationally more involved contributions
[Fig. 1(a)] to the T2 amplitude equations reads in m scheme as

1

4
Pab Pij

∑

cdekl

〈kla|hNO
3 |cde〉 〈eb|t2|kl〉 〈c|t1|i〉 〈d|t1|j 〉, (8)

where we use the standard diagrammatic representation [27]
and the permutation operator Ppq = 1 − Tpq with Tpq de-
noting index transpositions. The corresponding contribution
[Fig. 1(b)] in the spherical scheme is given by

(9)

with P (J )
pq = 1 − (−1)jp+jq−J Tpq and x̂ = √

2x + 1. Here,
indices a, b, . . . represent (nlj ) orbitals rather than individual
single-particle states. The coupling lines indicate standard
angular-momentum coupling and the tilde denotes time-
reversed orbitals.

In our spherical scheme, the three-body matrix elements of
hNO

3 enter in a specific reduced and coupled form, given by

(10)

where the 3N matrix element on the right-hand side is M
independent. We use this specific coupling to store the three-
body matrix elements in fast memory, making use of a variant
of the efficient storage and retrieval schemes we have de-
veloped for JT -coupled three-body matrix elements [18,29].
This is critical for the overall performance of the CCSD3B
calculations. In order to accelerate the convergence of the
iterative solution of the CCSD3B amplitude equations, we
initialize the amplitudes with the solution of the corresponding
CCSD calculation in the NO2B approximation. In addition to
the CCSD and CCSD3B calculations we perform �-CCSD(T)
calculations [28,30,31] using the NO2B Hamiltonian to assess
the influence of triple excitations.

Hamiltonian and basis. The starting point for our investiga-
tion of medium-mass nuclei is SRG-evolved chiral NN + 3N
Hamiltonians. We use the chiral NN interaction at N3LO [12]
and a local form of the chiral 3N interaction at N2LO [14].
Instead of a momentum cutoff of 500 MeV used, e.g., in
Ref. [18], we reduce the cutoff of the initial 3N interaction
to 400 MeV and choose cE = 0.098 to reproduce the 4He
ground-state energy, keeping cD = −0.2 [24]. This cutoff
reduction is motivated by the observation that SRG-induced
4N interactions have a sizable impact on ground-state energies
of medium-mass nuclei, which can be reduced efficiently by
reducing the cutoff of the initial 3N interaction [18,24,29]. We
emphasize that the following results for medium-mass nuclei
from 16O to 56Ni are pure predictions.

We employ two types of SRG-evolved Hamiltonians:
The NN + 3N–full Hamiltonian starts with the initial chiral
NN + 3N Hamiltonian and retains all terms up to the 3N level
in the SRG evolution, the NN + 3N–induced Hamiltonian
omits the chiral 3N interaction from the initial Hamiltonian
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but keeps all induced 3N terms throughout the evolution. In
addition, we use a range of flow parameters α in order to assess
the role of SRG-induced contributions beyond the three-body
level [18].

The underlying single-particle basis is a harmonic-
oscillator basis truncated in the principal oscillator quantum
number 2n + l = e � emax and we go up to emax = 12. We
perform Hartree-Fock (HF) calculations including the 3N
interaction for each set of basis parameters to obtain an
optimized single-particle basis and stabilize the convergence
of the CC iterations. The normal-ordering is done consistently,
i.e., with respect to the HF reference state. At the moment it
is not possible to include all three-body matrix elements that
would appear in the larger bases; we are limited to three-body
matrix elements with e1 + e2 + e3 � E3 max = 14. We discuss
the impact of this additional cut in detail later on. We stress
that the exact treatment of the isospin dependence of the two-
and three-body matrix elements in the HF basis is crucial. It
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FIG. 2. (Color online) Ground-state energies for 16,24O, 40,48Ca,
and 56Ni as function of emax for the two types of Hamiltonians
(see column headings) using CCSD3B (solid lines) and the NO2B
approximation (dashed lines) for a range of flow parameters: α =
0.02 fm4 ( ), 0.04 fm4 ( ), 0.08 fm4 ( ).

is generated by isospin dependence of the HF single-particle
wave functions, although the 3N operator used here is isospin
symmetric. In order to avoid a drastic increase of storage
needed for the HF three-body matrix elements, we perform
the transformation to the HF basis on the fly.

