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Using a set of model equations of state satisfying the latest constraints from both terrestrial nuclear experiments
and astrophysical observations, as well as state-of-the-art nuclear many-body calculations of the pure neutron
matter equation of state, the tidal polarizability of canonical neutron stars in coalescing binaries is found to
be a very sensitive probe of the high-density behavior of nuclear symmetry energy, which is among the most
uncertain properties of dense neutron-rich nucleonic matter. Moreover, it changes less than ±10% by varying
various properties of symmetric nuclear matter and symmetry energy around the saturation density within their
respective ranges of remaining uncertainty.
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I. INTRODUCTION

Understanding the nature of neutron-rich nucleonic matter
is a major thrust of current research in both nuclear physics
and astrophysics [1]. To realize this goal, many experi-
ments and observations are being carried out or proposed
using a wide variety of advanced new facilities, such as
Facilities for Rare Isotope Beams (FRIB), x-ray satellites,
and gravitational wave (GW) detectors. Most critical to
interpreting results of these experiments and observations is
the equation of state (EOS) of neutron-rich nucleonic matter,
i.e., E(ρ, α) = E0(ρ) + S(ρ)α2 + O(α4), where E(ρ, α) and
E0(ρ) are the specific energy in asymmetric nuclear matter of
isospin asymmetry α = (ρn − ρp)/ρ and symmetric nuclear
matter (SNM), respectively, and S(ρ) is the symmetry energy
encoding the energy cost of converting all protons in SNM
to neutrons. Thanks to the continuing efforts of both the
nuclear physics and astrophysics communities over several
decades, the EOS of SNM around the saturation density ρ0

has been well constrained. Moreover, combining information
from studying the collective flow and kaon production in
relativistic heavy-ion collisions in several terrestrial nuclear
physics laboratories [2], and the very recent discovery of
the maximum mass of neutron stars [3], the EOS of SNM
has been limited in a relatively small range up to about
4.5ρ0. The symmetry energy S(ρ) is a vital ingredient in
describing the structure of rare isotopes and their reaction
mechanisms. It also determines uniquely the proton fraction
and thus the cooling mechanism, appearance of hyperons,
and possible kaon condensation in neutron stars. Moreover,
it affects significantly the structure, such as the radii, moment
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of inertia and the core-crust transition density, as well as the
frequencies and damping times of various oscillation modes of
neutron stars; see, e.g., Refs. [4,5] for reviews. Intensive efforts
devoted to constraining S(ρ) using various approaches have
recently led to a close convergence around S(ρ0) ≈ 30 MeV
and its density slope L ≡ 3ρ0(dS(ρ)/dρ)ρ0

≈ 50 MeV with a
few exceptions, although the error bars for L from different
approaches may vary broadly [6–12]. On the other hand,
the high-density behavior of S(ρ) remains very uncertain
despite its importance to understanding what happens in the
core of neutron stars [13–17] and in reactions with high
energy radioactive beams [18]. The predictions for the high-
density behavior of the symmetry energy from all varieties
of nuclear models diverge dramatically [19–21], with some
models predicting very stiff symmetry energies that increase
continuously with density [21–26], and others predicting
relatively soft ones, or an S(ρ) that first increases with
density, then saturates and starts decreasing with increasing
density [19,27–41]. These uncertainties can be traced to our
poor knowledge about the isospin dependence of the strong
interaction in the dense neutron-rich medium, particularly the
spin-isospin dependence of three-body and many-body forces,
the short-range behavior of the nuclear tensor force, and the
isospin dependence of nucleon-nucleon correlations in the
dense medium; see, e.g., Refs. [42,43]. Little experimental
progress has been made in constraining the high-density S(ρ),
partially because of the lack of sensitive probes. While several
observables have been proposed [18] and some indications
of the high-density S(ρ) have been reported recently [44,45],
conclusions based on terrestrial nuclear experiments remain
controversial [46]. To our best knowledge, the only astro-
physical probe for high-density S(ρ) proposed so far is the
late-time neutrino signal from a core collapse supernova [47].
In this article, we show that the tidal polarizability of canonical
neutron stars in coalescing binaries is a very sensitive probe
of the high-density behavior of the nuclear symmetry energy
independent of the remaining uncertainties of the SNM EOS
and S(ρ) near saturation density.
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The paper has been organized as follows. In Sec. II
we provide the background material necessary to compute
the stellar structure and tidal polarizability. In Sec. III we
discuss current theoretical, experimental, and observational
constraints on the nuclear matter EOS, and prepare several
parametrizations that will be used to compute the EOS of
the stellar material. We note that these parametrizations not
only reproduce various experimentally measured properties
of finite nuclei, but are also systematically varied within the
available constraints such that they cover the full constraint
region in their predictions for the EOS at both low and high
densities. In Sec. IV we present results for various neutron-star
properties, including the tidal polarizability of a canonical
neutron star, and discuss their sensitivity to the EOS. Finally,
Sec. V summarizes our concluding remarks and suggestions
for future work.

