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Nuclear symmetry energy from QCD sum rules
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We calculate the nucleon self-energies in isospin-asymmetric nuclear matter using QCD sum rules. Taking the
difference of these for the neutron and proton enables us to express the potential part of the nuclear symmetry
energy in terms of local operators. We find that the scalar (vector) self-energy part gives a negative (positive)
contribution to the nuclear symmetry energy which is consistent with the results from relativistic mean-field
theories. Moreover, we find that an important contribution to the negative contribution of the scalar self-energy
comes from the twist-4 matrix elements, whose leading density dependence can be extracted from deep inelastic
scattering experiments. This suggests that the twist-4 contribution partly mimics the exchange of the δ meson
and that it constitutes an essential part in the origin of the nuclear symmetry energy from QCD. Our result also
extends an early success of QCD sum-rule method in understanding the symmetric nuclear matter in terms of
QCD variables to the asymmetric nuclear matter case.

DOI: 10.1103/PhysRevC.87.015204 PACS number(s): 21.65.Cd, 21.65.Ef, 12.38.Lg

I. INTRODUCTION

There is a renewed interest in the study of nuclear symmetry
energy recently, as the next-generation low-energy rare isotope
accelerators are being constructed and planned worldwide [1].
Understanding the details of the nuclear symmetry energy is
intricately related to understanding a wide range of subjects
ranging from rare isotopes to neutron-rich nuclear matter such
as the neutron star [2,3]. One of the main puzzles to be solved
currently is the behavior of the nuclear symmetry energy at
high density [4,5].

From a phenomenological point of view, the nuclear sym-
metry energy can be obtained by looking at the nuclear binding
energy within the semiempirical mass formula in the limit
of a large nucleon number [6]. There, the symmetry energy
can be understood as originating from the energy difference
between the proton and the neutron in isospin-asymmetric
nuclear matter. Hence, in this picture, the nuclear symmetry
energy can be obtained from the nucleon optical potential or
by calculating the energy of the nucleon quasiparticle near the
Fermi surfaces in asymmetric nuclear matter.

In the Dirac phenomenology of nucleon-nucleus scattering
[7,8], the optical potential of the nucleon is composed of a
vector and scalar part, U � S + V γ 0. It is well known that
in order to fit the spin observable, one needs a strong scalar
attraction (Re S < 0) and a strong vector repulsion (Re V > 0),
both of several hundred MeV but such that the combined sum
to the energy is only a few tens of MeV, a result consistent with
traditional low-energy nuclear physics. The strong scalar and
vector potentials appear naturally in the relativistic mean-field
theories (RMFT), where meson exchange interactions between
nucleons on the Fermi sea produces the strong scalar and vector
potentials for the nucleons.

But it was only after the works in QCD sum rules that the
strong optical potentials were found to have a basis in QCD.
The application of QCD sum rules [9,10] to the nucleon in the
vacuum was developed in Refs. [11,12]. The first pioneering
work of applying the QCD sum-rule method to nucleons in
medium was performed by Drukarev and Levin [13,14]. Here,
the operator product expansion (OPE) was performed in the

light cone direction where −q2, qu → ∞ with their ratio
finite, where qμ, uμ are the external momenta and the medium
four-vector, respectively. Later, the relation became clearer
through the work by Cohen, Furnstahl, and Griegel [15], who
showed that the strong scalar-vector self-energy appearing in
the quasinucleon pole in the symmetric nuclear matter can
be traced back to the scalar-vector quark condensate in the
nuclear medium. The OPE in this work was based on the
short distance expansion, where −q2 → ∞, while qu is held
fixed. For the medium at rest, this expansion is equivalent to
taking the energy to be large and imaginary at a fixed finite
three momentum [16–19] and, hence, the comparison to the
self-energy obtained in the RMFT approaches becomes more
direct through the use of the energy dispersion relation.1

Motivated by these results, and to express and elucidate
the origin of nuclear symmetry energy directly from QCD, we
have applied the QCD sum rule to calculate the neutron and
proton energy in asymmetric nuclear matter. Identifying the
difference with appropriate factors to the nuclear symmetry
energy, we show that this energy can be expressed in terms of
quark and gluon degrees of freedom. Results based on the first
formalism to calculate the nucleon mass in asymmetric matter
using QCD sum rules were reported before [20–22]. But here,
we will follow the second formalism adopted in Ref. [15].
We have performed the OPE up to dimension-six operators
and have identified all the independent twist-4 operators.
Independent twist-4 operators and their relation to moments
of structure functions appearing in deep inelastic scattering
(DIS) were identified before [23–29]. In a later work by
one of us [30,31], the available experimental data on twist-4
effects were collected to constrain the independent matrix
elements. Using this information, we have calculated the
leading density dependence on the nucleon sum rules coming

1One should caution, however, that the strong medium dependence
of the scalar-scalar four-quark condensate obtained from a naive
factorized form leads to a result that does not agree well with the
nuclear phenomenology [18].
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from the twist-4 effects. From the QCD sum-rule analysis, we
find that the scalar (vector) self-energy part gives a negative
(positive) contribution to the nuclear symmetry energy, which
is consistent with the results from relativistic mean-field
theories. Moreover, we find that an important contribution to
the negative contribution of the scalar self-energy comes from
the twist-4 matrix elements, whose higher-density behavior
will determine the still-controversial property of the symmetry
energy at these densities. Our result also extends an early
success of the QCD sum-rule method in understanding the
symmetric nuclear matter in terms of QCD operators to the
asymmetric nuclear matter case.

The paper is organized as follows. In Sec. II, we start with
a brief review and a simple idea for the nuclear symmetry
energy. In Sec. III, we develop the QCD sum-rule formalism
and discuss the OPE and its matrix elements. The results for
the QCD sum-rule analysis for the nucleons in asymmetric
nuclear matter and the nuclear symmetry energy are presented
in Sec. IV. Finally, the conclusion is given in Sec. V.

II. A SIMPLIFIED DESCRIPTION FOR THE NUCLEAR
SYMMETRY ENERGY

We start from a finite nuclei with A nucleons. The Bethe-
Weizsäker formula for the nuclear binding energy is given as

mtot = Nmn + Zmp − EB/c2,

EB = aV A − aSA
2
3 − aC[Z(Z − 1)]A− 1

3

− aAI 2A + δ(A,Z), (1)

where I = (N − Z)/A. The fourth term accounts for the total
shifted energy due to the neutron number excess. Taking the
infinite nuclear matter limit of this formula, one notes that aA

reduces to the nuclear symmetry energy [6].
To derive the formula for aA that can be generalized to the

infinite nuclear matter, we start from a simple formula for the
total energy,

Etot = NEn + ZEp = 1
2A(1 + I )En + 1

2A(1 − I )Ep

= 1
2A(En + Ep) + 1

2AI (En − Ep), (2)

where En (Ep) is the average neutron (proton) quasiparticle
energy in asymmetric nuclear matter. Now the core of the
model is what approximation goes into calculating the average
energy.

The symmetry energy in asymmetric nuclear matter is
defined as

Etot(ρ, I ) = E0(ρ)A + Esym(ρ)I 2A + O(I 4), (3)

where ρ is the nuclear medium density and I = (N −
Z)/A → (ρn − ρp)/(ρn + ρp) and the neutron and proton
densities are ρn = 1

2ρ(1 + I ), ρp = 1
2ρ(1 − I ), respectively.

Therefore, in Eq. (2), the symmetry energy will have contri-
butions from the term proportional to I in (En − Ep) and the
term proportional to I 2 in (En + Ep).

For a noninteracting Fermi gas of nucleons, each with
mass mN , calculating the average nucleon energy will give

E = 3
5EF , where EF is the nucleon Fermi energy. Following

the procedure described above and extracting the term propor-
tional to I 2 gives a nuclear symmetry energy of 1

3EF .
Going back to finite nuclei, assuming a “Fermi well” with

constant energy difference � between adjacent nucleon energy
levels, the symmetry energy can be obtained from the second
term of Eq. (2). That is, using (En − Ep) = 1

4IA�, we have

aA = 1

8
A� = 1

4I
[En(A, I ) − Ep(A, I )]. (4)

For the infinite nuclear matter case, we can calculate EN

from

EN = 1∫
d3knd3kp

∫
d3knd

3kpEN (ρn, ρp), (5)

and obtain the nuclear symmetry energy Esym(ρ), as it appears
in Eq. (3), by collecting coefficients of I 2 in Eq. (2). Esym(ρ)
can in general be decomposed into the kineticlike part and
the potential-like part in the mean-field-type quasiparticle
approximation. The kinetic part of Esym can be obtained from
the formula given in Ref. [32],

E
sym
K = 1

6

k2
F√

k2
F + E2

q,V (I=0)

, (6)

where kF is the Fermi momentum and Eq,V (I=0) is the potential
part of the quasinucleon self-energy in asymmetric nuclear
matter.

A. Linear density approximation

In the present QCD sum-rule calculations, we will be
using the linear density approximation, because the in-medium
condensates in the QCD sum rule can be most reliably
estimated to leading order in density. This means that for either
the proton or the neutron, the mass will be given as follows:

En
V (ρn, ρp) = m0 + aρp + bρn

= m0 + 1
2ρ(a + b) + 1

2ρI (b − a),

E
p
V (ρn, ρp) = m0 + 1

2ρ(a + b) − 1
2ρI (b − a), (7)

where m0 is the vacuum mass and a, b are the constants to be
determined later. We then have

E
N

V = 1∫
d3knd3kp

∫
d3knd

3kpEN
V (ρn, ρp)

= m0 + 1

2
aρp + 1

2
bρn

= m0 + 1

4
ρ(a + b) + 1

4
ρI (b − a). (8)

Combining Eq. (8) with Eq. (2), we obtain the symmetry
energy. That is, (E

n

V − E
p

V ) = 1
2 [En

V (ρn, ρp) − E
p
V (ρn, ρp)],

hence,

E
sym
V = 1

4I

[
En

V (ρn, ρp) − E
p
V (ρn, ρp)

]
, (9)

which is similar to the relation given in Eq. (4). Therefore, to
this order, the symmetry energy comes only from the energy
difference in the proton and neutron at the Fermi surface
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in asymmetric nuclear matter as given in Eq. (9). However,
when operators have higher density dependence, the factors
appearing in Eq. (8) should be modified, and the symmetry
energy will have contributions from both the sum and the
difference of the nucleon energies.

The quantity of interest, namely [En
V (ρn, ρp) −

E
p
V (ρn, ρp)], can be obtained by looking at the pole of

the nucleon propagator in nuclear medium,

G(q) = −i

∫
d4xeiqx〈�0|T [ψ(x)ψ̄(0)]|�0〉, (10)

where |�0〉 is the nuclear medium ground state and ψ(x) is
a nucleon field. A relativistic mean-field type of contribution
will then appear in the self-energies. The nucleon propagator
can be decomposed as

G(q) = Gs(q
2, qu) + Gq(q2, qu)q/ + Gu(q2, qu)u/, (11)

where uμ is the four-velocity of the nuclear medium ground
state [16].

