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Chiral fluid dynamics with explicit propagation of the Polyakov loop
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We present a fully dynamical model to study nonequilibrium effects in both the chiral and the deconfinement
phase transition. The sigma field and the Polyakov loop as the corresponding order parameters are propagated
by Langevin equations of motion. The locally thermalized background is provided by a fluid of quarks and
antiquarks. Allowing for an exchange of energy and momentum through dissipative and stochastic processes
we ensure that the total energy of the coupled system remains conserved. We study its relaxational dynamics
in different quench scenarios and are able to observe critical slowing down as well as the enhancement of
long-wavelength modes at the critical point. During the fluid dynamical expansion of a hot plasma fireball typical
nonequilibrium effects such as supercooling and domain formation occur when the system evolves through the
first-order phase transition.
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I. INTRODUCTION

One of the major goals of heavy-ion physics is to gain firm
knowledge about the different phases of strongly interacting
matter and the transitions between them. At high temperatures,
the chiral symmetry that is broken in the QCD vacuum is
expected to be restored. Furthermore, quarks and gluons might
become the relevant degrees of freedom after the transition
from hadrons to a deconfined state of matter. From lattice
QCD calculations we know that at vanishing baryochemical
potential the chiral transition is an analytic crossover [1,2].
As recent studies show, there seems to be no direct relation
between the chiral restoration and the onset of deconfinement
[3–5]. A multitude of effective models have been used to
investigate the QCD phase diagram [6–14], indicating a
first-order phase transition at large μB ending at a critical
point (CP). In equilibrium this CP exhibits a divergence in the
correlation length of the order parameter. The problem of how
to locate the CP in the T -μB plane in heavy-ion collisions was
addressed by Stephanov, Rajagopal, and Shuryak [15,16] for
equilibrated systems. They proposed to search for divergences
in event-by-event fluctuations of quantities such as transverse
momentum or particle multiplicity, since the strength of these
fluctuations is directly related to the correlation length of the
sigma field, the order parameter for the chiral phase transition.
However, a priori one cannot expect to reach thermodynamic
equilibrium during such a heavy-ion collision, especially near
the phase transition where relaxation times become large in
comparison to the rapid dynamics of the expanding fireball.
Therefore, several additional effects have to be taken into
account. Not only is the growth of the correlation length
naturally limited by the finite size of the system, but also
critical slowing down of the dynamics in the vicinity of the
CP will weaken the expected signals [17]. One may try to
overcome this difficulty by looking for quantities that are
accessible in experiment and more sensitive to the correlation
length. Higher cumulants and combinations of them such as the

kurtosis of conserved quantities such as net baryon number or
net charge fulfill this requirement [18,19]. The fast dynamical
evolution of matter through a first-order phase transition
may exhibit interesting phenomena such as supercooling
followed by a decay through spinodal decomposition [20–25]
or nucleation [26]. Also an enhancement of soft pions from the
decay of a disoriented chiral condensate (DCC) was proposed
as a signal for a nonequilibrium chiral phase transition
[27–29].

Only via thorough theoretical understanding of the pro-
cesses and effects in dynamical systems undergoing phase
transitions can one provide realistic predictions for upcoming
experiments with relativistic heavy-ion beams at Brookhaven’s
Relativistic Heavy Ion Collider (RHIC) [30], CERN’s Super
Proton Synchrotron (SPS) [31], the Facility for Antiproton and
Ion Research (FAIR) at GSI [32], and the Nuclotron-based Ion
Collider Facility (NICA) [33].

In [8], the thermodynamic properties of a Polyakov-loop-
extended Nambu-Jona-Lasinio (PNJL) model were studied
and compared with lattice QCD results. The addition of the
Polyakov loop to these models improved the behavior of
thermodynamic bulk quantities in comparison to the lattice
QCD data. A similar extension to the sigma model with
constituent quarks was presented in [9], where a coincidence
of the deconfinement and chiral symmetry transition even at
finite μB was found. An investigation of the phase structure
of that model beyond the mean field has been performed
in [10] and includes quantum fluctuations within the functional
renormalization group method. This improvement has led to
a quantitative shift in the position of the CP. Furthermore, the
authors calculated net quark number density fluctuations as
well as ratios of cumulants as an important means to identify
the location of the deconfinement and chiral phase transitions.
The relevance of the fermion vacuum loop for such models
has been investigated in [11], where it was shown that this
term has crucial influence on the phase structure and on
physical observables such as net quark number fluctuations.
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In [12] an extension of this model to (2 + 1) flavors together
with a comparison with lattice QCD data has been presented.
An alternative model using a dilaton field representing a
scalar glueball condensate was subject to studies in [13]. An
important step toward the understanding of nonequilibrium
effects at the chiral phase transition was made in [14], where
it was shown that the inclusion of spinodal instabilities yields
an enhancement of density fluctuations along the first-order
transition line. This is in contrast to the usual understanding
of thermalized systems where such fluctuations are expected
to diverge or grow large only at the CP.