Results. We present first results of CC calculations with
explicit 3N interactions for the ground-state energies of 16,24O,
40,48Ca, and 56Ni. Step by step, we quantify the uncertainties
resulting from various truncations in the many-body treatment.
First we contrast CCSD3B calculations with CCSD using
the NO2B approximation for the Hamiltonian. For both
we discuss basis-space convergence in terms of emax and
oscillator frequency ��. We then study the influence of the
three-body truncation E3 max. Finally, we include noniterative
triples corrections at the level of �-CCSD(T) with the NO2B
Hamiltonian. In all cases we vary the flow parameter α over a
wide range to study the impact of induced many-body terms.

Figure 2 shows a comparison of CCSD3B calculations
using the complete 3N interaction with CCSD using the
NO2B approximation for the ground-state energies of 16,24O,
40,48Ca, and 56Ni as function of the basis size emax for both
the NN + 3N–induced and the NN + 3N–full Hamiltonian
with three different values of the SRG flow parameter. The
oscillator frequencies correspond to the energy minima in
the largest basis spaces (cf. Fig. 3). The numerical values
of the ground-state energies for the largest basis sets are also
summarized in Tables I and II. The first observation is that we
are able to converge or come sufficiently close to convergence
with respect to the basis size emax in practically all cases.
The second observation is that the NO2B works extremely
well for all cases: For 16O the largest deviation from the full
CCSD3B results is 0.9 MeV or 0.8%, for 56Ni it is 4 MeV or
0.8% across all Hamiltonians considered here. Given that the
computational cost for the CCSD3B calculations is two orders
of magnitude higher than for CCSD and that the accuracy we
target for many-body calculations in this mass range is not
better than 1%, the NO2B approximation constitutes a very
efficient tool.

-170

-165

-160

-155

-150

.

E
[M

eV
]

24O (a)

-370

-360

-350

-340

-330 .E
[M

eV
]

40Ca (b)

20 24 28 32 36
Ω [MeV]

-460

-450

-440

-430

-420

-410

.

E
[M

eV
]

48Ca (c)

20 24 28 32 36
Ω [MeV]

-530

-510

-490

-470

-450
.E

[M
eV

]

56Ni (d)

FIG. 3. (Color online) Ground-state energies for 24O, 40,48Ca,
and 56Ni as function of �� at emax = 12 for the NN + 3N–full
Hamiltonian using CCSD3B (solid lines) and the NO2B approxi-
mation (dashed lines) for a range of flow parameters: α = 0.02 fm4

( ), 0.04 fm4 ( ), and 0.08 fm4 ( ).
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TABLE I. Summary of CCSD and �-CCSD(T) ground-state energies in MeV for the NN + 3N–induced Hamiltonian for a subset of α

values computed at optimum oscillator frequency �� = 20 MeV for 16,24O, �� = 24 MeV for 40Ca, and �� = 28 MeV for 48Ca, 56Ni. The
number in parentheses denotes the E3 max cut in the 3N Hamiltonian. The last column gives emax-extrapolated values, and the other columns
are for emax = 12.

NN + 3N α (fm4) CCSD CCSD �-CCSD(T)

induced 3B NO2B NO2B NO2B NO2B∞

(12) (12) (14) (14) (14)

16O 0.02 −121.6 −122.3 −121.7 −126.1 −126.5
0.04 −121.1 −121.9 −121.6 −124.4 −124.4
0.08 −119.9 −120.8 −120.8 −122.4 −122.4

24O 0.02 −156.1 −157.0 −155.8 −162.7 −163.7
0.04 −155.4 −156.6 −155.9 −160.2 −160.4
0.08 −153.3 −154.5 −154.4 −156.9 −157.1

40Ca 0.02 −362.1 −363.9 −360.5 −374.3 −375.5
0.04 −357.7 −359.9 −358.1 −366.3 −366.6
0.08 −348.8 −350.9 −350.8 −355.3 −355.5

