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We investigate the variation with light quark mass of the mass of the nucleon as well as the masses of the mesons
commonly used in a one-boson-exchange model of the nucleon-nucleon force. Care is taken to evaluate the meson
mass shifts at the kinematic point relevant to that problem. Using these results, we evaluate the corresponding
changes in the energy of the S, antibound state and the binding energies of the deuteron, triton, and selected finite
nuclei by using a one-boson exchange model. The results are discussed in the context of possible corrections to
the standard scenario for Big Bang nucleosynthesis in the case where, as suggested by recent observations of
quasar absorption spectra, the quark masses may have changed over the age of the Universe.
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I. INTRODUCTION

In the last decade there has been considerable interest in
the possibility that the fundamental “constants” of Nature
may actually change with time [1]. Although it remains
controversial, there is growing evidence that the fine structure
constant « may have varied by an amount of the order of a
few parts in 107> over a period of 5-10 billion years [2-5]. It
has even been suggested that this variation may have a dipole
structure as we look back in different directions [6]. Although
this possible variation is quite small, within the framework of
most attempts at grand unification, a variation of « implies
considerably larger percentage changes in quantities such as
the QCD scale Agcp and in the quark masses m, [7-9]. For
example, in Ref. [7] it was shown that the variation ém,/m,
would be of order 38 times that of S« /c.

In the light of these developments it is very natural to ask
what other signatures there may be for such changes. These
may, for example, be consequent changes in hadron masses or
magnetic moments [10-12]. Indeed, in some cases the level
of precision possible in modern atomic, molecular, and optical
physics means that it may even be feasible to detect the minute
variations expected under the hypothesis of linear variation
until the present day over a period as short as a year [13—15].

Another consequence of a variation in the parameters
relevant to hadron structure is the possibility of observable
consequences in Big Bang nucleosynthesis (BBN) or in other
nuclear phenomena such as the composition of the ash of long
extinct natural nuclear reactors [16—18]. Ideally one would
like to have a direct solution for nuclear energy levels as a
function of quark mass starting from QCD itself. Indeed, the
effect of quark mass changes on the nucleon-nucleon force
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has been studied using QCD sum rules [19], in effective field
theory [20,21], and most recently by including constraints from
lattice QCD [22,23]. However, for the moment these lattice
studies are at too high a quark mass to provide an accurate
constraint [23,24]. Since the direct calculation within QCD
is not currently feasible, one must rely on more traditional
models of the nucleon-nucleon force. The latest work of
Flambaum and Wiringa [25] on this topic involved the study
of the variation of nuclear binding with quark mass using
the Argonne potential and Schwinger-Dyson estimates of the
variation of meson masses.

In this work we employ a one boson-exchange (OBE) model
of the nuclear force to calculate the variation with changes
in the quark mass of the binding energies of selected finite
nuclei as well as the energy of the 'Sy antibound state and
the binding energies of the deuteron and triton. The OBE
approach has deep roots in dispersion theory and all of the
mesons required are found in the Particle Data Group (PDG)
summary of particle properties [26]. Apart from its intrinsic
interest, this approach complements the work of Ref. [25] and a
comparison of the two provides one way to gauge the possible
model dependence of the variations reported. The method used
here involves a detailed study of the variation of the mass of
each of the mesons usually employed in the OBE picture of
the nucleon-nucleon (N N) force. Care is taken to estimate this
variation at the relevant kinematic point, not just at the real,
on-shell meson mass or its pole position. These changes are
then introduced into the quark-meson coupling (QMC) model
for some light nuclei and a typical OBE model for the two
nucleon systems and a Faddeev calculation of the triton.

In Sec. II we examine the best available constraints on
the variation with quark mass of the masses of the mesons
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0y, 01, W, p, 7w, and n, whose exchange between nucleons
yields the OBE force. In each case we employ the best available
constraints, whether from chiral symmetry or lattice QCD or,
in the case of the o meson, from the Roy equation. Section III
presents the consequences of these mass changes for the
binding energy of finite nuclei, while the two-nucleon system
and triton are discussed in Sec. IV. The final section is reserved
for some concluding remarks.

II. MESON MASSES

The variations of the 7 and  masses with light quark mass
are well understood through the Gell-Mann—Oakes—Renner
(GMOR) relation, which is a consequence of the chiral
symmetry of QCD. For the other exchanged bosons, oy, o;p,
and w, we need more information. In the scalar-isoscalar case
(0p) we introduce a description of the bare mass of the o
(m©) in terms of m, using the Nambu-Jona-Lasinio (NJL)
model [27,28]. Since this model respects the chiral symmetry
of QCD there are powerful constraints between the properties
of the m and the o in this model. The self-energy of the o is
treated with an effective Lagrangian tuned to reproduce the
model-independent pole position of the ¢ resonance in the
complex energy plane found by Leutwyler et al. [29]. In the
case of the p (and the closely related w) we have excellent
constraints from lattice QCD studies as a function of quark
mass, supplemented with chiral effective field theory [30].