II. STELLAR STRUCTURE AND TIDAL POLARIZABILITY

Coalescing binary neutron stars are among the most promis-
ing sources of gravitational waves. One of the most important
features of binary mergers is the tidal deformation neutron
stars undergo as they approach each other prior to merger,
the strength of which can give us precious information about
the neutron-star matter EOS [48–59]. At the early stage of
an inspiral, tidal effects may be effectively described through
the tidal polarizability parameter λ [48,51–53] defined via
Qij = −λEij , where Qij is the induced quadrupole moment
of a star in binary, and Eij is the static external tidal field of
the companion star. The tidal polarizability can be expressed
in terms of the dimensionless tidal Love number k2 and the
neutron star radius R as λ = 2k2R

5/(3G). The tidal Love
number k2 is found using the following expression [49,54]:
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where Rs ≡ 2M is the Schwarzschild radius of the star, and
yR ≡ y(R) can be calculated by solving the following first-
order differential equation:

r
dy(r)

dr
+ y(r)2 + y(r)F (r) + r2Q(r) = 0, (2)

with

F (r) = r − 4πr3 [E(r) − P (r)]

r − 2M(r)
, (3)

Q(r) =
4πr

(
5E(r) + 9P (r) + E(r)+P (r)

∂P (r)/∂E(r) − 6
4πr2

)
r − 2M(r)

− 4

[
M(r) + 4πr3P (r)

r2 (1 − 2M(r)/r)

]2

. (4)

Eq. (2) must be integrated together with the Tolman-
Oppenheimer-Volkoff (TOV) equation. That is,

dP (r)

dr
= − (E(r) + P (r))(M(r) + 4πr3P (r))

r2(1 − 2M(r)/r)
, (5)

dM(r)

dr
= 4πr2E(r). (6)

Given the boundary conditions in terms of y(0) = 2, P (0)=
Pc, and M(0)=0, the tidal Love number can be obtained
once an EOS is supplied. Previous studies have used both
polytropic EOSs and several popular nuclear EOSs available in
the literature [48–59]. While other particles may be present, for
the purpose of this work, it is sufficient to assume that neutron
stars consist of only neutrons (n), protons (p), electrons (e),
and muons (μ) in β equilibrium.

III. CONSTRAINED EOS OF NEUTRON-RICH
NUCLEAR MATTER

We use two classes of nuclear EOSs within the relativistic
mean field (RMF) model and the Skyrme Hartree-Fock (SHF)
approach. The RMF model traditionally includes an isodoublet
nucleon field (ψ) interacting via the exchange of the scalar-
isoscalar σ meson (φ), the vector-isoscalar ω meson (V μ), the
vector-isovector ρ meson (bμ), and the photon (Aμ) [60–62].
The full Lagrangian density for such a model can be written
as

L = ψ̄
[
γ μ

(
i∂μ−gvVμ− gρ

2
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2
(1+τ3)Aμ

)

− (M−gsφ)
]
ψ + 1
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4
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4
bμν · bμν + 1