The nucleon self-energy can be decomposed similarly as
[15–18]

�(q) = �̃s(q
2, qu) + �̃μ

v (q)γμ, (12)

where

�̃μ
v (q) = �u(q2, qu)uμ + �q(q2, qu)qμ. (13)

In the mean-field approximation �s and �v are real and
momentum independent and �q is negligible. Hence,

�v ≡ �u

1 − �q

∼ �u, M∗
N ≡ MN + �̃s

1 − �q

∼ MN + �̃s . (14)

The phenomenological representation of the nucleon prop-
agator can then be written as

G(q) = 1

q/ − Mn − �(q)
→ λ2 q/ + M∗ − u/�v

(q0 − Eq)(q0 − Ē0)
, (15)

where λ is unity in this discussion. But if one includes the
effect of �q , λ2 = (1 − �q)−1. Eq and Ēq are the positive and
negative energy poles, respectively,

Eq = �v +
√


q2 + M∗2
N , (16)

Ēq = �v −
√


q2 + M∗2
N . (17)

With fixed |
q|, G(q) depends only on q0. One can extract
self-energy near ∼Eq with analytic properties of the nucleon
propagator.

III. QCD SUM RULE AND MATRIX ELEMENTS
IN THE ASYMMETRIC NUCLEAR MEDIUM

A. Operator product expansion and Borel sum rule

To express the self-energies in terms of QCD variables, we
start with analyzing the correlation function via the OPE. The
correlator is defined as


(q) ≡ i

∫
d4xeiqx〈�0|T [η(x)η̄(0)]|�0〉, (18)

where η(x) is an interpolating current of the nucleon and
|�0〉 is the ground state of the asymmetric nuclear medium
characterized by the rest frame medium density ρ, the medium
four-velocity uμ, and the asymmetry factor I . |�0〉 is assumed
to be invariant under parity and time reversal. We will be
using the Ioffe nucleon interpolating current given as in
Refs. [11,15],

η(x) = εabc

[
uT

a (x)Cγμub(x)
]
γ5γ

μdc(x). (19)

As in the case of the nucleon propagator, using Lorentz
covariance, parity, and time reversal, one can decompose the
correlator into three invariants [16],


(q) ≡ 
s(q
2, qu) + 
q(q2, qu)q/ + 
u(q2, qu)u/. (20)

The three invariants are functions of q2 and qu, while the
vacuum invariants depends only on q2. For convenience, we
set the nuclear medium at rest, which means uμ → (1, 
0),
and keep |
q| fixed. 
i(q2, qu) then becomes a function
of q0 only, which means 
i(q2, qu) → 
i(q0, |
q| → fixed)
(i = {s, q, u}).

As mentioned before, we will follow the formalism adopted
in Ref. [15] and write the energy dispersion relation for the
invariant functions at fixed three-momentum |
q|:


i(q0, |
q|) = 1

2πi

∫ ∞

−∞
dω

�
i(ω, |
q|)
ω − q0

+ polynomials,

(21)

�
i(ω, |
q|) ≡ lim
ε→0+

[
i(ω + iε, |
q|) − 
i(ω − iε, |
q|)]
= 2Im[
i(ω, |
q|)]. (22)

The lowest-energy contribution to the discontinuity will
be saturated by a quasinucleon and quasihole contribution in
the positive and negative energy domains, respectively. Their
contribution to the spectral density will be given as in Eq. (15),
which will have the following contribution to the invariant
functions:


s(q0, |
q|) = −λ∗2
N

M∗
N

(q0 − Eq)(q0 − Ēq)
+ · · · , (23)


q(q0, |
q|) = −λ∗2
N

1

(q0 − Eq)(q0 − Ēq)
+ · · · , (24)


u(q0, |
q|) = +λ∗2
N

�v

(q0 − Eq)(q0 − Ēq)
+ · · · , (25)

where λ∗2
N is the residue at the quasinucleon pole, which

accounts for the coupling of the interpolating current to
the quasinucleon excitation state, and the omitted parts
are the contributions from the higher excitation states, which
will be accounted for through the continuum contribution after
the Borel transformation.

The even and odd parts of the invariant functions are
respectively related to the following parts of the discontinuity:


E
i

(
q2

0 , |
q|) = 1

2πi

∫ ∞

−∞
dω

ω�
i(ω, |
q|)
ω2 − q2

0

+ polynomials,


O
i

(
q2

0 , |
q|) = 1

2πi

∫ ∞

−∞
dω

�
i(ω, |
q|)
ω2 − q2

0

+ polynomials,

(26)
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where we have defined the invariants with different super-
scripts from the following decomposition according the the
parity in q0:


i(q0, |
q|) = 
E
i

(
q2

0 , |
q|) + q0

O
i

(
q2

0 , |
q|). (27)

The OPE of the three invariants of both the even and odd
parts can be expressed as


i

(
q2, q2

0

) =
∑

n

Ci
n

(
q2, q2

0

)〈Ôn〉ρ,I , (28)

where 〈Ôn〉ρ,I is the ground-state expectation value of
the physical operator in the asymmetric nuclear medium,
〈�0|Ôn|�0〉ρ,I . We will be adopting the OPE at q2 → −∞ at
finite |
q| → fixed; this is equivalent to the limit of q2

0 → −∞
at finite |
q| → fixed. The Wilson coefficients Ci

n(q2, q0) thus
can be calculated in QCD at short time [15].

The OPE of the invariants for the proton interpolating
current are given as follows up to dimension-five operators:


E
s

(
q2

0 , |
q|) = 1

4π2
q2 ln(−q2)〈d̄d〉ρ,I + 4

3π2

q2
0

q2
〈d̄{iD0iD0}d〉ρ,I , (29)


O
s

(
q2

0 , |
q|) = − 1

2π2
ln(−q2)〈d̄iD0d〉ρ,I , (30)


E
q

(
q2

0 , |
q|) = − 1

64π4
(q2)2 ln(−q2) +

[
1

9π2
ln(−q2) − 4

9π2

q2
0

q2

]
〈d̄{γ0iD0}d〉ρ,I +

[
4

9π2
ln(−q2) − 4

9π2

q2
0

q2

]
〈ū{γ0iD0}u〉ρ,I

− 1

32π2
ln(−q2)

〈
αs

π
G2

〉
ρ,I

− 1

144π2

[
ln(−q2) − 4q2

0

q2

] 〈
αs

π
[(uG)2 + (uG̃)2]

〉
ρ,I

, (31)


O
q

(
q2

0 , |
q|) = 1

6π2
ln(−q2)[〈u†u〉ρ,I + 〈d†d〉ρI

] − 2

3π2

q2
0

(q2)2
〈ū{γ0iD0iD0}u〉ρ,I − 2

3π2

q2
0

(q2)2
〈d̄{γ0iD0iD0}d〉ρ,I

− 2

3π2

1

q2
〈ū{γ0iD0iD0}u〉ρ,I + 1

18π2

1

q2
〈gsu

†σGu〉ρ,I , (32)


E
u

(
q2

0 , |
q|) = 1

12π2
q2 ln(−q2)[7〈u†u〉ρ,I + 〈d†d〉ρ,I ] + 3

π2

q2
0

q2
〈ū{γ0iD0iD0}u〉ρ,I + 1

π2

q2
0

q2
〈d̄{γ0iD0iD0}d〉ρ,I

− 1

6π2
ln(−q2)〈gsu

†σ · Gu〉ρ,I + 1

12π2
ln(−q2)〈gsd

†σGd〉ρ,I , (33)


O
u

(
q2

0 , |
q|) = − 4

9π2
ln(−q2)〈d̄{γ0iD0}d〉ρ,I − 16

9π2
ln(−q2)〈ū{γ0iD0}u〉ρ,I + 1

36π2
ln(−q2)

〈
αs

π
[(uG)2 + (uG̃)2]

〉
ρ,I

. (34)

The quark part and their flavor structure of the above OPE can be obtained by suitable substitutions of the corresponding OPE
for the � given in Ref. [33]; by changing q → u, s → d, and neglecting terms proportional to ms . Moreover, when both u and
d quarks are identified to the generic light flavor q, our OPE also reduces to that given in Ref. [18].

The next task is to identify the nucleon self-energies in the asymmetric nuclear medium. We therefore have to concentrate on
the quasinucleon pole and not on the quasihole nor the continuum excitations. To this end, we apply the Borel transformation with
appropriate weighting function to the dispersion relation [16] and the corresponding differential operatorB to the OPE side; details
of Borel transformations are given in Appendix E. The Borel transformed invariants which contain the continuum corrections are as
follows:

B̄[

s

(
q2

0 , |
q|)] = λ∗2
N M∗

pe−(E2
q−
q2)/M2 = − 1

4π2
(M2)2E1〈d̄d〉ρ,I − 4

3π2

q2〈d̄{iD0iD0}d〉ρ,IL

− 4
9

+ Ēq

[
− 1

2π2
M2E0〈d̄iD0d〉ρ,IL

− 4
9

]
, (35)

B̄[

q

(
q2

0 , |
q|)] = λ∗2
N e−(E2

q−
q2)/M2 = 1

32π4
(M2)3E2L

− 4
9 −

(
1

9π2
M2E0 − 4

9π2

q2

)
〈d̄{γ0iD0}d〉ρ,IL

− 4
9

−
(

4

9π2
M2E0 − 4

9π2

q2

)
〈ū{γ0iD0}u〉ρ,IL

− 4
9 + 1

32π2
M2

〈
αs

π
G2

〉
ρ,I

E0L
− 4

9

+ 1

144π2
(M2E0 − 4
q2)

〈
αs

π
[(u · G)2 + (u · G̃)2]

〉
ρ,I

L− 4
9 + Ēq

[
1

6π2
M2E0L

− 4
9 [〈u†u〉ρ,I + 〈d†d〉ρ,I ]

− 2

3π2

(
1 − 
q2

M2

)
〈ū{γ0iD0iD0}u〉ρ,IL

− 4
9 − 2

3π2

(
1 − 
q2

M2

)
〈d̄{γ0iD0iD0}d〉ρ,IL

− 4
9

− 2

3π2
〈ū{γ0iD0iD0}u〉ρ,IL

− 4
9 + 1

18π2
〈gsu

†σGu〉ρ,IL
− 4

9

]
, (36)
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B̄[

u

(
q2

0 , |
q|)] = λ∗2
N �p

v e−(E2
q−
q2)/M2 = 1

12π2
(M2)2[7〈u†u〉ρ,I + 〈d†d〉ρ,I ]E1L

− 4
9 + 3

π2

q2〈ū{γ0iD0iD0}u〉ρ,IL

− 4
9

+ 1

π2

q2〈d̄{γ0iD0iD0}d〉ρ,IL

− 4
9 − 1

6π2
M2〈gsu

†σGu〉ρ,IE0L
− 4

9 + 1

12π2
M2〈gsd

†σGd〉ρ,IE0L
− 4

9

+ Ēq

[
4

9π2
M2〈d̄{γ0iD0}d〉ρ,IE0L

− 4
9 + 16

9π2
M2〈ū{γ0iD0}u〉ρ,IE0L

− 4
9

− 1

36π2
M2

〈
αs

π
[(uG)2 + (uG̃)2]

〉
ρ,I

E0L
− 4

9

]
. (37)

Here, we include the corrections from the anomalous dimen-
sions as

L−2�η+�On ≡
[

ln(M/�QCD)

ln(μ/�QCD)

]−2�η+�On

, (38)

where �η (�On
) is the anomalous dimension of the interpolat-

ing current η (Ôn), μ is the normalization point of the OPE,
and �QCD is the QCD scale [16,18].

Also, the continuum corrections are taken into account
through the factors

E0 ≡ 1 − es∗
0 /M2

, (39)

E1 ≡ 1 − es∗
0 /M2

(s∗
0/M2 + 1), (40)

E2 ≡ 1 − es∗
0 /M2(

s∗2
0

/
2M4 + s∗

0/M2 + 1
)
, (41)

where s∗
0 ≡ ω2

0 − 
q2 and ω0 is the energy at the continuum
threshold. We choose the continuum to be the same as the
vacuum value ω0 = 1.5 GeV. This assumption will be justified
later as the results do not have strong ω0 dependence.