A. Variation in m, with m,

In this work we choose to parametrize the intermediate-
range attraction in the NN force in terms the exchange of a o
meson, following the traditional OBE approach. Earlier work
on the effect of changes in quark masses by Flambaum and
Wiringa [25] used explicit two-pion exchange for this purpose.
Almost certainly the reality is somewhere in between these
extremes and a comparison between our results and those of
Ref. [25] should serve to pin down the uncertainties in this
sector of the calculation.

The existence of the o meson has been somewhat con-
troversial, largely because its width is comparable with its
mass. However, a careful dispersion relation treatment using
the Roy equation has served to accurately locate a pole which
can be unambiguously identified with the o meson. Of course,
because of the large imaginary part of the energy of this pole,
one cannot easily relate the position of the pole to the position
of a bump in the w7 cross section. When it comes to the mass
of the virtual o meson exchanged in a OBE N N potential, it
is a third value that is of interest. Indeed, the invariant mass of
a meson exchanged in a typical NN interaction is very near
zero and so we actually need the o mass for p> ~ 0. This is
most readily found within an effective Lagrangian approach.

Any effective Lagrangian treatment of the o meson involves
a “bare” o meson coupled to two pions. Since the “bare” o is
a zero-width state, the inclusion of pion loops ensures that the
position and width of the pole in the second Riemann sheet
are reproduced. When required, the variation of the mass of
the bare state with quark mass will be calculated within the
NJL model. As we remarked earlier this approach respects
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FIG. 1. Self-energy contributions for the & meson.

the symmetries of QCD and links the properties of the pion
and kaon. For example, it guarantees that in the chiral limit
(zero-mass pion) the o mass is exactly twice the constituent
quark mass. With the mass of the “bare” (two-quark) o fixed
this way, the propagator of the dressed o is described as a bare
scalar propagator plus an infinite series of contributions of the

form shown in Fig. 1. By calling this self-energy X2 _, the total
propagator can be written as
A — i
o — 0 2
p? = (ms”)
i i
(%) ———=5+
0)\2 T 0)\2
P = (ms”) P = (ms")
which resums to
A, = ! . (1)

p? — (m)’ + =2,
The pole in A, is the mass of the o resonance. This pole
was calculated by Leutwyler et al. using the method of Roy

equations, which is model independent [31]. They obtained a
pole located in the complex second sheet for p at

p=m, — IEF =441t _ 272 MeV.  (2)

The real part of the position of the resonance, m, = 441 MeV,
is in the range 400-550 MeV given by the PDG [26], while
its width, I = 544 MeV, is within the range 400-700 MeV,
also from the PDG. A recent analysis by Pelaez er al. [32],
based on the GPKY equations, yields a pole position of
457113 — 279"} MeV, which is also consistent with Eq. (2)
within errors.

Having a reliable value for the o pole we can find a relation
that lets us fix X7 such that

\/(mgp))z — %9 (m2) = 441 — 272 MeV. 3)

With derivative coupling of the bare o to two pions (consistent
with chiral symmetry), the expression for the w7 self-energy
is found to be

3, d*k [k*(p — k), J?

20 ] @nyt (= m2) (p— k)2 — ma 2

where k represents the pion loop momentum, p the o
momentum, and y the o coupling (where initially we took
the value yy from Harada, Sannino, and Schechter [33]). We
are considering all these particles as elementary, so this is just
an effective theory, and like any other effective theory it has
to be regularized. The regularization scheme we choose is to
impose a dipole cutoff (at each vertex) on the loop momentum

with mass A:
221t
|:1 _ M} , (5)

e
X, =

“)
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TABLE 1. Parameters fixed to reproduce the position of the o
meson pole [y = 6.416 x 107> (MeV~")]. Am, is the deviation of
the fitted from the empirical value.
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TABLE II. Calculations for the coefficient v,, which relates the
fractional change of the mass of the o meson relevant to the OBE
potential model to the fractional change in the quark mass.

Y (X10) A (MeV) m® (MeV) Amg, MeV) x 107
4.56 320 563.5 1.2 -1.0¢
4.60 330 600.2 1.1 —0.5i
4.70 340 639.8 1.2 -0.0¢
4.83 350 683.5 1.2 -0.0¢
5.02 360 732.0 0.0 +0.0¢
5.27 370 790.2 09 —-1.2i
5.61 380 859.2 0.4 —0.9i
6.07 390 945.4 0.9 —-0.9i

which is sufficient to ensure convergence. This dipole regulator
contains simple poles in k (after writing it in the form of
derivatives with respect to A), which permits us to use contour
integration over the time component.