2
m2

ρ bμ · bμ

− 1

4
FμνFμν − U (φ, Vμ, bμ), (7)

where Vμν ≡ ∂μVν − ∂νVμ, bμν ≡ ∂μbν − ∂νbμ, and Fμν ≡
∂μAν − ∂νAμ are the isoscalar, isovector, and electromagnetic
field tensors, respectively. The four constants represent the
nucleon mass M and meson masses ms, mv, mρ and may be
treated as empirical parameters. In addition to the standard
Yukawa interactions, the Lagrangian is supplemented with
an effective potential U (φ, Vμ, bμ) that consists of nonlinear
meson interactions that simulates the complicated dynamics
encoded in a handful of accurately calibrated model parame-
ters. In this work we use the following form of the effective
potential [63]:

U (φ, V μ, bμ) = κ

3!
(gsφ)3+ λ

4!
(gsφ)4− ζ

4!
g4

v(VμV μ)2

− �vg
2
ρ bμ · bμg2

vVνV
ν. (8)
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Note that, if one would like to consider all nonlinear terms
to the fourth order in meson fields and also incorporate
the seldom used scalar-isovector δ meson [64,65], then 15
additional parameters must be included in the Lagrangian
above (1 Yukawa coupling and 14 meson self-interaction
terms). Remarkably, using just a few model parameters and
without invoking the scalar-isovector δ-meson interaction even
to the lowest order with just a Yukawa coupling, it is possible
to reproduce a host of ground-state properties of finite nuclei
throughout the periodic table [66,67], the nuclear collective
excitations, and neutron-star properties [24,63,68,69] with
very high accuracy.

Following standard mean-field practices, the energy density
of the system can be written as

E(ρ, α) = 1

π2
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where α = −ρ3/ρ is the isospin asymmetry, ρ3 ≡ ρp − ρn

is the isovector baryon density, E∗
k =√

k2 + M∗2, M∗ =M −
gsφ0 is the nucleon (Dirac) effective mass, and k

p
F (kn

F) is
the proton (neutron) Fermi momentum. Since the mean-field
approximation is thermodynamically consistent, the pressure
of the system at zero temperature may be obtained either
from the energy-momentum tensor or from the energy density
and its first derivative with respect to the density [60,61].
That is,

P (ρ, α) = ρ
∂E(ρ, α)

∂ρ
− E(ρ, α).

All of the EOSs are adjusted to satisfy the following four
conditions within their respective uncertain ranges: (1) repro-
ducing the PNM EOS at sub-saturation densities predicted by
the latest state-of-the-art microscopic nuclear many-body the-
ories [28,70–75]; (2) predicting correctly saturation properties
of symmetric nuclear matter, i.e., nucleon binding energy B =
−16 ± 1 MeV and incompressibility K0 = 230 ± 20 MeV
[76,77], and nucleon (Dirac) effective mass M∗

D,0 = 0.61 ±
0.03M [78] at saturation density ρ0 = 0.155 ± 0.01 fm−3;
(3) predicting a fiducial value of symmetry energy S(2ρ0/3) =
26 ± 0.5 MeV, J ≡ S(ρ0) = 31 ± 2 MeV, and the density
slope of symmetry energy L = 50 ± 10 MeV (See Ref. [12]
and references therein); (4) passing through the terrestrial
constraints on the EOS of SNM between 2ρ0 and 4.5ρ0 [2]
and giving a maximum mass of neutron stars of about 2M�,
assuming they are made of only the npeμ matter without
considering other degrees of freedom or invoking any exotic
mechanism [3,79].

To compare the RMF and SHF models on the same
basis, we also create SHF parametrizations which give the
same properties of nuclear matter at saturation as the RMF
parametrizations, through the method of writing the Skyrme
parameters as functions of macroscopic nuclear quantities

[80,81]. Note that several definitions of the nucleon effective
mass exist in the literature [82]. In the RMF model the Dirac
effective mass is defined through the scalar part of the nucleon
self-energy in the Dirac equation. It is well known that, in order
to reproduce the empirical spin-orbit couplings in finite nuclei,
the Dirac effective mass at saturation density M∗