For a better understanding of the processes during a
heavy-ion collision, nonequilibrium effects have to be taken
into account in the framework of a fully dynamical model. A
promising ansatz to study the QCD phase transition in such a
way is given by a chiral fluid dynamics model that has been
developed and extended over more than ten years now [34–38].
In [34], the authors introduced a model coupling a relativistic
ideal fluid of quarks to the linear sigma model and a scalar
glueball condensate. Later in [35] this model was used to
study the (3 + 1)-dimensional fluid dynamic expansion of a
plasma droplet coupled to the out-of-equilibrium evolution of
the long-wavelength modes of the chiral condensate. There
the initial fluctuations of the sigma field were propagated
deterministically. A self-consistent derivation of the coupled
dynamics of fields and fluid together with the local thermody-
namic properties of the heat bath was then presented in [36].
This step is a crucial improvement, as the previous models
which propagated the chiral fields using a classical equation of
motion neglected relaxational and stochastic processes. As as
result, the fields would never relax to their equilibrium state for
a given temperature but continue oscillating. In [36], the order
parameter of chiral symmetry is propagated by a Langevin
equation to include damping and noise in the heat bath of
quarks. The quark fluid is propagated according to the equa-
tions of ideal hydrodynamics. The relaxational dynamics of the
field and the treatment of the finite size of the heat bath were
investigated in [37] and the first numerical studies of the full ex-
panding system were then presented in [38]. A coupling of the
linear sigma model to viscous hydrodynamics has been studied
in [39].

Dynamical models for the Polyakov loop have been
proposed in [40–42]. In [40], the authors developed a model
for particle production near the deconfinement phase transition
due to oscillations in a Polyakov loop condensate. These
oscillations were included on the basis of a kinetic term in an
effective field theory for a Polyakov loop that is biquadratically
coupled to a mesonic field. This idea was further used in
[41], where the authors showed how explosive behavior at
the QCD phase transition might be produced by the decay
of such a condensate of Polyakov loops. Based on work
in [43,44], a Langevin equation for the deconfinement order
parameter for pure SU(2) gauge theory was developed in [42].
It was shown that the dissipative interaction with the medium
plays a significant role in the determination of physical time
scales.

In the present work, we connect these ideas of a dynamical
Polyakov loop with the model of chiral fluid dynamics to take
into account effects of the deconfinement phase transition.

The newly included deconfinement order parameter is treated
as an effective field and propagated by a phenomenological
Langevin equation. The suggested model is able to provide a
dynamic description of two phase transitions in the background
of a fluid dynamically expanding heat bath of quarks. This
setup resembles the situation after the collision of two
heavy nuclei. In [36] the proper nonequilibrium dynamics
for the sigma field and the quark fluid have been derived
self-consistently for a model without a Polyakov loop. The
resulting Langevin equation for the sigma field includes two
important effects: the damping of the chiral field due to the
interaction with the heat bath and the back reaction of the heat
bath on the sigma field by stochastic noise. For the dynamics
of the Polyakov loop we follow the same idea but on a
phenomenological basis as it is currently not possible to derive
the dynamics of the Polyakov loop from a consistent field
theoretical approach as has been achieved for the sigma field.
With the considered Polyakov-loop-extended linear sigma
model we are able to describe characteristic phenomena at
the phase boundary within a dynamical setup.

This article is structured as follows. In Sec. II we present the
Polyakov-loop-extended chiral fluid dynamics model, where
the sigma field and Polyakov loop are coupled to a fluid
dynamically propagated heat bath of quarks. After that we
consider two different numerical implementations. Section III
presents results of relaxational dynamics in a box for several
quench scenarios. In Sec. IV we study the evolution of a freely
expanding hot plasma undergoing a phase transition. Finally,
we present a short summary and outlook in Sec. V.