For the remaining integral over the three-momentum we
rotated k in the complex plane |k|e?, with —37” <6 <0,to
ensure that the imaginary part is located in the complex second
Riemann sheet. We also performed a numerical integration
with the help of the routine NIntegral of MATHEMATICA.
The final value of £ (p*) depends on two parameters: the
regularization mass A and the coupling constant 3. We choose
a range of values for A such that, after fixing yy and m© to
reproduce the pole position [Eq. (2)], m(?) varies from 560 to
950 MeV. The results are summarized in Table I, where Am,,
represents the deviation of our result for the pole position from
that of Leutwyler and collaborators.

We then define m2(OBE) = (m®)> — £2_(0), because in
an OBE potential model for the N N interaction the exchanged
boson has nearly zero momentum. mi(OBE) is a real value
because X2_(0) is real. Thus any variation on m,(OBE) with
respect to m, is given by variations in m{’) and £2_ (0):

sm2 (OBE) _ m® sm® 32, (0)

= , 6
Sm2 My My Sm? ©)
and using the GMOR relation [34], we get
dmy (OBE 8
Smg (OBE) _ | omy 7
m, (OBE) my
with
m2  [8(m0)* 5%, (©)
Vo = - . ®)
2m2 (OBE)| dm2 dm2
We change m, near the physical value and find the variation
52#”2(0), which is almost constant for a small change in mi, SO

we only need to find the slope of the plot of £2_ (0) versus m?.

We also need the variation of m® with m,, near 140 MeV. For
this purpose we used the NJL model, which is known to respect
the chiral behavior of QCD, including the GMOR relation. The
results for all the cases in Table I are listed in Table II.

From Table II, we notice that as A increases (which

occurs when m? grows) the value of £2_(0) also grows and
5m2(OBE)
2 Sm2

practice the variation of the o bare mass is much larger and, in

its contribution of % to increases. However, in

m(ao) azﬁ;fny,% (0) a(grfg)l LSm%g ;(;{BE) v,
563.5 —0.145 2.677 2.822 0.089
600.2 —0.164 2.632 2.796 0.078
639.8 —0.189 2.576 2.765 0.068
683.5 -0.220 2.546 2.766 0.060
732.0 —0.261 2.502 2.763 0.052
790.2 —-0.314 2.451 2.765 0.045
859.2 —0.389 2.401 2.790 0.038
945.4 —0.495 2.344 2.839 0.032

total, the larger m(¥) the smaller the coefficient v,. Moreover,
calculations within the QMC model tend to favor values for
my (OBE) near 550 MeV (see Sec. IV).

B. Variations in m, and m,, with respect to m,

In the case of the p meson one can provide a very reliable
description of the variation of its mass with m, because we
have a good deal of data taken from lattice calculations in
partially quenched QCD from the CP-PACS Collaboration.
Armour et al. [30] used these data in an analysis that included
the leading and next-to-leading nonanalytic chiral corrections
to the self-energy to make an extrapolation of the mass m,, to
the chiral limit (m, =~ 0). At the physical value of m, they
found excellent agreement with the physical value.

The relevant self-energy diagrams for the p are given in
Fig. 2.

These yield the following expressions:

2 00 4.2
k*u? (k) dk
E£ﬂ=—6‘;;’§f O
0wy (k) (w2(k) — =)
4.2
o _ _ 8uwpr /OO k*uz,, (k) dk 10
Tw 127_[2 P w% (k) ’ ( )

where f,r, = 6.028 and g,,, = 0.016 MeV~!. The regular-
ization functions used in the analysis are

A4
Upe (k) = TS (11)
A2 %2y
s = e @

and we use the approximations m, < m,, , and m, ~ m,,.
The fit to the partially quenched lattice QCD data for the p
meson involved a fit of the form

2
my = \/(ao + aym2 + asmt)” + Sror, (13)

™ T
-~ -

4 N 4 A Y

| 1 ] 1
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(2) (b)

FIG. 2. Self-energy contributions for the p meson.
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where Xtor = X2 4 X2 . and the coefficients a; are
ap = 832.00 MeV, a; = 4.94 x 107* MeV~!, a4y = —6.10 x
107" MeV—3, and A = 655.00 MeV (up to errors). At the
physical pion mass (in full QCD) this yields a value of

m, ~ 7718 MeV, (14)

which shows remarkable agreement with the physical value,
with a shift of only

my —mP™s ~ 3.7 MeV. (15)

As in the case of the o meson, we consider a OBE potential
with almost zero momentum transfer, so that @, ~ 0 in the
propagator of Eq. (9) (not in the regulator, because the mass
that appears there is the physical mass):

P = i /oo Kty () dk (16)
™ 6m? w3 (k)

This of course changes the value of m,, now denoted
m,(OBE), at the physical pion mass. Indeed, in this case
it is near 762 MeV. The relation between m, and m2 near
the physical value is almost linear and it presents a slope of
%OZBE) = 0.00135 MeV~'. Following the analysis for m,

we can relate this change with m, in the following way:

ém,(OBE) ( m?2 Smp(OBE)> ‘Sﬂ

b/

m,(OBE)  &m2

Using for m,(OBE), henceforth simply written as m,, the
value 770 MeV, which is usually used in OBE models, we find

A7)

mp mg

20— 0.0344. (18)

The analysis for the w meson is closely related to that of the
o meson. However, the diagrams that contribute to the self-
energy terms differ because there is no two-pion contribution
because of G parity. In addition, X7 is 3X/ , because there
are three possible p-m charge combinations. For the analytic
terms in the expansion we use the same coefficients (a;) as in
the case of the p, because the mass difference between them is
only of order 10 MeV. Then the variation of m,, with respect

to m2 near the physical value gives 2% = 0.00096 MeV~',

Sm2
which leads to the relation
dmy, )
Mo — 0.024204 (19)
My mgy

where we used the physical mass for the w, m,, = 782 MeV—
again because that is the value typically used in a OBE
potential. (The value obtained at zero momentum transfer
would be 765 MeV.)

C. Summary of meson mass variation

For the 1, like the pion, we use the GMOR relation to
calculate the variation with respect to the # and d masses. In
the case of the isovector scalar meson, o, which has negative G
parity and therefore does not couple to two pions, we use the
NJL model (corresponding to the third column and second
row of Table II) and Eq. (8) without the self-energy part.
For convenience, in Table III we summarize the values of

PHYSICAL REVIEW C 87, 015801 (2013)

TABLE III. Coefficients v; summarizing the rate
of variation of the masses of the mesons used in an
OBE description of the N N force with respect to quark
mass [see Eq. (20)].

Meson v (MeV)
b4 0.5

n 0.012
09 0.089
o) 0.072
0 0.034
w 0.024

v;, defined as

omi | dmy (20)

- "

m; mgy

which will be used below.

III. NUCLEON MASS

In order to compute the variation of nuclear binding
energies with quark mass, we also need to know how the
nucleon mass changes.

The variation with light quark mass is directly given by the
so-called w N sigma commutator

SmN

oxn = Mmg(N| qq|N) =my 2

omy ’
where gg = uu + dd.

The last equality, which gives the information we need,
follows from the Feynman-Hellmann theorem. A number of
methods have been used to extract o,y from pion-nucleon
scattering data using dispersion relations, but the resulting
value is still controversial.

Instead, the most reliable method seems to be to use fits
to lattice QCD data for my as a function of m, [35]. These
fits, which build the constraints of chiral effective field theory,
appear to yield very reliable values. We take the result of
the latest analysis of PACS-CS data by Shanahan et al. [36],
namely, o,y = 45 £ 6 MeV. Thus we use

— = 0.048—. (22)

IV. "Li, 2C, AND 0 NUCLEI

To study the effect of the quark mass variation on the
single-particle energies of "Li, '>C, and '°0 nuclei, it is highly
desirable to use a nuclear model based on quark degrees of
freedom. The QMC model, which originated with Guichon
[37] as a description of nuclear matter, has been extended and
improved to describe the properties of finite nuclei [38—40] and
is ideal for this purpose. The successful features of the QMC
model applied to various nuclear phenomena and hadronic
properties in a nuclear medium are reviewed extensively in
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TABLE IV. Single-particle energies (in MeV) for 'Li, '2C, and 'O nuclei versus quark mass 1, (in MeV) calculated in the quark-meson
coupling model [39]. E /nucleon stands for energy per nucleon. The standard value for the quark mass used in the QMC modelis m, = 5.00 MeV.

States mg
4.90 4.95 5.00 5.05 5.10

Li

D Lsi» —19.02 —18.86 —18.71 —18.55 —18.39
1p3) -3.59 —3.51 —3.43 —-3.34 —3.26

n Lsi2 —18.35 —18.21 —18.08 —17.94 —17.80
1psn —3.24 -3.17 -3.10 —3.04 —2.97
E /nucleon —1.71 —1.66 —1.61 —1.57 —1.52

IZC

D Lsi» —26.26 —26.11 —25.96 —25.82 —25.67
1ps3) —10.04 —-9.94 —-9.84 -9.74 -9.64

n 11,2 —29.41 —29.26 —29.10 —28.96 —28.80
1psn —12.94 —12.84 —12.73 —12.63 —12.52
E /nucleon —4.17 —4.11 —4.04 -3.97 -3.91

160

p Lsi2 —29.07 —28.93 —28.78 —28.64 —28.49
Lps) —13.86 —13.75 —13.64 —13.53 —13.42
1pip —12.06 —11.96 —11.87 —11.77 —11.67

n Lsi —33.09 —32.94 —32.78 —32.64 —32.49
1ps3) —17.63 —17.51 —17.40 —17.28 —-17.17
1pip —15.82 —15.71 —15.61 —15.50 —15.40
E /nucleon —6.11 —6.04 —5.96 —5.89 —5.82

Ref. [41]. The model has been updated to study the properties
of hypernuclei [42] and neutron star structure [43—45], where
the quark structure of the nucleons and hyperons should play
an important role at such high density.