B. Condensates in the asymmetric nuclear medium

To estimate the matrix elements, we will use the linear
density approximation in the asymmetric nuclear matter,

〈Ô〉ρ,I = 〈Ô〉vac + 〈n|Ô|n〉ρn + 〈p|Ô|p〉ρp

= 〈Ô〉vac + 1
2 (〈n|Ô|n〉 + 〈p|Ô|p〉)ρ

+ 1
2 (〈n|Ô|n〉 − 〈p|Ô|p〉)Iρ. (42)

The quark flavor of condensate becomes important in
the asymmetric nuclear medium. Consider an operator Ôu,d

composed of either u or d quarks, respectively. Making use of
the isospin symmetry relation,

〈n|Ôu,d |n〉 = 〈p|Ôd,u|p〉, (43)

we can convert the neutron expectation value to the proton
expectation value, thereby rewriting Eq. (42) for the two-quark
operators as follows:

〈Ôu,d〉ρ,I = 〈Ôu,d〉vac + (〈p|Ô0|p〉 ∓ 〈p|Ô1|p〉I )ρ. (44)

Here, “−” and “+” are for the u and d quark flavors,
respectively, and the isospin operators are defined as

Ô0 ≡ 1
2 (Ôu + Ôd ), Ô1 ≡ 1

2 (Ôu − Ôd ). (45)

Hence, we will convert all the expectation values in terms of
the proton counterparts and denote them as 〈p|Ô|p〉 → 〈Ô〉p,

throughout this paper. The next task is to find 〈Ô0〉p and 〈Ô1〉p
for all operators appearing in our OPE.

1. 〈q̄ Dμ1 · · · Dμn q〉 type of condensates

Let us start by estimating the lowest-dimensional operators
〈[q̄q]0〉p and 〈[q̄q]1〉p. To find 〈[q̄q]1〉p, we will use an
estimate based on using the QCD energy momentum tensor
in the baryon octet mass relation to leading order in the quark
mass [34]; Eq. (A3) in Appendix A. Using Eq. (A4), one
finds

〈[q̄q]1〉p = 1

2
(〈p|ūu|p〉 − 〈p|d̄d|p〉)

= 1

2

[
(m�0 + m�− ) − (m�+ + m�−)

2ms − 2mq

]
. (46)

We will use the baryon masses as given in the Particle Data
Group [35]: m�0 = 1315 MeV, m�− = 1321 MeV, m�+ =
1190 MeV, m�− = 1197 MeV. Using ms = 150 MeV and
mq ≡ 1

2 (mu + md ) = 5 MeV, Eq. (46) becomes

〈[q̄q]1〉p = 1

2

(
249 MeV

300 MeV − 2mq

)
∼ 0.43. (47)

For 〈[q̄q]0〉p, we make use of the nucleon σN = 45 MeV
term,

〈[q̄q]0〉p = 1

2
(〈p|ūu|p〉 + 〈p|d̄d|p〉) = σN

2mq

∼ 4.5. (48)

For convenience, one can introduce the parameter R±(mq),
defined as

〈p|ūu|p〉 ± 〈p|d̄d|p〉 = R±(mq)〈p|ūu|p〉, (49)

which leads to

〈[q̄q]1〉p = R−(mq)

R+(mq)
〈[q̄q]0〉p. (50)

Using the previously selected values with the explicit quark
mass dependence, we have

R±(mq) ≡
[

1 ±
(

σN

mq

− 249 MeV

300 MeV − 2mq

)/
(

σN

mq

+ 249 MeV

300 MeV − 2mq

)]
, (51)

so R±(mq = 5MeV) = 1 ± 0.68.
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Using this parametrization, we can express the u quark or
d quark condensates as follows,

〈[q̄q]u,d〉ρ,I = 〈[q̄q]u,d〉vac +
[

1 ∓ R−(mq)

R+(mq)
I

]
〈[q̄q]0〉pρ,

(52)

where [q̄q]u = ūu and [q̄q]d = d̄d. For 〈q̄q〉vac, we use the
Gellmann-Oakes-Renner relation,

2mq〈q̄q〉vac = −m2
πf 2

π , (53)

where mπ = 138 MeV and fπ = 98 MeV [18]. For mq =
5 MeV, we have 〈q̄q〉vac = −(263 MeV)3.

Likewise, we will further assume that the ratios between
the isospin singlet and triplet operators remain the same for
all two-quark operator expectation values with any number of
covariant derivatives inserted,

〈[
q̄Dμ1 · · ·Dμn

q
]

1

〉
p

= R−(mq)

R+(mq)

〈[
q̄Dμ1 · · ·Dμn

q
]

0

〉
p
. (54)

With this assumption, 〈q̄Dμ1 · · ·Dμn
q〉ρ,I can be written as〈[

q̄Dμ1 · · · Dμn
q
]
u,d

〉
ρ,I

= 〈[
q̄Dμ1 · · ·Dμn

q
]
u,d

〉
vac

+
[

1 ∓ R−(mq)

R+(mq)
I

] 〈[
q̄Dμ1 · · · Dμn

q
]

0

〉
p
ρ. (55)

The symmetric and traceless part of the above type of
expectation values constitute the moments of the twist-3
en(x, μ2) structure function defined as follows [36]:〈[

q̄
{
Dμ1 · · ·Dμn

}
q
]

0

〉
p

≡ (−i)nen(μ2)
{
pμ1 · · · pμn

}
, (56)

en(μ2) ≡
∫

dxxnen(x, μ2), (57)

where {μ1 · · · μn} means symmetric and traceless indices. The
two-quark twist-3 condensates in our sum rule then can be
written as follows:

〈[q̄iDμ′q]u,d〉ρ,I = 〈[q̄iD0q]u,d〉ρ,I u
′
μ

= mq〈[q†q]u,d〉ρ,I = 0, (58)

〈[q̄{iDμ′ iDν ′ }q]u,d〉ρ,I = 4
3 〈[q̄{iD0iD0}q]u,d〉ρ,I

× (
u′

μu′
ν − 1

4gμν

)
, (59)

where the in-medium rest frame u′
μ ≡ (1, 
0) has been taken

and the matrix element is estimated as

〈[q̄{iDμ′ iDν ′ }q]0〉p = M2
Ne2(μ2)

(
u′

μu′
ν − 1

4gμν

)
, (60)

where one can identify that M2
Ne2(μ2) = 4

3 〈[q̄{iD0iD0}q]0〉p,
and 〈[q̄{iD0iD0}q]u,d〉ρ,I can be written as

〈[q̄{iD0iD0}q]u,d〉ρ,I �
[

1 ∓ R−(mq)

R+(mq)
I

]
M2

Ne2(μ2)ρ. (61)

Since there are no measurements on the twist-3 structure
function, we will take the estimate for M2

Ne2(μ2) ∼ 0.3 GeV2

given in Refs. [18,37].

When spin indices are contracted, the operator becomes

〈[q̄D2q]u,d〉ρ,I = 1

2
〈[gsq̄σGq]u,d〉ρ,I

= 1

2

[
1 ∓ R−(mq)

R+(mq)
I

]
〈[gsq̄σGq]0〉pρ, (62)

where 〈[gsq̄σGq]0〉p is chosen to be 3 GeV2 as in Refs. [18,37].

2. 〈q̄γμ1 Dμ2 · · · Dμn q〉 type of condensates

The simplest condensate of this type is

〈q̄γλq〉ρ,I = 〈q̄/u′q〉ρ,I u
′
λ → 〈q†q〉ρ,I u

′
λ. (63)

For this, the ratio 〈u†u〉p/〈d†d〉p = 2, and the isospin relation
for 〈q†q〉ρ,I can be written as

〈[q†q]1〉p = 1
3 〈[q†q]0〉p, (64)

which leads to the following matrix elements appearing in the
sum rule:

〈[q†q]u,d〉ρ,I = (
1 ∓ 1

3I
)〈[q†q]0〉pρ = (

3
2 ∓ 1

2I
)
ρ. (65)

When covariant derivatives are included, one can estimate
the two-quark twist-2 condensates from the corresponding
parton distribution function,

〈
q̄
{
γμ1Dμ2 · · ·Dμn

}
q
〉
p
≡ (−i)n−1

2MN

Aq
n(μ2)

{
pμ1 · · · pμn

}
, (66)

where A
q
n(μ2) = [Au

n(μ2) + Ad
n(μ2)]/2 is the reduced matrix

element [38,39],

Aq
n(μ2) = 2

∫ 1

0
dxxn−1[q(x, μ2) + (−1)nq̄(x, μ2)], (67)

where q(x, μ2) and q̄(x, μ2) are the distribution functions for
quarks and antiquarks in the proton, respectively, and μ2 is the
renormalization scale. For the distribution functions, we used
the leading-order (LO) parametrization given in Ref. [40].

Specifically, the spin-2 part can be written as [41]

〈[q̄{γμiDν}q]u,d〉ρ,I → 〈[q̄{γμ′ iDν ′ }q]u,d〉ρ,I

= 4
3 〈[q̄{γ0iD0}q]u,d〉ρ,I

(
u′

μu′
ν − 1

4gμν

)
,

(68)

where the in-medium rest frame has been taken. The matrix el-
ements for each flavor in 〈[q̄{γ0iD0}q]u,d〉p can be identified as

〈ū{γμ′ iDν ′ }u〉p = 1
2MNAu

2(μ2)
(
u′

μu′
ν − 1

4gμν

)
, (69)

〈d̄{γμ′ iDν ′ }d〉p = 1
2MNAd

2 (μ2)
(
u′

μu′
ν − 1

4gμν

)
, (70)

where Au
2(μ2) � 0.74 and Ad

2 (μ2) � 0.36 at μ2 = 0.25 GeV2

(LO) [40].
One can introduce a ratio factor for 〈Ô1〉p as

〈[q̄{γμ′ iDν ′ }q]1〉p = RA2 (μ2)〈[q̄{γμ′ iDν ′ }q]0〉p, (71)
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where RA2 (μ2) = (Au
2 − Ad

2 )/(Au
2 + Ad

2 ) � 0.35 so
〈[q̄{γ0iD0}q]u,d〉ρ,I can be written as

〈[q̄{γ0iD0}q]u,d〉ρ,I = [
1 ∓ RA2 (μ2)I

] 〈[q̄{γ0iD0}q]0〉pρ

= [
1 ∓ RA2 (μ2)I

]
1
2MNA

q
2(μ2)ρ. (72)

The spin-3 part can be written as

〈[q̄{γλ′ iDμ′ iDν ′ }q]u,d〉ρ,I

= 2〈[q̄{γ0iD0iD0}q]u,d〉ρ,I

[
u′

λu
′
μu′

ν − 1
6 (u′

λgμν

+u′
μgλν + u′

νgλμ)
]
, (73)

where the matrix elements for each flavor in
〈[q̄{γ0iD0iD0}q]u,d〉p can be identified with

〈ū{γλ′ iDμ′ iDν ′ }u〉p = 1
2M2

NAu
3(μ2)

[
uλ′uμ′uν ′ − 1

6 (uλ′gμ′ν ′

+uμ′gλ′ν ′ + uν ′gλ′μ′)
]
, (74)

〈d̄{γλ′ iDμ′ iDν ′ }d〉p = 1
2M2

NAd
3 (μ2)

[
uλ′uμ′uν ′ − 1

6 (uλ′gμ′ν ′

+uμ′gλ′ν ′ + uν ′gλ′μ′)
]
, (75)

where Au
3(μ2) � 0.22 and Ad

3 (μ2) � 0.07 at μ2 = 0.25 GeV2

(LO) [40]. Similar to the spin-2 condensate case, one can write
〈Ô1〉p for spin-3 condensate as

〈[q̄{γλ′ iDμ′ iDν ′ }q]1〉p = RA3 (μ2)〈[q̄{γλ′ iDμ′ iDν ′ }q]0〉p,

(76)

where RA3 (μ2) = (Au
3 − Ad

3 )/(Au
3 + Ad

3 ) � 0.51 and
〈[q̄{γ0iD0iD0}q]u,d〉ρ,I can be written as

〈[q̄{γ0iD0iD0}q]u,d〉ρ,I

= [
1 ∓ RA3 (μ2)I

] 〈[q̄{γ0iD0iD0}q]0〉pρ

= [
1 ∓ RA3 (μ2)I

]
1
2M2

NA
q
3(μ2)ρ. (77)

Operators with contracted spin indices are

〈[q̄ Dq]u,d〉ρ,I = 0, (78)

〈[q†D2q]u,d〉ρ,I = 1
2 〈[gsq

†σGq]u,d〉ρ,I

� 1
2

(
1 ∓ RA3I

) 〈[gsq
†σ · Gq]0〉pρ, (79)

where 〈[gsq
†σGq]0〉p is chosen to be −0.33 GeV2 [18,37].