D,0 must lie
in the range of 0.58 < M∗

D/M < 0.64 [61,78,83–85]. While
microscopic calculations based on realistic meson-exchange
models for the nucleon-nucleon interaction suggest that the
isovector δ-meson contribution to the scalar field may be very
important [86,87], thus resulting in a sizable difference in the
nucleon effective (Dirac) masses, we rely on a minimal model
without the δ meson, which accurately reproduces binding
energies and charge radii of doubly magic nuclei, and neutron-
star properties [24,63,68,69]. This minimal model meets the
requirements of our current study, which is to have two tunable
parameters controlling the saturation density stiffness of the
symmetry energy and the high-density stiffness of the SNM
EOS, while still reproducing the minimal set of nuclear matter
properties relevant for basic neutron star structure. Indeed, the
inclusion of a δ meson in the RMF model gives rise to a stiff
EOS of asymmetric nuclear matter at high densities [64,65],
which in turn results in larger neutron star radii predictions
that lie just at the edge of the range currently inferred from
observation [8,79]. In our current minimal model, neglecting
the effects of δ-meson contributions gives us identical nucleon
effective masses for both SNM and PNM. On the other hand,
the nonrelativistic effective mass parametrizes the momentum
dependence of the single-particle potential, which is the result
of a quadratic parametrization of the single-particle spectrum.
It has been argued [88] that the so-called Lorentz mass M∗

L
in SNM should be compared with the nonrelativistic effective
mass extracted from analyses carried out in the framework
of nonrelativistic optical and shell models. For consistency, at
saturation density for SNM we choose the effective mass in the
SHF model to be equal to the Lorenz mass in the RMF model.
Moreover, since the effective masses in the RMF model used
in this work are the same for both protons and neutrons, we set
them equal in the equivalent SHF model too. As an example,
two such EOSs obtained using the IU-FSU RMF model [69]
and the SHF using the SkIU-FSU parameter set [12] are shown
in Fig. 1. By design, they both have the same EOS for SNM and
PNM around and below ρ0. Thus, at subsaturation densities the
values of S(ρ) which is approximately the difference between
the EOSs for PNM and SNM are almost identical for the
two models. However, the values of S(ρ) are significantly
different above about 1.5ρ0 with the IU-FSU leading to a
much stiffer S(ρ) at high densities. More quantitatively, the
S(ρ) with IU-FSU is 40%–60% higher in the density range of
ρ/ρ0 = 3–4 expected to be attained in the core of canonical
neutron stars. In our previous study we showed that this is a
generic feature of the models [12].

To test the sensitivity of the tidal polarizability to variations
of properties of neutron-rich nuclear matter around ρ0 within
the constraints listed above, we build 17 RMF parametrizations
by systematically varying the values of K0, M∗

0 , L, and the
ζ parameter of the RMF model that controls the omega-
meson self-interactions [62] and subsequently the high-density
component of the EOS of SNM. Besides the constraints listed
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FIG. 1. (Color online) The EOS of SNM and PNM as well as the
symmetry energy as a function of density obtained within the IU-FSU
RMF model and the SHF approach using the SkIU-FSU parameter set.

above, all parameter sets can correctly reproduce the experi-
mental values for the binding energy and charge radius of 208Pb
and the ground-state properties of other closed shell nuclei
within 2% uncertainty [89]. As a reference for comparisons, we
select K0 = 230 MeV, M∗

0 = 0.61 M , L = 50 MeV, and ζ =
0.025 for our base model, which predicts ρ0 = 0.1524 fm−3,
B = −16.33 MeV, and J = 31.64 MeV. The representative
model EOSs for PNM at subsaturation densities and those
for SNM at suprasaturation densities are compared with their
constraints in Figs. 2 and 3, respectively. It is seen that the
SkIU-FSU and all the RMF models with 42 < L < 58 MeV
can satisfy the PNM EOS constraint. Also, they can all satisfy
simultaneously the high-density SNM EOS constraint with
0.02 < ζ < 0.03. Moreover, they all give a maximum mass for
neutron stars between 1.94M� and 2.07M� and radii between
12.33 and 13.22 km for canonical neutron stars [69], consistent
with existing observations [3,79,90].

FIG. 2. (Color online) Energy per nucleon as a function of
the Fermi momentum for PNM for selected models described in
the text.

FIG. 3. (Color online) The pressure of SNM given as the function
of baryon density. Here ρ0 is the nuclear matter saturation density
and the shaded area represents the EOS extracted from the analysis
of Ref. [2].