We note that the energy functional derived from the QMC
model [46] yields a density-dependent effective interaction of
the Skyrme type that has recently been shown to be among the
very few Skyrme forces that satisfies a selection of constraints
derived from nuclear data by Dutra er al. [47]. In view
of its origins at the quark level and its phenomenological
success it seems appropriate to use this model to calculate
the changes in binding energy of finite nuclei induced by
small changes in quark mass. We calculate the change in
the single-particle energies of these nuclei versus the current
quark mass (m,) and the mass of the nucleon (m y) using the
theory presented in Ref. [39] and the meson and nucleon mass
changes calculated above. In future it would be worthwhile
to extend this Hartree calculation to include Fock terms [48]
or perhaps pursue a full relativistic Brueckner-Hartree-Fock
treatment.

In Ref. [39] the standard values used to reproduce the
nuclear matter saturation properties are (my, Mgy, My, M,) =
(939, 550, 783, 770) MeV, with the current quark mass m, =
5.0 MeV. For the calculation of finite nuclei, the ratio for
the o-N coupling constant and the mass, (g2 /m,), was kept
constant and fitted to the rms charge radius of 0Ca, r4(*Ca) =
3.48 fm, by adjusting m, — i, = 418 MeV. [Note that the
variation of m, at fixed (gé\’ /m,) has no effect on the nuclear
matter properties.] To account for this, we calculate the shift in
m, from 550 MeV for a given variation of the quark mass. This
changes the ratio (g2 /m, ) and from that new value we deduce

the corresponding shift in m, from 418 MeV, to be used in the
finite nucleus calculation. First, with the nucleon mass fixed
at my = 939 MeV and the variations of the meson masses,
dMg e, p, evaluated for quark mass variations of ém, = 30.05
and £0.1 MeV, we calculate the single-energies in ’Li, '>C,
and '°0. Note that the very small differences for the o and
w meson mass values used to extract the relation in terms of
dmg in Secs. II A and I B, were neglected. In addition, we also
calculate the energy per nucleon (E /nucleon). The results are
given in Table I'V.

From Table IV we see that the absolute values of the
single-particle binding energies of each nucleus decrease as
the quark mass increases. This is because an increase of the
quark mass leads to a significant increase of the mass of the
o meson and this reduces the attraction arising from o meson
exchange by more than the repulsion associated with the w
decreases. It is interesting to point out that a small variation
of the quark mass of 0.05 MeV is reflected in a change in the
single-particle energies of the order of 0.1 MeV. That is, the
impact is appreciable. Furthermore, we note that the binding
energy per nucleon for each nucleus decreases linearly as the
quark mass increases.

Next, we calculate the variation of the single-particle
energies as the mass of the nucleon is varied. The results
are given in Table V for the same nuclei as in Table IV. As
the value of the nucleon mass increases the absolute values of
the single-particle binding energies also increase. This seems
to be natural, since the kinetic energy is suppressed.

It may be helpful to consider the binding energy per nucleon
as a function of the quark mass. Based on the results given in
Tables IV and V, and in Eq. (22), we get the following relations
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TABLE V. Single-particle energies (in MeV) for "Li, 1>C, and 'O nuclei versus nucleon mass m y (in MeV), calculated in the quark-meson
coupling model [39]. E/nucleon stands for energy per nucleon. The standard value for the nucleon mass used in the QMC model is

my = 939.0 MeV.

States my
938.0 938.5 939.0 939.5 940.0
Li
p Isi —18.68 —18.69 —18.71 —18.72 —18.74
1p32 —3.40 —3.41 —3.43 —3.44 —3.45
n Lsi —18.05 —18.06 —18.08 —18.09 —18.10
1p3p —3.08 -3.09 —3.10 —3.11 —-3.12
E /nucleon —1.60 —1.61 —1.61 —1.62 —1.63
12
C
)4 Lsi/2 —25.94 —25.95 —25.96 —25.97 —25.98
1p3p —9.82 —9.83 —9.84 —9.86 —9.87
n Isi/2 —29.08 —29.09 —29.10 —29.11 —29.12
1p3) —12.71 —12.72 —12.73 —12.74 —12.76
E /nucleon —4.02 —4.03 —4.04 —4.05 —4.06
IGO
)4 Is1/2 —28.76 —28.77 —28.78 —28.79 —28.80
1p3p —13.62 —13.63 —13.64 —13.65 —13.66
—11.84 —11.86 —11.87 —11.88 —11.89
n LIsi —-32.77 —32.78 —32.78 —32.80 —32.80
1psp —17.37 —17.38 —17.40 —17.41 —17.42
1piy —15.58 —15.59 —15.61 —15.62 —15.63
E /nucleon —-5.94 —-5.95 —5.96 —-5.97 —5.98
for each nucleus: V. VARIATION IN THE ENERGIES OF TWO- AND
THREE-NUCLEON SYSTEMS WITH VARIATION
8 |En| /nucleon - dmg 3 IN THE MESON AND NUCLEON MASSES
|E7i| /nucleon Tomg To examine the variation in the binding energy of the
§|Euc| /mucleon . dmy 24) deuteron and triton with changes in the meson and nucleon
|Evc| /nucleon " my, masses, we need to consider a purely OBE model for the
8 |Eiol /nucleon Smy nucleon-nucleon interaction. We choose to employ the OBE
W = _l'OSm_q (25) potential of Bryan and Scott (BS) [49], which includes the