3. Gluon condensates

As for the gluon operators, because they do not carry quark
flavors, the expectation values do not depend on I . These
operators can be written as [17,18]〈

αs

π
G2

〉
ρ,I

=
〈
αs

π
G2

〉
vac

− 2

〈
αs

π
( 
E2 − 
B2)

〉
p

ρ, (80)

〈
αs

π
[(uG)2 + (uG̃)2]

〉
ρ,I

= −
〈
αs

π
( 
E2 + 
B2)

〉
p

ρ, (81)

where 
E and 
B are the color electric and color magnetic
fields. For the expectation values of the gluon operators
we take 〈(αs/π )G2〉vac = (0.33 GeV)4 [9], 〈(αs/π )( 
E2 −

B2)〉p = 0.325 ± 0.075 GeV, and 〈(αs/π )( 
E2 + 
B2)〉p =
0.10 ± 0.01 GeV [17].

C. Dimension-six four-quark operators

In many previous QCD sum-rule studies, dimension-six
four-quark condensates are assumed to have the factorized
form as〈

ua
αūb

βuc
γ ūd

δ

〉
ρ,I

� 〈
ua

αūb
β

〉
ρ,I

〈
uc

γ ūd
δ

〉
ρ,I

− 〈
ua

αūd
δ

〉
ρ,I

〈
uc

γ ūb
β

〉
ρ,I

,

(82)〈
ua

αūb
βdc

γ d̄d
δ

〉
ρ,I

� 〈
ua

αūb
β

〉
ρ,I

〈
dc

γ d̄d
δ

〉
ρ,I

. (83)

While large Nc arguments can be made to justify factorization
in the vacuum, no such argument exists in the medium. For the
in-medium case, a renewed approach was developed in which
the in-medium four-quark condensates are evaluated within the
PCQM [20,42,43]. In this method, the vacuum condensates are
factorized as in Eq. (83) but in-medium terms are evaluated by
including intermediate states that include pion clouds. There
are some previous results to calculate the four-quark operators
appearing in the nucleon OPE. For example, in Ref. [43], the
expectation values were calculated within the PCQM. Another
approach uses a Fierz rearrangement suitable for factorization
as in our case [44].

In this study, after using the Fierz transformation as
above, for the scalar four-quark operators, we change the
four-quark operators to vary from a mild factorized form
to a density-independent limit that preserves the consistent
nucleon sum rule as in Ref. [19]. For the spin-2 four-
quark (twist-4) operators, we use a Fierz rearrangement
to extract the independent four-quark operators that can
be related to higher twist effects in DIS data. Using the
following steps, we have classified the four-quark conden-
sates in terms of the independent operators and of different
twist.

1. Twist-4 operators with a single quark flavor

The first type of four-quark operator appearing in the OPE
of the nucleon sum rule involves quark operators with the
same flavor and is of the color antitriplet diquark times triplet
antidiquark form. Using the following Fierz transformation,
one can identify the independent four-quark operators in terms
of products of quark-antiquark pairs,

εabcεa′b′c
(
uT

a Cγμub

)(
ūb′γνCūT

a′
)

= εabcεa′b′c
1

16 (ūa′�oua)(ūb′�kub)Tr
[
γμ�kγνC�T

o C
]

= εabcεa′b′c
1

16

{
(ūa′ua)(ūb′ub)(−4gμν)

+ (ūa′γ5ua)(ūb′γ5ub)(4gμν)

+ (ūa′γ αua)(ūb′γ βub)(4Sμβνα)

− (ūa′γ αγ5ua)(ūb′γ βγ5ub)(4Sμβνα)

+ (ūa′σαᾱua)(ūb′σββ̄ub) 1
4 Tr[γμσββ̄γνσαᾱ]

+ (ūa′γ αua)(ūb′γ βγ5ub)(8iεμανα)

− (ūa′ua)(ūb′σαᾱub)(8igαμgᾱν)

− (ūa′γ5ua)(ūb′σαᾱub)(4εμναᾱ)
}
, (84)

where � = {I, γα, iγαγ5, σαβ, γ5} and Sμανβ = gμαgνβ +
gμβgαν − gμνgαβ .
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When quarks of the same flavor combine into a diquark, cer-
tain combinations are not allowed due to Fermi statistics. From
these conditions, one can extract constraints among four-quark
operators that can be used to identify independent operators.
Among several conditions, the most suitable constraint for our
OPE can be obtained from the zero identity used in Ref. [44].
With the constraint Eq. (B2) in Appendix B, Eq. (84) can be
simplified as

εabcεa′b′c
(
uT

a Cγμub

)(
ūb′γνCūT

a′
)

= εabcεa′b′c
1

16 {[(ūa′γ αua)(ūb′γ βub)

− (ūa′γ αγ5ua)(ūb′γ βγ5ub)](8Sμβνα)

+ (ūa′γ αua)(ūb′γ βγ5ub)(16iεμβνα)}. (85)

The last term in Eq. (85) will be dropped as one should take an
expectation value with respect to a parity-even nuclear medium
ground state. Then only two types of four-quark operators
remain. Each type can be written as

εabcεa′b′c(q̄a′�αqa)(q̄b′�βqb)

= εabcεa′b′c
{

1
9δa′aδb′b(q̄�αq)(q̄�βq)

+ 2
3 tAaa′δb′b(q̄�αtAq)(q̄�βq) + 2

3δa′at
B
bb′ (q̄�αq)(q̄�βtBq)

+ 4tAaa′ t
B
bb′ (q̄�αtAq)(q̄�βtBq)

}
, (86)

where �α = {γ α, iγ αγ5} and tA is the generator of SU(3)
normalized as Tr[tAtB] = 1

2δAB . Combined with the product
of epsilon tensors εabcεa′b′c = δbb′δaa′ − δba′δab′ , one finds that
the second and third term in the right-hand side of Eq. (86)
vanish. In the last term, the product of the generators of SU(3)
can be simplified using the following identity:

tAa′at
B
b′b = 1

8δABtCa′at
C
b′b + [

tAa′at
B
b′b − 1

8δABtCa′at
C
b′b

]
, (87)

where only the first term in the right-hand side of Eq. (87)
survives after multiplying it with the epsilon tensors εabcεa′b′c.
Then Eq. (86) can be simplified as follows:

εabcεa′b′c(q̄a′�αqa)(q̄b′�βqb)

= εabcεa′b′c
{

1
9δa′aδb′b(q̄�αq)(q̄�βq)

+ 1
2 tAaa′ tAbb′ (q̄�αtBq)(q̄�βtBq)

}
= 2

3 (q̄�αq)(q̄�βq) − 2(q̄�αtBq)(q̄�βtBq). (88)

One can take another Fierz rearrangement to
(ū�αtAu)(ū�βtAu) type of operators in Eq. (85). Then
one can obtain the following relations when taking the
symmetric and traceless parts of the operator relations,

(ūγ αtAu)(ūγ βtAu)|s,t = − 5
12 (ūγ αu)(ūγ βu)|s,t

− 1
4 (ūγ αγ5u)(ūγ βγ5u)|s,t

+ 1
4

(
ūσ α

o u
)
(ūσ oβu)|s,t, (89)

(ūγ αγ5t
Au)(ūγ βγ5t

Au)|s,t = − 5
12 (ūγ αγ5u)(ūγ βγ5u)|s,t

− 1
4 (ūγ αu)(ūγ βu)|s,t

− 1
4

(
ūσ α

o u
)
(ūσ oβu)|s,t, (90)

where |s,t means symmetric and traceless. Therefore, only
three independent twist-4 (dimension-six spin-2) matrices
remain. Using the twist-4 effects in the deep inelastic scattering
data on the proton and neutron target, one can, in principle,
extract two independent constraints to the three independent
matrix elements. To determine all the matrix elements, we
will additionally use one constraint adopted by Jaffe [45]:
(ūσ α

o u)(ūσ oβu)|s,t = 0.

2. Twist-4 operators with mixed quark flavor

The second type of four-quark operators appearing in the
nucleon sum rule are of the following mixed-quark-flavor
operator form:

εabcεa′bc′γ 5γ μdcd̄
T
c′ γ

νγ 5(uT
a Cγμq/γνCūT

a′
)

= εabcεa′bc′ 1
16 (γ 5γ μ�kγ

νγ 5)(ūa′�oua)(d̄c′�kdc)

× Tr[γμq/γνC�T
0 C]

⇒ εabcεa′bc′ 1
16 {−8qα(ūa′γ αua)(d̄c′dc)

− 8(qβγα + gαβq/)(ūa′γ αua)(d̄c′γ βdc)

+ 8(qβγα − gαβq/)(ūa′γ αγ5ua)(d̄c′γ βγ5dc)}, (91)

where we have again used Fierz rearrangement to express
the operators in terms of the quark-antiquark type and have
neglected operators that are odd in parity and time-reversal
symmetry.

As in the case with a single quark flavor, the four-
quark condensates in Eq. (91) can be decomposed into two
different color structures according to Eqs. (88) and (87).
We cannot reduce the number of independent operators as
in the previous subsubsection because performing a similar
Fierz rearrangement as in Eqs. (89) and (90), we find new
mixed-flavor operators of (ū�αd)(d̄�βu) type.

3. Contributions of dimension-six four-quarks to the OPE

In summary, the independent four-quark condensates ap-
pearing in our nucleon sum rule are given in Table I. Not all
the matrix elements are known.

As for the dimension-six spin-0 (scalar) operators, we
will assume the factorized form as 〈ūu〉2

ρ,I , although this
assumption has not been justified. Keeping only the linear
density terms, they can be written as

〈[q̄q]u,d〉2
ρ,I ⇒ 〈q̄q〉2

vac

+ 2f

[
1 ∓ R−(mq)

R+(mq)
I

]
〈q̄q〉vac〈[q̄q]0〉pρ,

(92)

where f is a parameter introduced in Ref. [18].
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TABLE I. Independent four-quark operators appearing in the nucleon OPE with Ioffe’s interpolating current. ‘q1’
and ‘q2’ represent light quark flavors.