II. CHIRAL FLUID DYNAMICS WITH A POLYAKOV LOOP

A. General remarks

Our model extends existing studies of chiral fluid dynamics
[34–38] with the Polyakov loop to take into account effects of
both the chiral and the deconfinement phase transition. The
restoration of SU(Nf )L × SU(Nf )R chiral symmetry in the
high-temperature phase can be characterized by the melting of
the 〈q̄q〉 condensate or the sigma field, respectively. For the
transition to deconfinement, the Polyakov loop � is the quantity
of interest. It is defined as the expectation value of the color
trace of a thermal Wilson loop:

� = 1

Nc

〈trcP〉β, �̄ = 1

Nc

〈trcP†〉β, (1)

where the operator P is defined as

P = P exp

(
igs

∫ β

0
dτA0

)
. (2)

Here, P stands for path ordering, A0 denotes the temporal
component of the Euclidean color gauge field, gs is the strong
coupling constant, and β = 1/T is the inverse temperature.
The expectation value of � is related to the free energy Fq(�x)
of an infinitely heavy test quark at spatial position �x via

〈�(�x)〉 = e−βFq (�x). (3)

In the confined phase, this free energy diverges and therefore
〈�〉 vanishes whereas it takes some finite value in the
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deconfined phase. In the limit of infinitely heavy quarks, QCD
is invariant under Z(Nc) center symmetry transformations of
the SU(Nc) color gauge group. The Polyakov loop transforms
as

� → z�, z ∈ Z(Nc), (4)

with the consequence that the confined phase is center
symmetric while this symmetry is spontaneously broken in
the deconfined phase. In the presence of dynamical quarks,
the Polyakov loop is always nonzero as the free energy of a
test quark does no longer diverges. Nevertheless, 〈�〉 may still
serve to characterize the transition between the two phases.

B. The model

For our studies we use the Polyakov-loop-extended quark
meson model [9]. The Lagrangian reads

L = q[i(γ μ∂μ − igsγ
0A0) − g(σ + iγ5 �τ · �π )]q + 1

2 (∂μσ )2

+ 1
2 (∂μ �π )2 − U (σ, �π ) − U(�, �̄), (5)

where q = (u, d) is the constituent quark field, so Nf = 2, and
σ is the mesonic sigma field. For our simulations around the
phase transition we utilize a fixed strong coupling constant of
αs = g2

s /(4π ) = 0.3. As we are only interested in the behavior
of the order parameters, we neglect fluctuations of the pionic
degrees of freedom and keep their values fixed at the vanishing
expectation value �π = 〈�π〉 = 0 for all times. The potential for
the sigma field reads

U (σ ) = λ2

4
(σ 2 − ν2)2 − hqσ − U0. (6)

The chiral symmetry of the Lagrangian (5) is explicitly
broken by the term hq in the potential (6) by taking into
account the finite quark masses. The parameters in (6) are
chosen such that chiral symmetry is spontaneously broken in
vacuum, where 〈σ 〉 = fπ = 93 MeV, the pion decay constant.
The explicit symmetry-breaking term is hq = fπm2

π with
the pion mass mπ = 138 MeV. These requirements lead
to ν2 = f 2

π − m2
π/λ2. Choosing λ2 = 19.7 yields a realis-

tic vacuum sigma mass mσ = √
2λ2f 2

π + m2
π ≈ 600 MeV.

The constant term U0 = m4
π/(4λ2) − f 2

π m2
π is chosen such that

the potential energy vanishes in the ground state. The quark-
meson coupling constant is fixed by the requirement to repro-
duce the constituent quark mass in vacuum: g = mq/fπ = 3.3.

The temperature-dependent Polyakov loop potential is
chosen in a polynomial form [8,9,45]

U
T 4

(�, �̄) = −b2(T )

4
(|�|2 + |�̄|2) − b3

6
(�3 + �̄3)

+ b4

16
(|�|2 + |�̄|2)2. (7)

At nonvanishing μB , this parametrization yields an unphysical
behavior in the Polyakov loop susceptibilities, which become
negative in a broad temperature range [46]. One can cure
this problem by augmenting this effective potential with a
logarithmic term to account for the Haar measure in the group
integral [46–48]. As we will restrict our numerical studies to
the case of zero baryochemical potential, we can ignore this
issue for the present investigation.

The coefficients in (7) are fixed to reproduce thermody-
namic results from lattice QCD simulations in the pure gauge
sector. We use parametrizations proposed in [8,49–52]:

b2(T ) = a0 + a1

(
T0

T

)
+ a2

(
T0

T

)2

+ a3

(
T0

T

)3

, (8)

with a0 = 6.75, a1 = −1.95, a2 = 2.625, and a3 = −7.44,
and two temperature-independent coefficients b3 = 0.75 and
b4 = 7.5. The potential (7) has a first-order phase transition
at a critical temperature of T0 = 270 MeV. However, in the
presence of dynamical quarks this transition temperature gets
lower due to the increased number of degrees of freedom and
reduced dynamical scale. The proper Nf and μB dependence
of T0 has been investigated in [53]. For two flavors and
vanishing baryochemical potential, T0 reduces to a value of
208 MeV.