The contributions to the previous coefficients from the varia-
tion of the exchanged mesons masses are found from Table IV,
and from Table V we obtain the contribution from the nucleon
mass. These calculations are summarized in the following
equation:

8 | E;| /nucleon dmy
T 1 = (Umesons + Vnuc]eon) >

|E;| /nucleon my

with i representing each of the three nuclei we are considering,
Vmesons Deing described by

8 |E;| /nucleon My
v o Q — :
'mesons 3mq |E;| /nucleon
and Vpycleon by
8 |E;| /nucleon my
o , -0.048.
nucleon Smy |E;| /nucleon

exchange of m, n, oy, o1, p, and w mesons. To avoid the
singular nature of this potential, BS introduced a monopole
regularization scheme that ensured that the potential is finite at
the origin. With a cutoff mass of 1500 MeV this regularization
is shorter in range than the range of the heaviest of the
bosons included in the potential. As a result, the medium-range
interaction is dominated by the oy and o, followed by the p
and w exchanges.

Because of the nonlocal nature of the potential (term
proportional to Vv2), we have used the method of moments [50]
to solve the Schrodinger equation for the binding energy of
the deuteron and the 'Sy amplitude. This entails expanding
the radial wave function v,(r) for a given angular momentum
£ as a linear combination of Yamaguchi [51] wave functions
wéy)(r; B;) with different range parameters §;, i.e.,

Ye(r) =Y bf (s Bo),

i=1

(26)

where we have taken n = 12 and the B; are multiples of
the pion mass. The present choice for the variational wave
function ensures that the correct long-range behavior of ¢ (r)
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is that defined by the asymptotic behavior of wéy)(r). This in
turn is determined by the binding energy of the deuteron or
the 1S, antibound state. This procedure reduces the two-body
Schrodinger equation to a set of 2n homogenous algebraic
equations that give us the binding energy and the wave function
for the deuteron to a very good approximation [50].

For the 'Sy, the pole in the scattering amplitude is on
the second energy sheet, and the analytic continuation of the
method of moments to the second energy sheet is not as simple,
because the pole is along the negative imaginary momentum
axis. However, since this antibound state pole is close to
the zero energy (Ep = —0.066 MeV), we have chosen the
zero-energy point to reduce the Schrodinger equation using the
method of moments to a set of n algebraic equations. It has been
demonstrated that this procedure gives a good representation of
the original potential for the low-energy scattering parameters.
As a result we use the effective range expansion to determine
the position of the antibound state pole in the momentum or &
plane; i.e.. we write the on-shell 'Sy amplitude in terms of the
phase shifts &y as

K2 1

thy=—— ——,
*) i kcotdy —ik

(27)
where p is the reduced mass, and make use of the effective
range expansion

1 1 5 3.4
kcotdg = —— + =rok” = Pyr] k" 4 -+, (28)
a; 2
where P is the shape parameter, to analytically continue the
amplitude onto the second energy sheet. Since the antibound
state is close to zero energy (k &~ —0.04 i), we can truncate the
effective range expansion to include the k* term. To test the
accuracy of this procedure, we compare the position of the pole
on the second energy sheet for the BS potential by truncating
at k2 and k* terms with the result Ep = —0.071 153 1 and
—0.071 154 8 MeV, respectively. As a result we have chosen
to truncate the effective range expansion to include the k* term.

The use of the trial function in Eq. (26) has the added
advantage of allowing us to construct an equivalent rank-one
separable potential, often referred to as the unitary pole
approximation (UPA), that has identically the same deuteron
wave function as the original OBE potential [50]. After partial
wave expansion, this is of the form

Vi, k') = go(k) Crpr go (K, (29)

where the form factors are directly related to the radial wave
function v,(r) and the strength of the potential is adjusted to
ensure that the matrix element of the UPA and original OBE
potential are identical at the energy of the pole in the amplitude.
The same procedure is applied to the 'Sy channel.