Quark flavor q1 = q2 = q q1 = q2

(q̄γ αγ5q) (q̄γ βγ5q)|s,t (q̄1γ
αγ5q1) (q̄2γ

βγ5q2)|s,t
Dimension 6 spin-2 (q̄γ αq) (q̄γ βq)|s,t (q̄1γ

αq1) (q̄2γ
βq2)|s,t

(twist-4) (q̄σ α
o q) (q̄σ oβq)|s,t (q̄1γ

αγ5t
Aq1) (q̄2γ

βγ5t
Aq2)|s,t

(q̄1γ
αtAq1) (q̄2γ

βtAq2)|s,t

Dimension 6 spin-1 (q̄1γ
αq1) (q̄2q2)

(vector) (q̄1γ
αtAq1) (q̄2t

Aq2)

(q̄γαγ5q) (q̄γ αγ5q) (q̄1γαγ5q1) (q̄2γ
αγ5q2)

Dimension 6 spin-0 (q̄γαq) (q̄γ αq) (q̄1γαq1) (q̄2γ
αq2)

(scalar) (q̄σoαq) (q̄σ oαq) (q̄1γαγ5t
Aq1) (q̄2γ

αγ5t
Aq2)

(q̄1γαt
Aq1) (q̄2γ

αtAq2)

Also, dimension six spin 1 (vector) operators are factorized
up to linear density terms as in Ref. [18].

Dimension-six spin-2 are the twist-4 operators. The twist-4
operators appearing in the nucleon sum rule have similar
structures as those appearing in the higher twist effects in deep
inelastic scattering [26,27]. If the higher twist effects are mea-
sured with precision in DIS for the proton and neutron target,
the nucleon expectation value of (ūγ αγ5t

Au)(d̄γ βγ5t
Ad)|s,t

can be estimated with the same precision [30]. With fur-
ther plausible arguments (Appendix C) on the ratio of u
quark and d quark content of the proton such as those
used in Eq. (50), one can estimate the proton expectation
value of (ūγ αtAu)(ūγ βtAu)|s,t, (ūγ αγ5t

Au)(ūγ βγ5t
Au)|s,t,

and (ūγ αtAu)(d̄γ βtAd)|s,t.
From these condensates, one can estimate the nucleon

expectation value of all the twist-4 operators for the single
flavor case given in the first column in Table I with the extra
constraint discussed above. For the mixed-flavor condensates
given in the second column, one cannot deduce all the
matrix elements (ūγ αγ5u)(d̄γ βγ5d)|s,t and (ūγ αu)(d̄γ βd)|s,t
from (ūγ αγ5t

Au)(d̄γ βγ5t
Ad)|s,t and (ūγ αtAu)(d̄γ βtAd)|s,t.

We will, however, neglect (ūγ αγ5u)(d̄γ βγ5d)|s,t and
(ūγ αu)(d̄γ βd)|s,t in our present analysis, as these mixed-
quark-flavor condensates do not give important contribu-
tions to the nuclear symmetry energy in the linear density
order.

The proton expectation value of the deducible
twist-4 operators can be parameterized into the following

forms:

〈(q̄1γ
αγ5t

Aq1)(q̄2γ
βγ5t

Aq2)〉p|s,t
= 1

4παs

MN

2

(
uαuβ − 1

4
gαβ

)
T 1

q1q2
, (93)

〈(q̄1γ
αtAq1)(q̄2γ

βtAq2)〉p|s,t
= 1

4παs

MN

2

(
uαuβ − 1

4
gαβ

)
T 2

q1q2
, (94)

〈(q̄1γ
αγ5q1)(q̄2γ

βγ5q2)〉p|s,t
= 1

4παs

MN

2

(
uαuβ − 1

4
gαβ

)
T 3

q1q2
, (95)

〈(q̄1γ
αq1)(q̄2γ

βq2)〉p|s,t
= 1

4παs

MN

2

(
uαuβ − 1

4
gαβ

)
T 4

q1q2
, (96)

where q1 and q2 represent quark flavors. We have extracted the
T is from the matrix elements estimated in Ref. [30] and listed
in Table II.

Using the parametrization of the nucleon expectation value
of the twist-4 operators together with the linear density
approximation given in Eq. (42), the contributions to the
correlation function from the four-quark operators can be

TABLE II. Two sets for T is. The three different classifications of T i follow that given in Ref. [30]. Detailed treatment is given in
Appendix C. Units are in GeV2.

T 1
uu T 1

dd T 2
uu T 2

dd T 3
uu T 3

dd T 4
uu T 4

dd T 1
ud T 2

ud

First set
K1

u = K1
ud/β − 0.132 − 0.041 0.154 0.048 0.842 0.262 − 0.875 − 0.272 − 0.042 0.049

K1
u = K1

ud (β + 1)/β − 0.071 − 0.012 0.070 0.012 0.424 0.072 − 0.422 − 0.072 − 0.042 0.041
K1

u = K1
ud − 0.042 0.002 0.033 − 0.002 0.240 − 0.012 − 0.233 0.012 − 0.042 0.031

Second set
K1

u = −K1
ud 0.215 0.124 − 0.432 − 0.265 − 1.778 − 1.091 2.104 1.290 − 0.042 0.057

K1
u = −K1

ud (β + 1)/β 0.154 0.100 − 0.337 − 0.219 − 1.336 0.868 1.610 1.046 − 0.042 0.056
K1

u = −K1
ud/β 0.125 0.085 − 0.297 − 0.202 − 1.137 − 0.773 1.395 0.949 − 0.042 0.058
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written as


O
D=6,s

(
q2

0 , |
q|) = −4

3

1

q2
〈q̄q〉vac ·

(
3

2
− 1

2
I

)
ρ, (97)


E
D=6,q

(
q2

0 , |
q|) = − 2

3q2
〈ūu〉2

ρ,I+
1

q2

1

4παs

MN

2

[
T 1

ud − T 2
ud

]
ρ + 1

q2

1

4παs

MN

2

([
T 1

0 −T 2
0

]−[
T 1

1 − T 2
1

]
I
)
ρ

− 1

3q2

1

4παs

MN

2

([
T 3

0 −T 4
0

]−[
T 3

1 −T 4
1

]
I
)
ρ, (98)


O
D=6,u

(
q2

0 , |
q|) = − 4

q2

1

4παs

MN

2

[
T 1

ud − T 2
ud

]
ρ − 4

q2

1

4παs

MN

2

([
T 1

0 − T 2
0

] − [
T 1

1−T 2
1

]
I
)
ρ

+ 4

3q2

1

4παs

MN

2

([
T 3

0−T 4
0

]−[
T 3

1 −T 4
1

]
I
)
ρ, (99)

where T i
0 = 1

2 (T i
uu + T i

dd ) and T i
1 = 1

2 (T i
uu − T i

dd ). All the vacuum and scalar condensates are factorized as Eqs. (83) and (92).
The corresponding Borel transformations are given as follows:

B̄[

D=6,s

(
q2

0 , |
q|)] = (−Ēq)
4

3
〈q̄q〉vac ·

(
3

2
− 1

2
I

)
ρ, (100)

B̄[

D=6,q

(
q2

0 , |
q|)] = 2

3
〈ūu〉2

ρ,IL
4
9 − 1

4παs

MN

2

{[
T 1

ud − T 2
ud

] + ([
T 1

0 − T 2
0

] − [
T 1

1 − T 2
1

]
I
)

− 1

3

([
T 3

0 − T 4
0

] − [
T 3

1 − T 4
1

]
I
) }

ρL− 4
9 , (101)

B̄[

D=6,u

(
q2

0 , |
q|)] = (4Ēq)

4παs

MN

2

{[
T 1

ud − T 2
ud

] + ([
T 1

0 − T 2
0

] − [
T 1

1 − T 2
1

]
I
) − 1

3

([
T 3

0 − T 4
0

] − [
T 3

1 −T 4
1

]
I
) }

ρL− 4
9 . (102)

Here, we have neglected the scaling of the matrix elements
coming from the anomalous dimension of the dimension-six
operators �On

. Although the twist-4 matrix elements are
estimated at the separation scale of 5 GeV, and the matrix
element we need is at lower energy scale close to the Borel
mass, we will neglect the running of the matrix elements
through the anomalous dimension for operator �On

, because
the present estimate of the matrix elements already contains
±50% uncertainty. Throughout this paper, we used αs � 0.5
for these twist-4 matrix elements as in Refs. [26,30]. In
principle, the coupling appearing in the twist-4 matrix element
should run with the Borel mass. However, we neglect such
running because within the region of Borel mass 1.0 GeV2 �
M2 � 1.2 GeV2, αs(M2) ∼ 0.4 and, hence, the difference
with what was used is within the uncertainty of the twist-4
matrix element.

IV. RESULTS FOR THE NUCLEON SUM RULE
AND THE NUCLEAR SYMMETRY ENERGY

We have expressed the self-energy contributions of the
nucleons that contribute to the nucleon energy as Eq. (16) in
terms of the Borel-transformed OPE as given in Eqs. (35)–(37).
The next step is to substitute Eqs. (16) to (8) to extract the
symmetry energy as defined in Eq. (3). There then will be the
trivial kinematic correction coming from the three-momentum
dependence in the kinetic energy part of Eq. (16). This

term is universal and corresponds to the term in Eq. (6).
Instead of following the full procedure, in this work, we will
just concentrate on the contribution coming from the scalar
and vector self-energy. This corresponds to calculating the
contribution to the nuclear symmetry energy from potentials
in effective models.

A. QCD sum-rule formula

The quasinucleon self-energies in the rest frame can be ob-
tained in QCD sum rules by taking the ratios Eq. (35)/Eq. (36)
and Eq. (37)/Eq. (36) for both the proton and neutron as
follows:

Eq,V (I ) ≡ �v + M∗
N = N n,p(ρ)

Dn,p(ρ)

= B̄[



n,p
s

(
q2

0 , |
q|)] + B̄[



n,p
u

(
q2

0 , |
q|)]
B̄[



n,p
q

(
q2

0 , |
q|)] , (103)

where subscripts q, V (I ) are meant to represent the potential
part of Eq. (16) in the asymmetric nuclear matter. To discuss
different approximations of self-energies in terms of the
density and the asymmetric factor, we introduce the following
symbols N n,p

(ρm,I l )(ρ) and Dn,p

(ρm,I l )(ρ):

N n,p(ρ) = N n,p

(ρ0,I 0) + N n,p

(ρ,I 0)ρ + [N n,p
(ρ,I )ρ

]
I

+
m∑
2

l∑
2

[N n,p

(ρm,I l )ρ
m
]
I l, (104)
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Dn,p(ρ) = Dn,p

(ρ0,I 0) + Dn,p

(ρ,I 0)ρ + [Dn,p
(ρ,I )ρ

]
I

+
m∑
2

l∑
2

[Dn,p

(ρm,I l )ρ
m
]
I l, (105)

where the superscripts n and p represent either the neutron
or the proton, respectively. For the pair of subscripts (ρm, I l),
the first index represents the order of the density, while the
second index represents the isospin. Due to isospin symmetry,
the isoscalar terms have the following relations:

N n
(ρm,I l ) = (−1)lN p

(ρm,I l ), (106)

Dn
(ρm,I l ) = (−1)lDp

(ρm,I l ), (107)

where l is the integer for the order of the isospin. All these
terms are summarized in Appendix D.

Because the dominant term of Dn,p(ρ) is Dn,p

(ρ0,I 0), one

can expand the denominator in terms of (1/Dn,p

(ρ0,I 0)) times
condensate. After rewriting this with powers of ρ and I , one
can express the potential part of a single nucleon energy as

E
n,p
V (ρ, I ) = E

n,p

V,(ρ0,I 0) +
∞∑

k=1

∞∑
i=0

([
E

n,p

V,(ρk,I i )ρ
k
]
I i

)
, (108)

where E
n,p

V,(ρk,I i ) are written in terms of N n,p(ρ) and Dn,p(ρ).