IV. RESULTS AND DISCUSSIONS

First, we examine sensitivities of the tidal polarizability λ
of a 1.4M� neutron star to the variations of SNM properties
and the slope of the symmetry energy around ρ0 in Fig. 4
and Table I. The changes of λ relative to the values for our
base RMF model are shown for the remaining RMF EOSs. It
is very interesting to see that the tidal polarizability is rather
insensitive to the variation of L within the constrained range,
although it changes up to ±10% with K0, M∗, and ζ within
their individual uncertain ranges. While the averaged mass is
M = 1.33 ± 0.05M�, neutron stars in binaries have a broad
mass distribution [91]. It is thus necessary to investigate the
mass dependence of the tidal polarizability. Whereas what can
be measured for a neutron star binary of mass M1 and M2 is

FIG. 4. (Color online) Percentage changes in the tidal polarizabil-
ity of a 1.4 solar mass neutron star by individually varying properties
of nuclear matter K0 (a), M∗ (b), L (c), and the ζ parameter (d) of
the RMF model with respect to the value using the base model.
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TABLE I. Predictions for the properties of a 1.4 solar-mass
neutron star using the 17 EOSs considered in this paper. We
systematically vary the properties of nuclear matter around our base
parametrization (as discussed in the text) to create different EOSs as
diverse as possible, but within the available theoretical, experimental,
and observational constraints. The first column reports the name of the
EOS with a particular nuclear property and/or ζ parameter indicated.
The radii are in units of km, the tidal polarizability in 1036 cm2g s2.

EOS R M/R k2 λ �λ/λ

Base 12.88 0.1605 0.0879 3.115

K = 210 MeV 12.82 0.1612 0.0858 2.974 −4.52 %
K = 220 MeV 12.85 0.1608 0.0869 3.046 −2.19 %
K = 240 MeV 12.91 0.1602 0.0890 3.183 +2.21 %
K = 250 MeV 12.94 0.1598 0.0900 3.258 +4.59 %

M∗ = 0.580M 12.71 0.1626 0.1033 3.427 +10.01 %
M∗ = 0.595M 12.83 0.1612 0.0943 3.271 + 5.02 %
M∗ = 0.625M 12.89 0.1604 0.0831 2.957 − 5.06 %
M∗ = 0.640M 12.88 0.1606 0.0792 2.800 −10.12 %

L = 42 MeV 12.33 0.1677 0.1086 3.089 −0.83 %
L = 46 MeV 12.64 0.1635 0.0960 3.096 −0.58 %
L = 54 MeV 13.07 0.1582 0.0824 3.140 +0.80 %
L = 58 MeV 13.22 0.1564 0.0787 3.170 +1.79 %

ζ = 0.0200 13.01 0.1589 0.0885 3.302 +6.00 %
ζ = 0.0225 12.94 0.1597 0.0882 3.204 +2.85 %
ζ = 0.0275 12.81 0.1613 0.0876 3.025 −2.90 %
ζ = 0.0300 12.75 0.1622 0.0873 2.938 −5.67 %

the mass-weighted tidal polarizability [53]

λ̃ = 1

26

[
M1 + 12M2

M1
λ1 + M2 + 12M1

M2
λ2

]
, (10)

for the purpose of this study it is sufficient to consider binaries
consisting of two neutron stars with equal masses. What can we
learn from the tidal polarizability of light and massive neutron
stars, respectively? Shown in Fig. 5 is the tidal polarizability λ

FIG. 5. (Color online) Tidal polarizability λ of a single neutron
star as a function of neutron-star mass for a range of EOS that
allow various stiffness of symmetry energies. A crude estimate of
uncertainties in measuring λ for equal mass binaries at a distance
of D = 100 Mpc is shown for the Advanced LIGO detector (shaded
light-grey area) and the Einstein Telescope (shaded dark-grey area).

TABLE II. Predictions for the properties of a 1.4 solar-mass
neutron star using the IU-FSU EOS with different density dependence
of the symmetry energy. The slopes of the symmetry energy are in
units of MeV, radii are in units of km, and the tidal polarizability in
1036 cm2g s2. The relative percentage error �λ/λ is calculated with
respect to the original IU-FSU parametrization [69].