Having constructed a rank-one separable potential equiva-
lent to the OBE potential, we can write the Faddeev equations
as a set of coupled one-dimensional integral equations [52].
If one includes the 'Sy and 3S;-D; nucleon-nucleon partial
waves only, then the number of coupled integral equations is
reduced to five, and these can be solved for the binding energy
and wave function of the triton [53].

To examine the variation in the binding energy with changes
in the mass of the mesons and nucleon, we have calculated the
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TABLE VI. Variation in the position of the antibound state pole
on the second energy sheet, the binding energy of the deuteron, and
the binding energy of the triton with changes in hadron mass m y. For
the Bryan-Scott potential the position of the antibound state pole is
Ep = —7.1155 x 1072 MeV, the deuteron binding energy is Ep =
2.183 65 MeV, while the triton binding energy is E7 = 7.9131 MeV
in the UPA.

Hadron  mpy (MeV) % gfz %

T 138.7 2.38 x 1073 —0.0201 —0.0146
n 548.7 —7.40 x 1073 0.0019 0.0034
0o 550.0 —1.99 x 1073 —0.1026 —0.3355
o] 600.0 —3.09 x 1073 0.0486 0.0790
p 763.0 1.27 x 107* —0.0295 —0.0517
w 782.8 1.34 x 1072 0.0923 0.2776
N 938.92 2.95 x 107* 0.0289 0.0527

slope of the binding energy as a function of the mass at the
value of the mass used in the OBE potential. In Table VI
we present this variation in the energy of the antibound state
and the deuteron and triton binding energies with respect to
the variation in the masses of the six bosons included in the
OBE potential. We have also included the variation in the
binding energies with changes in the nucleon mass m . Here,
we note that the nucleon mass is present, not only in the kinetic
energy of the two- and three-body equations but also in the
definition of the BS OBE potential. For the one-pion exchange
component, the strength of the potential is proportional to
(gxnn/2M)?, which is equivalent to (fryn/my)> had BS
used a pseudo-vector coupling in the Lagrangian. From the
Goldberger-Treiman [54] relation we have that

BrN o 84 (30)
M fa

where f, is the pion decay constant. Although g4 and f,
are dependent on the quark mass, the ratio to first order is
not sensitive to variation in quark mass. This suggests that
the strength of the one-pion exchange component of the BS
potential should not change with changes in the nucleon mass.
Since the 7 is part of the same SU(3) octet as the pion, one could
apply the same argument for the n exchange component of the
OBE potential. For the scalar (o and o) and vector (p and w)
meson exchanges, the relative strength of the central, the spin-
orbit, and the tensor components depend on the nucleon mass,
and, to that extent, we have maintained the M dependence of
the OBE potential for the scalar and vector exchanges. From
Table VI we observe that the variation is largest for the o and
w, followed by the variation with the , o1, p, and N masses,
with the variation in the energy with the n mass being minimal.
From the detailed results given in Table VI and the earlier
results for the variation of the meson and nucleon masses with
quark mass, we can readily deduce the total variation of the
deuteron and triton binding energies and the energy of the

antibound state, E p, with changes in the quark mass:

SE )
°°D _ .91 G1)
D mgy
SE,; dmy
— =—-0.98—, (32)
E, my
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and
L4 = —2.84%. 33)
P my
The details for these calculations are shown in the Appendix.

The variations of the deuteron and triton binding energies
given in Egs. (31) and (32), respectively, are completely
compatible with those reported by Flambaum and Wiringa
[25]. In particular, the coefficients on the right-hand side of
those equations, namely, —0.91 for the deuteron and —0.98
for the triton, are very close to those reported in Ref. [25] for
the AV 14 potential, namely, —0.84 and —0.89.

On the other hand, for the 'S, antibound state, with energy
Ep, there is a significant disagreement. The sign reported
above for §Ep/Ep is negative, whereas a positive value was
reported in Ref. [25]. Since Dmitriev et al. [18] presented
an apparently general argument relating the change in the
deuteron binding to that in the energy of the antibound state,
we rechecked every term in our calculation carefully. There
is no doubt that our result is correct for the model used.
We note that, from Table II of Flambaum and Wiringa [25],
the individual pieces of the Argonne potential do not respect
the supposedly general result of Dmitriev et al. and therefore it
cannot be a model-independent result. We note, in particular,
that the tensor force plays a significant role for the deuteron,
whereas it is absent for the 'Sy channel. Clearly, this difference
for the 'Sy antibound state will lead to significant changes
when one computes the effect of a change in quark mass on
the reaction rate forn p — d y.