The effective thermodynamic potential that we need for
describing the dynamics of σ and � and for the local
equilibrium properties of the quarks is given by

Veff = −T

V
lnZ = U + U + �qq̄ . (9)

The partition function Z of our system can be written as a path
integral over the quarks, antiquarks, mesons, and the temporal
component of the color gauge field. Integrating out the quark
degrees of freedom, which will constitute the heat bath, we
obtain the grand canonical potential �qq̄ . At μB = 0, � = �̄
and in the mean-field approximation it is [9]

�qq̄ = −4Nf T

∫
d3p

(2π )3
ln[1 + 3�e− βE + 3�e−2βE + e−3βE].

(10)

Here E =
√

p2 + g2σ 2 , the energy of the quarks, their mass
being generated dynamically by the sigma field. The integrand
contains contributions from one-, two-, and three-quark states,
the first two being proportional to �. This means that for
vanishing value of the Polyakov loop only three-quark states
contribute, while the amount of one- and two-quark states gets
larger with growing �. This is called “statistical confinement”
[54]. In (10), we omit the zero-temperature contribution to
�qq̄ , which can partly be renormalized into the parameters
λ2 and ν2, leaving a logarithmic term depending on the
renormalization scale and the effective quark mass. This term
may have crucial influence on the phase structure of the model
[11,55]. However, as the mean-field approximation provides
us with the desired phase transition already [6], we neglect
this term and its effects in the following. In order to simplify
the calculations and for a first qualitative study we follow the
same strategy as in [35–37]. Varying the coupling strength g
one can tune the characteristic shape of the effective potential
Veff at μB = 0 and by that the type of transition: For g =
4.7 we see two degenerate minima (σ = 9 MeV, � = 0.40)
and (σ = 81 MeV, � = 0.22) at the transition temperature of
Tc = 172.9 MeV [see Fig. 1(a)], while for g = 3.52 we
have only one single minimum (σ = 49 MeV, � = 0.43) at
Tc = 180.5 MeV, where the potential is very broad and flat
as shown in Fig. 1(b). This resembles a CP. Note that in
principle one has to choose g such that the product gσ in
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FIG. 1. (Color online) (a) Effective potential for g = 4.7, corresponding to a first-order phase transition at Tc = 172.9 MeV. (b) Effective
potential for g = 3.52, corresponding to a CP scenario at Tc = 180.5 MeV.

vacuum reproduces the constituent quark mass, which leads to
a value of g = 3.3.

C. The equations of motion

In [36] we have derived the coupled dynamics of the sigma
field and the quark fluid self-consistently with the two-particle
irreducible (2PI) effective action for an analogous model
without a Polyakov loop. The description of nonequilibrium
processes can be achieved via Langevin equations. This
has been extensively done in a quantum field theoretical
framework for φ4 theory [56–59], gauge theories [60,61], and
O(N ) chiral models [62]. Here, a splitting between the long-
and short-wavelength modes of the sigma field was assumed
and the relaxational dynamics of the soft modes in the heat
bath of hard modes was derived within the influence functional
formalism. Utilizing a chiral model with constituent quarks,
we assumed a different splitting. Taking the quarks as the
environmental degrees of freedom and the sigma as the relevant
degrees one can calculate the 2PI effective action by integrating
over the Keldysh contour. Out of that we were able to derive a
Langevin equation of motion containing friction and noise:1

∂μ∂μσ + ησ (T )∂tσ + ∂Veff

∂σ
= ξσ . (11)

The damping coefficient ησ is temperature dependent and
responsible for the transfer of energy and momentum to
the heat bath. It arises from the σ ↔ qq̄ process and is
nonvanishing wherever this decay is kinematically possible.
In [36] we derived its explicit form in the |�k| = 0 limit which
is sufficient as we are interested mainly in the fluctuations of
the soft modes. For mσ > 2mq it is given by

ησ = 12g2

π

[
1 − 2nF

(
mσ

2

)](m2
σ

4 − m2
q

) 3
2

m2
σ

, (12)

with mσ being the pole mass of the sigma field. While the
screening mass, defined as the curvature of the effective

1In this form the equation of motion is not Lorentz invariant. The
problem could be cured by replacing ησ ∂tσ → ησ uμ∂μσ .

potential at the equilibrium value, vanishes at the CP, this
is not in general true for the pole mass. However, we use

m2
σ = ∂2Veff

∂σ 2

∣∣∣∣
σ=σeq, �=�eq

(13)

as an approximation to the proper pole mass for Eq. (12). This
ansatz is justified as the pole mass has a minimum at the transi-
tion temperature for a crossover scenario just like the screening
mass. A consistent calculation is possible by considering the
dispersion relations for different types of excitations.