Averaging Eq. (108) as Eq. (8) and collecting terms of I 2 from
Eq. (2), one can extract E

sym
V (ρ) as follows:

E
sym
V (ρ) = 1

2

[
1
2ρ

(
En

V,(ρ,I ) − E
p
V,(ρ,I )

)
+ 1

3ρ2
(
En

V,(ρ2,I ) − E
p

V,(ρ2,I )

)
+ 1

4ρ3
(
En

V,(ρ3,I ) − E
p

V,(ρ3,I )

) + · · · ]
+ 1

2

[
1
3ρ2

(
En

V,(ρ2,I 2) + E
p

V,(ρ2,I 2)

)
+ 1

4ρ3
(
En

V,(ρ3,I 2) + E
p

V,(ρ3,I 2)

) + · · · ]. (109)

For terms linear in density, one can see that the first term in
the upper bracket of Eq. (109) corresponds to the form given
in Eq. (9). The explicit expression in terms of N n

(ρm,I l ) and
Dn

(ρm,I l ) is

E
sym
V,ρ = 1

4
ρ

[
1

Dp

(ρ0,I 0)

(−2N p
(ρ,I )

) −
N p

(ρ0,I 0)

(Dp

(ρ0,I 0))
2

(−2Dp
(ρ,I )

)]
,

(110)

valid to leading order in density.
When higher density dependence of the condensates is

calculated, Eq. (109) provides a systematic expression of
E

sym
V (ρ) that includes higher ρn�2 terms.

B. Sum-rule analysis

In principle, a physical quantity extracted from the QCD
sum rule should not depend on the Borel parameter M2.
However, since we truncate the OPE at finite mass dimension,
such a physical quantity should be obtained within a reliable
range of M2 (Borel window) with a “plateau.” While we do
not find the most stable “plateau” with an extremum in the
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u q02, q

s q02, q

a

0.6 0.8 1.0 1.2 1.4 1.6 1.8
0.0

0.2

0.4
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0.8

1.0
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qq 0 vac2 included

qq 0 vac2 excluded

b

FIG. 1. (Color online) Borel window for (a) B̄[
s(q2
0 , |
q|)] and

B̄[
u(q2
0 , |
q|)] and (b) B̄[
q (q2

0 , |
q|)]. In both figures, the thick lines
increasing with the Borel mass represent the ratio (the contribution
of highest dimensional operators)/(the total OPE), and the thin lines
decreasing with the Borel mass represent the ratio (the continuum
contribution)/(total contribution). These graphs are obtained with T is
in the K1

u = K1
ud (β + 1)/β estimation from the first set of Table II.

appropriate Borel window, one finds that the results have only
a weak dependence on M2.

The well-accepted Borel window for the nucleon sum
rule is 0.8 GeV2 � M2 � 1.4 GeV2 [46]. But as our sum
rule contains the newly added twist-4 four-quark operators,
the Borel window needs to be re-examined. We determine
the upper Borel window by requiring that the quasinucleon
contribution is more than 50% of the total sum rule so the
continuum contribution is less than 50%. As for the lower
limit, for the same OPE, we restrict the contribution from the
highest mass dimension operator to be less than 50% of the
total contribution. For the quasinucleon energy in medium rest
frame, we applied this prescription to the right-hand side of
Eqs. (35)–(37).

The Borel curves for the three invariants [Eqs. (35)–(37)]
are plotted in Fig. 1. Here all the graphs are obtained with
the T is using the K1

u = K1
ud (β + 1)/β estimates from the first

set of Table II. From Fig. 1(a), one can get acceptable Borel
windows for B̄[
s(q2

0 , |
q|)] [Eq. (35)] and B̄[
u(q2
0 , |
q|)]

[Eq. (37)]. However, in Fig. 1(b), B̄[
q(q2
0 , |
q|)] do not

provide an acceptable Borel window. While the usual Borel
window is obtained by requiring that the power and continuum
corrections are both less than 50% of the total OPE, we will
loosen the condition to be less than 75% in this case.

This large power correction may be caused by an over-
estimated 〈[q̄q]0〉2

vac. As mentioned in the previous section,
all the vacuum expectation values of four-quark operators are
factorized as in Eq. (92). Only large Nc supports factorization
in the vacuum. Hence, the generalization to the nuclear
medium can be only an order of magnitude estimate with
large uncertainty. For example, as one can see in Fig. 1(b), the
lower and upper boundaries from B̄[
q(q2

0 , |
q|)] are already
largely affected by whether the vacuum value 〈[q̄q]0〉2

vac is
included. Another reason for the larger uncertainty could
be the neglected twist-4 matrix elements T 3

ud and T 4
ud for

(ūγ αγ5u)(d̄γ βγ5d)|s,t and (ūγ αu)(d̄γ βd)|s,t. If the vacuum
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expectation value of four-quark operators as well as the T 3
ud and

T 4
ud can be determined well, we can discuss about the stability

of our sum rule in a more reliable way. The second set of T is
from Table II do not produce any acceptable Borel window. In
conclusion, we will use the results from the following Borel
window: 1.0 GeV2 � M2 � 1.2 GeV2.

In the analysis to follow, for the symmetric nuclear matter
case, we will denote the twist-4 condensates contribution to
the quasinucleon self-energy as �T and the total quasinucleon
self-energy in the rest frame as Eq,V (I=0). For the asymmetric
nuclear matter case, we will use two sum rules for E

sym
V : one

that includes contributions up to order ρ terms and another
one up to ρ2. The former sum rule will be called the linear ρ
sum rule (Esym

V,ρ ) and the latter the ρ2 sum rule (Esym
V,ρ2 ). As for

the value for the antinucleon pole, an optimal “in-medium”
value ranged −0.2 GeV � Ēq � −0.4 GeV will be used for
each different estimation of twist-4 matrix elements in the
sum rule for the quasinucleon self-energy, while the “bare”
value Ēq = −MN will be used in the sum rule for the nuclear
symmetry energy. This is so because the quasihole contribution
in the nuclear symmetry energy comes with a term proportional
to the density [Eq. (8)]. Nuclear matter density ρ is set at
the saturation density ρ0 = 0.16 fm−3 and the corresponding
quasinucleon three-momentum |
q| is taken to be 270 MeV, the
Fermi momentum of a normal nucleus (ρ0 = 0.16 fm−3). The
light quark (u, d quark) mass mq is taken to be 5 MeV.

As for the density dependence of dimension-six spin-0
condensates, different f values are used for every estimation of
twist-4 matrix elements. For the first set of Table II; f = −0.2
for K1

u = K1
ud/β (corresponding Ēq = −0.26 GeV), f =

−0.12 (corresponding Ēq = −0.30 GeV) for K1
u = K1

ud (β +
1)/β, and f = −0.08 for K1

u = K1
ud (corresponding Ēq =

−0.34 GeV). This parameter set of f ’s are chosen to satisfy
the self-consistency constraint as given in Eq. (17) for the
quasihole value. Again, the second set in Table II does not
provide a set of f ’s which satisfies the constraint of Eq. (17).
A detailed discussion for related parameters (f and Ēq) will
be given in a later section.

1. Symmetric nuclear matter

First, we investigate the quasinucleon self-energies in the
symmetric nuclear matter with twist-4 condensates. Through-
out the analysis, we check the result against the I = 0 case. In
Fig. 2, we plot the ratio to the nucleon mass in a vacuum
of the in-medium scalar self-energy (M∗

N/MN ), the vector
self-energy (�v/MN ), the twist-4 condensate contribution
(�T /MN ), and the potential part of the total quasinucleon
self-energy in the rest frame [Eq,V (I=0)/MN ]. For the twist-4
matrix elements, we take K1

u = K1
ud (β + 1)/β from the first

set in Table II and the corresponding Ēq = −0.30 GeV, which
gives the average result. From our analysis, we find that the
contribution of the the twist-4 condensates give enhancement
of the quasinucleon self-energy by ∼50 MeV. When f = 0,
we find the ratio Eq,V (I=0)/MN � 0.96, M∗

N/MN � 0.58, and
�v/MN � 0.37. By using the aforementioned parameter set
for f < 0 and Ēq , the ratios become Eq,V (I=0)/MN � 0.87,
M∗

N/MN � 0.56, and �v/MN � 0.30, which are comparable
with previous studies [15–17]. When the second set of Table II
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FIG. 2. (Color online) The ratios between quasinucleon self-
energies and the vacuum mass. The different lines represent [M∗

N/MN

(dashed blue), �v/MN (dot-dashed red), �T /MN (dotted black), and
Eq,V (I=0)/MN (solid black)], respectively.

is used for the twist-4 matrix elements, we do not find a stable
behavior in the same Borel window, in contrast to the case
with the first set as shown previously. By setting f > 0 for the
second set, Eq,V (I=0)/MN can be adjusted to ∼0.9, which is a
typically acceptable value. But even so, there is no reasonable
f and Ēq for M∗

N/MN and �v/MN which satisfies Eq. (17).
The estimates for T is given in the second set of Table II do not
reproduce the aspect of the nucleon sum rule that is consistent
with the Dirac phenomenology [15]. Hence, we will continue
the present analysis with estimates for T is given by the the
first set in Table II.

The quasinucleon three-momentum dependence is plotted
in Fig. 3(a) for the f < 0 case; one finds that the ratios �v/MN

and �T /MN do not depend strongly on the quasinucleon three-
momentum. On the other hand, M∗

N/MN shows a significant
change when |
q| � 0.5 GeV, as in Ref. [18]. So this sum-
rule analysis works in the 0 � |
q| � 0.5 GeV region, which
is consistent with our phenomenological ansatz that assumes
a momentum-independent self-energy.

As all the condensates in our nucleon sum rule are estimated
to linear order in density, the results may be valid at least near
the nuclear saturation density region. In Fig. 3(b), the density
dependence of the quasinucleon self-energies is plotted for
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FIG. 3. (Color online) (a) |
q| and (b) density dependence of the
ratios between quasinucleon self-energies and the vacuum mass.
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FIG. 4. (Color online) (a) Borel mass and (b) |
q| dependence of
E

sym
V,ρ . The unit of the vertical axis is GeV.

0.4 � ρ/ρ0 � 1.6. Here we used the parameter set f = −0.12
and Ēq = −0.30 GeV determined at the saturation density, as
our nucleon sum rule does not depend strongly on Ēq as long
as it is varied within −0.6 GeV � Ēq � −0.3 GeV, which
covers the naive estimates for Ēq when 0.4 � ρ/ρ0 � 1.6.
One also notes that the magnitude of both �v/MN and �T /MN

increases with density while M∗
N/MN reduces.

2. Asymmetric nuclear matter

In our sum rule, the nuclear bulk properties in the asym-
metric nuclear matter are parameterized by the asymmetry
factor I . If one plots the quasinucleon self-energy as a function
of I to leading order in density, E

sym
V,ρ can be obtained from

the difference between the slopes of the quasineutron and the
quasiproton [Eq. (110)].

E
sym
V,ρ is plotted in Fig. 4. One finds that E

sym
V,ρ ranges from

15 to 80 MeV, which agrees with previous studies. The results
in the figure also show that including the twist-4 contribution
enhances the nuclear symmetry energy.

In Fig. 4(b), one finds that E
sym
V,ρ do not depend strongly on

the quasinucleon three-momentum up to 0.5 GeV. This result
agrees with the quasinucleon three-momentum dependence of
the quasinucleon self-energy. When the second set of Table II
is used for the T is, we find that E

sym
V,ρ depends strongly on the

quasinucleon three-momentum compared to the case when the
first set is used.