VI. CONCLUSIONS

We have calculated the variation of the binding energy of
the deuteron, the triton, and the 'S, antibound pole position,
as well as the binding energy per nucleon for a number of
light nuclei, with respect to variations in the light (average
of u and d) quark mass. Although one would ideally like to
make a first-principles calculation within QCD itself, that is
not possible at present. Rather we have employed a physically
motivated OBE model for the two- and three-body systems and
the QMC model for finite nuclei. While our detailed results
may not be the final word, we stress that the models chosen do
offer the possibility to use state-of-the-art methods to calculate
the variations of the input masses with light quark mass. The
results, expressed in terms of a parameter K 4, defined by

SBE(A) _ KA%, 34)

BE(A) mgy
are summarized in Table VII. In order to determine these
coefficients, we first calculated the change with quark mass
of the mesons used in a typical one-boson-exchange treatment
of the nucleon-nucleon force. Those results were summarized
in Table III. For each nucleus we calculated the rate of change
of the binding energy with respect to the mass of each meson
and the mass of the nucleon itself. The values of K, were
obtained by combining the latter with the results in Table III.

For the deuteron our result, K; = —0.91, is very close
to that reported by Flambaum and Wiringa [25] using the
AV 14 potential, namely, —0.84. Similarly for the triton, our
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TABLE VII. Coefficients K, summarizing the
rate of variation of the binding energies and the 'S,
antibound state pole with respect to quark mass [see

Eq. (34)].

Nucleus K4
D —0.91
T —0.98
Ep —2.84
"Li —2.57
2c —1.44
150 —1.08

value K, = —0.98 is very close to their value of —0.89. The
closeness of these results for two rather different treatments of
the N N force lends considerable confidence in their reliability.
However, for the position of the IS, antibound state our
calculation differs considerably from that of Ref. [25], taking
the opposite sign. This suggests that this quantity may be rather
more model dependent than has been realized hitherto.

In the case of light nuclei, the binding energies reported here
were calculated in the QMC model, a relativistic mean-field
model that takes into account the self-consistent response of
the internal structure of the nucleon to these mean fields.
Through the self-consistency, the model yields many-body
[55] or equivalently density-dependent interactions [46]. In-
deed, the density-dependent Skyrme forces derived from QMC
have proven remarkably realistic [47]. The values of Kj4
deduced in this way for "Li, '2C, and 'O are reported in
Egs. (24) and (25). It is interesting that the value obtained
for 7Li, namely, K+ ; = —2.57, is significantly larger than
that reported in Ref. [25], namely, —1.03 (AV14) and —1.50
(AV18 + UIX). These authors did suggest that the uncertainty
on the value of K could be as large as a factor of 2 and our value
is consistent at that level. Clearly, this degree of variation calls
for more investigation to see whether the model dependence
can be reduced.

Our study of these variations of binding energies with quark
mass is, of course, motivated by the possible effects on BBN.
Among the many challenges there, the sizable discrepancy in
the abundance of "Li with the latest photon-to-baryon ratio
(post Wilkinson Microwave Anisotropy Probe) is of particular
interest. Figure 3 illustrates the ’Li abundance calculated using
the BBN code of Kawano [56], if one allows only the binding
energy of the deuteron and the energy of the virtual 'Sy state to
change with quark mass. The curves correspond to the values
of K, and K p calculated here (solid line) as well as the values
used by Berengut er al. [57] (dashed line). The substantial
difference in slope means that while a 3% shift in 6m,/m,
would suffice to reproduce the empirical abundance using the
values of Berengut et al., with our values this would require a
huge change in quark mass. This simple example illustrates
the importance of a complete study of the BBN problem
including all of the consequences of a shift of quark mass
within the current approach, which we leave for future work.
Finally, we note that while the variation of the light quark
masses should be most important, it will also be necessary
to take into account the effect of a corresponding change in
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8.0x10710
6.0
"Li/H 4 0\\
200 T
-0.01  0.00 0.01 0.02 0.03

FIG. 3. (Color online) Abundance of ’Li with respect to
changes in the quark mass in p(n, y)d calculated in the same way
as [57] (dashed red line) and using our results for Kp and K,
(solid blue line).

the strange quark mass, especially now that the strange quark
sigma commutator seems to be under control [58].
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APPENDIX

From Table VI we find the variations of the binding energies
for the deuteron and triton (E; withi = D, T') and the position
of the pole for the 'Sy antibound state, Ep; according to
changes in the mass of the hadrons (m g),

SE; 1 SE;
e Y sy,

(AL)
Ei E,’ (SmH
H

‘We then relate the variation of the mass of each hadron to the
variation of the quark mass, as given in Eq. (20):

SmH

)
iy (A2)

mpyg my
so that
dm,

dmyg = (vyg -my) —.
mq

(A3)

Combining those results we finally obtain the formula that
gives rise to the results in Egs. (31)—(33):

SE: 1  OE; sm,
E_EXH:(S””H (v -mp) "y

(A4)
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