48Ca 0.02 −428.1 −430.5 −425.3 −442.3 −443.9
0.04 −419.6 −422.3 −420.0 −429.6 −430.9
0.08 −403.4 −405.7 −406.8 −411.9 −413.3

56Ni 0.02 −473.2 −475.8 −464.3 −487.5 −489.8
0.04 −462.6 −465.6 −458.0 −472.4 −474.2
0.08 −439.3 −441.8 −439.3 −448.4 −450.4

The quality of the NO2B approximation is confirmed in
Fig. 3, where it is compared to CCSD3B using the NN + 3N–
full Hamiltonian and the largest basis set as function of the
oscillator frequency. The accuracy of the NO2B approximation
is largely independent of ��. Note that the effect of the residual
3N interaction beyond the NO2B approximation is always
repulsive, i.e., of the same sign as the complete 3N contribution
composed of induced and evolved initial 3N terms [24].

The fact that the SRG evolution in the 3N sector is
performed in a finite model space of harmonic-oscillator
Jacobi states [18,29] leads to additional uncertainties at low

frequencies ��. By varying the size of SRG model space [29]
we estimate the uncertainties at the optimal frequency to be
much smaller than 1% for all nuclei except 56Ni, where they
reach the 1% level. For smaller frequencies, however, the
truncation of the SRG model space leads to more significant
effects—the increase of the ground-state energies of 40Ca and
beyond at the lowest frequencies shown in Fig. 3 as well as
the shift of the optimal frequency to larger values for heavier
nuclei are partly due to this.

Next we address the E3 max cut used in the 3N matrix
elements for technical reasons. In Tables I and II the CCSD

TABLE II. Same as in Tab. I for the NN + 3N -full Hamiltonian.

NN + 3N α (fm4) CCSD CCSD �-CCSD(T)

full 3B NO2B NO2B NO2B NO2B∞

(12) (12) (14) (14) (14)

16O 0.02 −124.9 −125.4 −124.5 −129.9 −130.4
0.04 −126.8 −127.6 −127.1 −130.8 −130.8
0.08 −128.2 −129.1 −129.0 −131.2 −131.2

24O 0.02 −161.4 −162.0 −160.4 −168.3 −169.4
0.04 −165.3 −166.4 −165.5 −170.7 −170.9
0.08 −167.6 −168.8 −168.6 −171.6 −171.7

40Ca 0.02 −354.4 −356.0 −352.1 −370.6 −371.7
0.04 −363.8 −366.2 −364.3 −376.4 −376.7
0.08 −369.0 −371.5 −371.3 −378.2 −378.4

48Ca 0.02 −429.4 −431.6 −426.7 −449.5 −450.9
0.04 −441.2 −444.3 −441.9 −456.0 −457.0
0.08 −445.3 −448.2 −448.3 −453.5 −456.7

56Ni 0.02 −497.3 −499.9 −490.9 −521.7 −523.4
0.04 −513.9 −517.9 −511.4 −530.9 −531.8
0.08 −517.0 −520.7 −517.9 −528.4 −529.2
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results using the NO2B approximation with E3 max = 12 and
14 are compared. We find that the influence of this cut grows
with increasing particle number and decreasing flow parameter
α. For the softest interaction with α = 0.08 fm4 the cut is
completely irrelevant up to 40Ca; only for 56Ni we observe
a 0.5% change in the ground-state energy. For less evolved
interactions the effect increases and reaches about 1% up to
48Ca and about 2% for 56Ni. For the description of still heavier
nuclei or the use of bare 3N interactions one will have to
improve on this truncation in order to reach accurate results.

As the final model-space-related truncation, we discuss the
truncation of the excitation operators in the coupled-cluster
ansatz (1). In Fig. 4 we compare the results of CCSD and
�-CCSD(T) calculations for all nuclei and Hamiltonians in the
NO2B approximation as function of the basis truncation emax

for E3 max = 14. The results for emax = 12 are also summarized
in Tables I and II. Again we observe a systematic dependence
on the flow parameter α. For the softest interactions with
α = 0.08 fm4 the inclusion of triple excitations lowers the
ground-state energies by 1.5 to 2% for all nuclei and both
Hamiltonians. For α = 0.02 fm4 the difference increases to
about 4 to 6%. If we conservatively consider the triple
contribution as a measure for the inherent uncertainty due
to the truncation of the cluster operator, then this is the largest
uncertainty so far.