EOS L R M/R k2 λ �λ/λ

IU-FSU-0 47.2 12.49 0.1655 0.0930 2.828
IU-FSU-1 40.0 12.20 0.1695 0.1054 2.841 + 0.46 %
IU-FSU-2 60.0 13.07 0.1581 0.0761 2.906 + 2.76 %
SkIU-FSU 47.2 11.71 0.1765 0.0753 1.657 −41.41 %

as a function of neutron-star mass for a range of EOSs. Most
interestingly, it is seen that the IU-FSU and SkIU-FSU models
which are different only in their predictions for the nuclear
symmetry energy above about 1.5ρ0, as shown in Fig. 1,
lead to significantly different λ values in a broad mass range
from 0.5M� to 2M�. More quantitatively, a 41% change in λ
from 2.828 × 1036 (IU-FSU) to 1.657 × 1036 (SkIU-FSU) is
observed for a canonical neutron star of 1.4M� (See Table II).
For a comparison, we notice that this effect is as strong as
the symmetry energy effect on the late-time neutrino flux
from the cooling of proto-neutron stars [47]. Moreover, it
is shown that the variation of L has a very small effect on
the tidal polarizability λ of massive neutron stars, which is
consistent with the results shown in Fig. 4. On the other hand,
the L parameter affects significantly the tidal polarizability
of neutron stars with M � 1.2M�. These observations can
be easily understood. From Eq. (1) the Love number k2 is
essentially determined by the compactness parameter M/R
and the function y(R). Both of them are obtained by integrating
the EOS all the way from the core to the surface. Since the
saturation density approximately corresponds to the central
density of a 0.3M� neutron star, one thus should expect only
the Love number of low-mass neutron stars to be sensitive to
the EOS around the saturation density. However, for canonical
and more massive neutron stars, the central density is higher
than 3ρ0–4ρ0, and therefore both the compactness M/R and
y(R) show stronger sensitivity to the variation of EOS at
suprasaturation densities. Since all the EOSs for SNM at
suprasaturation densities have already been constrained by the
terrestrial nuclear physics data and required to give a maximum
mass about 2M� for neutron stars, the strongest effect on
calculations of the tidal polarizability of massive neutron stars
should therefore come from the high-density behavior of the
symmetry energy.

It has been suggested that the Advanced LIGO-Virgo
detector may potentially measure the tidal polarizability of
binary neutron stars with a moderate accuracy. Are the existing
or planned GW detectors sensitive enough to measure the
predicted effects of high-density symmetry energy on the tidal
polarizability? To answer this question, as an example we
estimate uncertainties in measuring λ for equal-mass binaries
at an optimally oriented distance of D = 100 Mpc [53,92]
using the same approach as detailed in Refs. [53,59]. These
are shown for the Advanced LIGO-Virgo detector (shaded
light-grey area) and the Einstein Telescope (shaded dark-grey
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area) in Fig. 5. It is seen that discerning between high-density
symmetry energy behaviors is at the limit of the Advanced
LIGO-Virgo detector’s sensitivity for stars of mass 1.4M�
and below based on the currently estimated uncertainty, and
it is possible that a rare but nearby binary system may be
found and provide a much tighter constraint [53]. Nevertheless,
measurements for binaries consisting of light neutron stars
can still help further constrain the symmetry energy around
the saturation density. On the other hand, it is noteworthy
that the narrow uncertain range for the proposed Einstein
Telescope will enable it to tightly constrain the symmetry
energy especially at high densities.

V. CONCLUSIONS

Using the EOSs for neutron-rich nucleonic matter satisfying
the latest constraints from both terrestrial nuclear experiments
and astrophysical observations, as well as the state-of-the-art
nuclear many-body calculations for PNM EOS, we found that

the tidal polarizability of canonical neutron starts in coalescing
binaries is very sensitive to the high-density behavior of
nuclear symmetry energy, but little affected by the variations
of SNM EOS and symmetry energy around the saturation
density within their remaining uncertainty ranges. Future
measurements of the tidal polarizability of neutron stars using
the forthcoming GW detectors, most notably the proposed
Einstein Telescope, will help constrain stringently the high-
density behavior of nuclear symmetry energy, and thus the
nature of dense neutron-rich nucleonic matter.
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