One can also work out E
sym
V,ρ2 , although with larger uncer-

tainty than that for the E
sym
V,ρ . The density dependence of E

sym
V,ρ2

and E
sym
K for 0.4 � ρ/ρ0 � 1.6 are plotted in Fig. 5. Here

again, the four-quark condensates contribute nontrivially to
the density behavior of E

sym
V . For f = 0, the contribution of

T is gives enhancement to E
sym
V,ρ2 at higher nuclear density while

for f = −0.12, it gives reduction to E
sym
V,ρ2 at higher density.

This means that the scalar four-quark operators contribute
importantly in providing attraction to the nuclear symmetry
energy. However, Esym

K is slightly reduced by T is as the twist-4
matrix elements enhance M∗

N/MN . The parameter set with
f < 0 contributes differently to E

sym
V and E

sym
K ; reduction for

E
sym
V and enhancement for E

sym
K for 0.4 � ρ/ρ0 � 1.6.
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FIG. 5. (Color online) Density dependence of (a) E
sym
V,ρ2 and

(b) E
sym
K . The unit of the vertical axis is GeV.

In Fig. 6, we plot the scalar ( B̄[
s (q2
0 ,|
q|)]

B̄[
q (q2
0 ,|
q|)] ) and vector

( B̄[
u(q2
0 ,|
q|)]

B̄[
q (q2
0 ,|
q|)] ) self-energy part of E

sym
V . In Fig. 6(a), we plot the

result without the twist-4 contribution, while in Fig. 6(b), we
include the contribution from twist-4 matrix elements. While
both the scalar and vector self-energy give weak contribution to
the self-energy in Fig. 6(a), one finds that in Fig. 6(b), the scalar
and vector give enhanced negative and positive contributions,
respectively. The result shown in Fig. 6(b) is consistent with
the general trends in RMFT results [47], which show that
the scalar self-energy part gives a negative contribution and
the vector self-energy part gives a positive contribution
from the exchange of δ and ρ meson exchanges, respectively.
One can infer from this result that the twist-4 contribution
mimics the exchange of the δ and ρ meson and that it
constitutes an essential part in the origin of the nuclear
symmetry energy from QCD.

3. Uncertainties

In general, there are two quark-gluon mixed operators with
contracted spin indices, 〈[gsq̄σGq]0〉p and 〈[gsq

†σGq]0〉p,
which are not accurately determined. 〈[gsq̄σGq]0〉p does
not appear in our sum rule with Ioffe’s nucleon interpolat-
ing current [Eq. (19)]. As for the operator 〈[gsq

†σGq]0〉p,
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0.00
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Ev,ρ
sym, Tis excluded
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Scalar, Tis excluded

a

1.00 1.05 1.10 1.15 1.20
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0.00
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0.10

Borel mass GeV2

Ev,ρ
sym, Tis included
Vector, Tis included
Scalar, Tis included

b

FIG. 6. (Color online) Scalar-vector self-energy decomposition
of E

sym
V,ρ (a) without twist-4 contribution and (b) with twist-4

contribution. The unit of the vertical axis is GeV.
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FIG. 7. (Color online) Sensitivity analysis under variation of the
matrix element 〈[gsq

†σGq]0〉p on (a) Eq,V (I=0) and on (b) E
sym
V,ρ . The

unit of the vertical axis for the right figure is GeV.

the proton expectation value has been estimated in
Refs. [17,18,24,48] to be in the range of −0.33 GeV2 �
〈[gsq

†σGq]0〉p � 0.66 GeV2. Hence, we investigate the
〈[gsq

†σGq]0〉p dependence in Fig. 7. The matrix element
〈[gsq

†σGq]0〉p does not give an important contribution to
the quasinucleon self-energies in the range −0.33 GeV2 �
〈[gsq

†σGq]0〉p � 0.66 GeV2 as we are not interested in
the accuracy of 10 MeV. However, such a magnitude in
〈[gsq

†σGq]0〉p gives nontrivial fractional change to E
sym
V,ρ .

We choose the value as 〈[gsq
†σGq]0〉p = −0.33 GeV2 in this

study as was done in Refs. [17,18].
In our analysis, we fixed the σ term to be σN = 45 MeV.

In Fig. 8(a) we show that changing this number from
30 MeV � σN � 70 MeV changes E

sym
V,ρ by less than 5%.

Also, in principle, the density dependence of the operators
could also induce changes in the continuum. To investigate
this possibility, we have allowed the continuum to vary
1.4 GeV � ω0 � 1.6 GeV. As can be seen in the three lines
in Fig. 8(b), the change in the symmetry energy is less than
10%. This suggest that reasonable density dependence will not
appreciably modify the current result.
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b

FIG. 8. (Color online) Variation of (a) Eq,V (I=0) under change in
σN and (b) E

sym
V,ρ under change in ω0. The unit of the vertical axis

is GeV.
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Tis included, f 0
Tis excluded, f 0

a

1.00 1.05 1.10 1.15 1.20
0.05

0.00

0.05

0.10

Borel mass GeV2

Ev,Ρ
sym, Tis included
Vector, Tis included
Scalar, Tis included

b

FIG. 9. (Color online) E
sym
V,ρ in which 〈[q̄q]1〉p is replaced with

1
2 ζN from PCQM [49]. (a) E

sym
V,ρ with ζN = 0.54 and (b) scalar-vector

decomposition of E
sym
V,ρ with ζN = 0.54 (including T is). The unit of

the vertical axis is GeV.

4. Comparison with the result from PCQM

As mentioned in the Introduction, there were early studies
about nucleon sum rule in the asymmetric nuclear matter
using the first approach [20,21,43]. In comparison with this
study, the two main differences are the followings. First, in
Refs. [20,21,43], the OPE expansion was performed in the light
cone direction and the q2 dispersion relation was used. On the
other hand, in this work, the OPE is a short distance expansion
and the energy dispersion relation is used; consequently, the
OPE totally differs. Second, in Refs. [20,21,43] 〈[q̄q]1〉p is
obtained from PCQM [20,49] while we calculate 〈[q̄q]1〉p
from the leading chiral expansion [34,50]. Because the OPEs
totally differ, it is impossible to compare both results term
by term in terms of the QCD condensates, but here we can
compare the final results in E

sym
V,ρ . From a phenomenological

aspect, Refs. [20,21] give values for the nuclear symmetry
energy, E

sym
V + E

sym
K = 29 MeV, which almost agrees with

the phenomenological estimates. As one can check in Fig. 9,
using the same values for 〈[q̄q]1〉p = 1

2ζN as estimated from
the PCQM [49], we find E

sym
V,ρ ∼ 80 MeV, similar to previous

estimate. However, in our approach, we find interesting
similarities with the main results from RMFT [47], namely
strong vector repulsion and scalar attraction.

V. CONCLUSION

In this paper we studied the nuclear bulk properties in
asymmetric nuclear matter by calculating the quasinucleon
self-energies with QCD sum-rule approach. In particular,
we identified all the twist-4 local condensates appearing in
the nucleon sum rule. Using the existing estimates for the
twist-4 matrix element from DIS, we were able to find the
magnitudes of all the twist-4 matrix elements (T i) in our sum
rule except for two mixed-quark-flavor-type condensates. We
have calculated the nuclear symmetry energy and found that
twist-4 contributions are non-negligible and essential to give
a phenomenologically consistent result with RMFT for the
quasinucleon self-energy and the nuclear symmetry energy.
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For the symmetric nuclear matter case, we found that
Eq,V (I=0) is enhanced by ∼ 50 MeV with T is in the first set
of Table II. Because the T is in the first set of Table II provides
qualitatively reliable sum-rule results while T is in the second
set of Table II do not, we conclude that taking the sum-rule
results with T is in the first set is the reasonable choice. With
parameter set f < 0, dimension-six spin-0 (scalar) operators
reduces Eq,V (I=0)/MN to ∼0.87.

For the asymmetric nuclear matter case, we confirmed two
meaningful facts. First, the QCD sum-rule technique can be
used to successfully reproduce the acceptable result for the
nuclear symmetry energy at the nuclear matter density. Second,
dimension-six spin-2 (twist-4) condensates play important
roles in making the scalar part contribute negatively to the
self-energy and, thus, providing a consistent picture for the
Esym with the RMFT results [47],

E
sym
V = 1

2

[
fρ − fδ

(
m∗

E∗
F

)]
ρB, (111)

where fρ is the isovector ρ meson coupling, fδ the isoscalar δ
(f0) coupling, and ρB the nuclear matter density. Moreover, our
approach provides a first attempt to understanding the origin
of E

sym
V,ρ in terms of local operators directly from QCD. This

extends the analogy between QCD sum rules to RMFT for the
symmetric nuclear matter established in Refs. [15,17,18] to
the asymmetric limit.

While the uncertainties in T is and in the four-quark scalar
operators with the f parametrization are still large, attempts to
measure the twist-4 contribution in DIS at the future upgrade
at Jefferson Lab is expected to lower the uncertainties and
provide more insights to the value for the nuclear expectation
value of the four-quark operators.
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APPENDIX A: BARYON OCTET MASS RELATION

In this section, we summarize an essential argu-
ment for obtaining 〈[q̄q]1〉p = 1

2 (〈p|ūu|p〉 − 〈p|d̄d|p〉) from
Refs. [34,50]. Phenomenologically, the nucleon mass can be
expressed in terms of the matrix element of the trace of the
energy-momentum tensor,

mN 〈N |ψ̄NψN |N〉 = 〈N |θμ
μ |N〉. (A1)

Using the equations of motion, the trace of the energy-
momentum tensor can be written as

θμ
μ = muūu + mdd̄d + mss̄s +

∑
h=c,t,b

mhh̄h + · · ·

=
(

β̄

4αs

)
G2 + muūu + mdd̄d + mss̄s + O(μ2/4m2

h),

(A2)

where the h’s are the heavy quark fields and the gluonic
term comes from the trace anomaly [51–53]. β̄ = −9α2

s /2π is
the “reduced” Gellmann-Low function in which heavy quark
contribution has been subtracted out using the heavy quark
expansion [54].

Equation (A2) can be applied to the lowest-lying baryon
octet. The baryon octet mass relations to first order in SU(3)
flavor symmetry breaking are as follows:

mp = A + muBu + mdBd + msBs,

mn = A + muBd + mdBu + msBs,

m�+ = A + muBu + mdBs + msBd,
(A3)

m�− = A + muBs + mdBu + msBd,

m�0 = A + muBd + mdBs + msBu,

m�− = A + muBs + mdBd + msBu,

where A ≡ 〈(β̄/4αs)G2〉p, Bu ≡ 〈ūu〉p, Bd ≡ 〈d̄d〉p, and
Bs ≡ 〈s̄s〉p. In this relation, correction terms for hyperon is
neglected [55]. From Eq. (A3) one can obtain

〈p|ūu|p〉 − 〈p|d̄d|p〉 = (m�0 + m�−) − (m�+ + m�− )

2ms − (mu + md )
.