Finally, we quantify the uncertainty due to the omission of
the SRG-induced four- and more-nucleon interactions through
the α dependence of the CCSD and �-CCSD(T) results
shown in Fig. 4 and Tables I and II. First of all, we note
that missing many-body terms of the Hamiltonian are of
opposite sign but of the same order of magnitude for the
NN + 3N–induced and the NN + 3N–full Hamiltonian. For
the NN + 3N–induced Hamiltonian the ground-state energies
for α = 0.02 fm4 (harder interaction) are systematically lower
than for α = 0.08 fm4 (softer interaction). Furthermore, the
energy spread over this range of flow parameters is smaller for
CCSD and larger for �-CCSD(T). For 40Ca, e.g., the spread
amounts to 3% of the ground-state energy in CCSD and 5%
in �-CCSD(T). The pattern is reversed for the NN + 3N–full
Hamiltonian. The ground-state energies for α = 0.02 fm4 are
systematically above the energies for α = 0.08 fm4 and the
energy spread is reduced by including the triple correction. For
40Ca the relative energy spreads are 5% for the CCSD and 2%
for �-CCSD(T). Note that these α dependencies are distorted
by the influence of the E3 max truncation. With increasing E3 max

the �-CCSD(T) ground-state energies will move up for harder
interactions and, thus, the apparent α dependence will be
reduced for NN + 3N induced and increased for NN + 3N
full.

If we compare the ground-state energies throughout the
set of nuclei discussed here with the experiment (cf. Fig. 4),
keeping in mind the uncertainties we discussed above, then the
agreement is remarkable. We stress that no information beyond
A = 4 was used to constrain the Hamiltonian, so obtaining the
correct binding systematics for medium-mass nuclei is far from
trivial. Though the impact of the initial chiral 3N interaction
is moderate on the scales shown in Fig. 4, it is important
to obtain the correction binding-energy systematics along
isotopic chains. In contrast, the effect of the SRG-induced
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FIG. 4. (Color online) �-CCSD(T) (solid lines) and CCSD
(dashed lines) ground-state energies for 16,24O, 40,48Ca, and 56Ni
as function of emax for the two types of Hamiltonians (see column
headings) using the NO2B approximation for flow parameters:
α = 0.02 fm4 ( ), 0.04 fm4 ( ), and 0.08 fm4 ( ).

3N interactions is huge and their inclusion is mandatory—for
56Ni and α = 0.08 fm4 a calculation with only SRG-evolved
NN interactions yields an unphysical ground-state energy of
about −950 MeV.

Conclusions. We have presented the first ab initio calcu-
lations for nuclei in the medium-mass regime with inclusion
of explicit 3N interactions. On this baseline we quantify the
effects of all truncations in the many-body approach, i.e., the
cluster rank of the CC ansatz, the single-particle truncation
emax, the truncation of the 3N matrix elements E3 max, and
the optional omission of residual normal-ordered 3N terms.
For all truncations we clearly benefit from the prediagonal-
ization of the Hamiltonian through the SRG evolution—for
Hamiltonians with α = 0.08 fm4 the uncertainties due to the
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E3 max truncation and the NO2B approximation are at the level
of 1% or below and the effect of the triple correction is only 2%.
In particular the impacts of the E3 max truncation and the triple
corrections increase rapidly when going to harder interactions.
The omission of SRG-induced four- and many-body terms,
i.e., the truncation of the particle rank of the Hamiltonian,
introduces an uncertainty at the level of a few percent and
thus limits the overall accuracy of the approach. Reduction
or elimination of this uncertainty will be a prime goal of
future studies. Finally, our results point towards the predictive
power of chiral NN + 3N Hamiltonians for medium-mass
nuclei.
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[21] R. Skibiński, J. Golak, K. Topolnicki, H. Witala, E. Epelbaum,
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