(A4)

APPENDIX B: A SIMPLE CONSTRAINT FOR TWIST-4
OPERATORS FROM ZERO IDENTITY

In this section, we show an explicit calculation for a simple
constraint using the zero identity [44]. For the single quark
flavor diquark structure,

εabc

(
uT

a C�ub

) = 0, if (C�)T = −C�, (B1)

where (� = {I, γ5, iγμγ5}) satisfies the above condition.
Therefore, constraints for the four-quark operator can be
obtained by requiring that the Fierz transformed form of
the products of above diquarks are zero. An example is the
following:

εabcεa′b′c
(
uT

a Cγμγ5ub

)(
ūb′γνγ5CūT

a′
)

= εabcεa′b′c
1

16 (ūa′�oua)(ūb′�kub)Tr
[
γμ�kγνC�T

o C
]

= εabcεa′b′c
1

16

{
(ūa′ua)(ūb′ub)(4gμν)

+ (ūa′γ5ua)(ūb′γ5ub)(−4gμν)

+ (ūa′γ αua)(ūb′γ βub)(4Sμβνα)

− (ūa′γ αγ5ua)(ūb′γ βγ5ub)(4Sμβνα)

− (ūa′σαᾱua)(ūb′σββ̄ub) 1
4 Tr[γμσββ̄γνσαᾱ]

+ (ūa′γ αua)(ūb′γ βγ5ub)(8iεμανα)

+ (ūa′ua)(ūb′σαᾱub)(8igαμgᾱν)

+ (ūa′γ5ua)(ūb′σαᾱub)(4εμναᾱ)
} = 0, (B2)

where Sμανβ = gμαgνβ + gμβgαν − gμνgαβ . By subtracting
Eq. (B2) from Eq. (84), Eq. (84) can be simplified into Eq. (85).
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TABLE III. Table for Ki
u from Ref. [30]. Units are in GeV2.

K1
u K2

u K1
u K2

u

K1
ud/β = −0.173 0.203 −K1

ud = 0.083 −0.181

K1
ud (β + 1)/2β = −0.112 0.110 −K1

ud (β + 1)/2β = 0.112 −0.225

K1
ud = −0.083 0.066 −K1

ud/β = 0.173 −0.318

APPENDIX C: ESTIMATION OF TWIST-4 MATRIX
ELEMENTS

In this section, we provide a detailed treatment for extract-
ing T is from the values estimated in Ref. [30]. In Ref. [30],
twist-4 operators which appear in our nucleon sum rule are
given as

1

4παs

MN

2

(
uαuβ − 1

4
gαβ

)
K1

u

= 〈(ūγαγ5t
Au)(ūγβγ5t

Au)〉p|s,t
+〈(ūγαγ5t

Au)(d̄γβγ5t
Ad)〉p|s,t, (C1)

1

4παs

MN

2

(
uαuβ − 1

4
gαβ

)
K2

u

= 〈(ūγαtAu)(ūγβtAu)〉p|s,t
+〈(ūγαtAu)(d̄γβtAd)〉p|s,t, (C2)

1

4παs

MN

2

(
uαuβ − 1

4
gαβ

)
K1

ud

= 2〈(ūγαγ5t
Au)(d̄γβγ5t

Ad)〉p|s,t, (C3)

where we changed the normalization for the nucleon state
appearing in Ref. [30] to the following:

〈N (p)|N (p′)〉 = ωp

MN

(2π )3δ3( 
p − 
p′), (C4)

with ωp = p0 =
√


p2 + M2
N . Here only K1

ud is uniquely

determined: K1
ud = −0.083 GeV2. One can set a constraint

|K1
d | = |K1

u |β < |K1
ud | < |K1

u | with an ansatz that the ratio
Ki

d/K
i
u is equal to the momentum fraction of the d and u

quarks in the nucleon:

Ki
d

/
Ki

u �
∫

x[d(x) + d̄(x)]dx∫
x[u(x) + ū(x)]dx

≡ β = 0.476. (C5)

Varying K1
u with the constraint above, one can estimate K2

u

as a functions of K1
u from the constraints from DIS; the results

are given in Table III.
T 1

uu and T 1
dd can be easily estimated by taking T 1

ud = 1
2K1

ud

from K1
u and K1

d :

T 1
uu = K1

u − T 1
ud, (C6)

T 1
dd = K1

d − T 1
ud, (C7)

T 1
ud = 1

2K1
ud = −0.042 GeV2. (C8)

Similarly, one can try to obtain T 2
uu and T 2

dd from K2
u and K2

d .
As T 2

ud = 1
2K2

ud has not been determined uniquely as T 1
ud =

1
2K1

ud , we assumed that the ratio T 1
uu/T 1

dd is equal to T 2
uu/T 2

dd .
Then, by the following relation, one can estimate T 2

qqs:

T 2
uu = (

K2
u − K2

d

) (
1 − T 1

dd

T 1
uu

)−1

, (C9)

T 2
dd =

(
T 1

dd

T 1
uu

)
T 2

uu, (C10)

T 2
ud = 1

2

([
K2

u + K2
d

] − [
T 2

uu + T 2
dd

])
, (C11)

where K2
u − K2

d and K2
u + K2

d can be obtained from Table III.
For the single-quark-flavor case, T 3

qq and T 4
qq can be

obtained from Eqs. (89) and (90). As discussed in Ref. [45],
we neglect (ūσ α

o u)(ūσ oβu)|s,t. Then T 3
qq and T 4

qq can be related
as

T 3
qq = − 15

4 T 1
qq + 9

4T 2
qq, (C12)

T 4
qq = − 15

4 T 2
qq + 9

4T 1
qq . (C13)

T i
qqs can be classified as the three different classification

of Kis given in Table III: K1
u = {K1

ud/β,K1
ud (β + 1)/2β,

K1
ud} and K1

u = {−K1
ud,−K1

ud (β + 1)/2β,−K1
ud/β}. T i

qq’s
are classified in Table II according to these three classifications
in the two sets.

APPENDIX D: QCD SUM-RULE FORMULAS FOR Eq,V (I) AND Esym
V,ρ

In this section, we provide the detailed description for

Eq,V (I ) =
N n,p

(ρ0,I 0) + N n,p

(ρ,I 0)ρ + [N n,p
(ρ,I )ρ

]
I

Dn,p

(ρ0,I 0) + Dn,p

(ρ,I 0)ρ + [Dn,p
(ρ,I )ρ

]
I

, (D1)

E
sym
V,ρ = 1

4
ρ

⎡
⎣ 1

Dp

(ρ0,I 0)

(−2N p
(ρ,I )

) −
N p

(ρ0,I 0)(Dp

(ρ0,I 0)

)2

(−2Dp
(ρ,I )

)⎤⎦ , (D2)
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in QCD sum-rule formula. In this formula, N p

(ρm,I l ) and Dp

(ρm,I l ) are as follows:

N p

(ρ0,I 0) = − 1

4π2
(M2)2E1〈[q̄q]0〉vac, (D3)

N p

(ρ,I 0) = − 1

4π2
(M2)2E1〈[q̄q]0〉p − 4

3π2

q2〈[q̄{iD0iD0}q]0〉pL− 4

9

+ 2

3π2
(M2)2〈[q†q]0〉pE1L

− 4
9 + 4

π2

q2〈[q̄{γ0iD0iD0}q]0〉pL− 4

9 − 1

12π2
M2〈[gsq

†σ · Gq]0〉pE0L
− 4

9

+ Ēq

{
20

9π2
M2〈[q̄{γ0iD0}q]0〉pE0L

− 4
9 − 1

36π2
M2

〈
αs

π
[(u · G)2 + (u · G̃)2]

〉
p

E0L
− 4

9

+ 1

παs

MN

2

([
T 1

ud − T 2
ud

] + [
T 1

0 − T 2
0

] − 1

3

[
T 3

0 − T 4
0

])
L− 4

9 − 4

3
〈q̄q〉vac〈[q†q]0〉p

}
, (D4)

N p
(ρ,I ) = − 1

4π2
(M2)2E1〈[q̄q]1〉p − 4

3π2

q2〈[q̄{iD0iD0}q]1〉pL− 4

9

− 1

2π2
(M2)2〈[q†q]1〉pE1L

− 4
9 − 2

π2

q2〈[q̄{γ0iD0iD0}q]1〉pL− 4

9 + 1

4π2
M2〈[gsq

†σ · Gq]1〉pE0L
− 4

9

+ Ēq

{
− 4

3π2
M2〈[q̄{γ0iD0}q]1〉pE0L

− 4
9 + 1

παs

MN

2

(
−[

T 1
1 − T 2

1

] + 1

3

[
T 3

1 − T 4
1

]) + 4

3
〈q̄q〉vac〈[q†q]1〉p

}
L− 4

9 ,

(D5)

Dp

(ρ0,I 0) = 1

32π4
(M2)3E2L

− 4
9 + 1

32π2
M2

〈
αs

π
G2

〉
vac

E0L
− 4

9 + 2

3
〈[q̄q]0〉2

vacL
4
9 , (D6)

Dp

(ρ,I 0) = −
(

5

9π2
M2E0 − 8

9π2

q2

)
〈[q̄{γ0iD0}q]0〉pL− 4

9

+ 1

32π2
M2

〈
αs

π
G2

〉
p

E0L
− 4

9 + 1

144π2
(M2E0 − 4
q2)

〈
αs

π
[(uG)2 + (uG̃)2]

〉
p

L− 4
9

+ 4

3
f 〈q̄q〉vac〈[q̄q]0〉pL

4
9 − 1

4παs

MN

2

([
T 1

ud − T 2
ud

] + [
T 1

0 − T 2
0

] − 1

3

[
T 3

0 − T 4
0

])
L− 4

9

+ Ēq

{
1

3π2
M2E0L

− 4
9 〈[q†q]0〉p − 4

3π2

(
1 − 
q2

M2

)
〈[q̄{γ0iD0iD0}q]0〉ρ,IL

− 4
9

− 2

3π2
〈[q̄{γ0iD0iD0}q]0〉pL− 4

9 + 1

18π2
〈[gsq

†σGq]0〉pL− 4
9

}
, (D7)

Dp
(ρ,I ) = 1

3π2
M2E0〈[q̄{γ0iD0}q]1〉ρ,IL

− 4
9

− 4

3
f
R−(mq)

R+(mq)
〈q̄q〉vac〈[q̄q]0〉pL

4
9 − 1

4παs

MN

2

(
−[

T 1
1 − T 2

1

] + 1

3

[
T 3

1 − T 4
1

])
L− 4

9

+ Ēq

{
2

3π2
〈[q̄{γ0iD0iD0}q]1〉pL− 4

9 − 1

18π2
〈[gsq

†σGq]1〉pL− 4
9

}
. (D8)

APPENDIX E: BOREL TRANSFORMATION

To emphasize the quasinucleon pole, the phenomenological
side and the OPE side have to be Borel transformed. The
transformation changes the phenomenological side to have the
following weighed dispersion relation:

B[

i(q0, |
q|)] = 1

2πi

∫ ω0

−ω0

dω W (ω)�
i(ω, |
q|), (E1)

W (ω) = (ω − Ēq)e−ω2/M2
, (E2)

where Ēq is the quasihole pole which will be assigned to satisfy
Eq. (17). The weighting function will de-emphasize the contri-
bution from the quasihole, and the Borel transformation sup-

press the continuum contribution. Using Eq. (26), the OPE side
of the sum rule can be obtained by taking the Borel transforma-
tion of 
i(q0, |
q|) = 
E

i (q2
0 , |
q|) − Ēq


O
i (q2

0 , |
q|). Here, we
define the differential operator B for the Borel transformation
of the OPE side as

B[
f

(
q2

0 , |
q|)] ≡ lim
−q2

0 , n → ∞
−q2

0 /n = M2

(−q2
0

)n+1

n!

(
∂

∂q2
0

)n

f
(
q2

0 , |
q|)

≡ f̂ (M2, |
q|), (E3)

where M is the Borel mass [10]. Polynomial terms in the OPE
side vanish after the Borel transformation.
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