For the damping below the phase transition we choose
ησ = 2.2/fm [28] to account for the σ ↔ ππ reaction
whenever it is kinematically allowed. Figure 2 shows ησ as
a function of temperature for both transition scenarios. Due
to its perturbative derivation, the damping coefficient is rather
high, especially for the first-order transition. The only region
where it vanishes is around Tc for the CP, where the sigma
becomes light enough so that mσ < 2mq, 2mπ . The stochastic
noise field in the equation of motion (11) has a vanishing
expectation value 〈ξσ 〉 = 0. To complete this part we derive
a dissipation-fluctuation relation that connects the damping
coefficient to the correlator of the stochastic noise field and
ensures the relaxation to the proper equilibrium state:

〈ξσ (t, �x)ξσ (t ′, �x ′)〉= 1

V
δ(t − t ′)δ(�x − �x ′)mσησ coth

(
mσ

2T

)
.

(14)
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FIG. 2. (Color online) Damping coefficient for the sigma field as
a function of temperature, for CP and a first-order transition scenarios.
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The temperature, the mass of the sigma field, the damping,
and the noise field in (14) are local quantities which may vary
among different positions on the spatial grid.

The derivation of the equation of motion for the Polyakov
loop � is more problematic because � is defined in Euclidean
space and it is not completely clear how to propagate it in real
time. In [40] a kinetic term for the Polyakov loop has been
included in the Lagrangian:

L → L + Nc

g2
s

|∂μ�|2T 2. (15)

It was proposed that production of pions near the phase
transition is driven by oscillations of the Polyakov loop.
Only in the region around Tc is the Polyakov loop light,
allowing large fluctuations and thus particle production. As the
Polyakov loop operator is a phase in color space and therefore
� is a pure number, dimensions in an effective Lagrangian can
only be made up by powers of the temperature T . However, the
temperature in our model is space and time dependent, so the
Euler-Lagrange equation for � would contain derivative terms
of T that might lead to unphysical behavior.

For our present model we follow a different strategy, as
formulated in [63]. If the order parameter is out of equilib-
rium, then relaxational processes toward its thermodynamic
equilibrium value will occur. The velocity of relaxation is then
proportional to the derivative of the effective potential with
respect to the order parameter. Analogous to the sigma field
we include fluctuations of the Polyakov loop with a stochastic
noise term for which 〈ξ�〉 = 0:

η�∂t�T
2 + ∂Veff

∂�
= ξ�, (16)

〈ξ�(t, �x)ξ�(t ′, �x ′)〉T 2 = 1

V
δ(t − t ′)δ(�x − �x ′)2η�T . (17)

In Eq. (17) Gaussian and Markovian noise is assumed, as
was done in [42]. In contrast to the sigma field it is not clear
how to derive a damping for the Polyakov loop in a field
theoretical manner as the fermionic part of the Lagrangian
contains interaction with the A0 color gauge field but not
directly with �. Therefore we chose a “reasonable” value of
η� = 5/fm, although the results are not sensitive to it. We will
further comment on this later.

D. Propagation of the quark fluid

The propagation of the quark fluid is governed by the
equations of ideal relativistic fluid dynamics:

∂μ

(
T μν

q + T μν
σ + T

μν
�

) = 0. (18)

We require energy and momentum conservation for the system
as a whole, its energy-momentum tensor being split into quark,
sigma, and Polyakov loop parts. In [36] we were able to derive
self-consistently an approximate expression for the quark and
sigma contribution. For the quarks we obtained the energy-
momentum tensor of an ideal fluid; the contribution of the
sigma field can be expressed as

∂μT μν
σ =

(
−∂�qq̄

∂σ
− ησ ∂tσ

)
∂νσ. (19)

Assuming the same structure and effects for the Polyakov loop
contribution, we end up with

∂μT
μν
� =

(
−∂�qq̄

∂�
− η�∂t�T

2

)
∂ν�. (20)

As explained in [36], these terms cannot account for the
average energy transfer from the heat bath to the fields caused
by the stochastic noise fields ξσ and ξ�. The equation of state
p = p(e) is obtained and tabulated from the thermodynamic
relations

p(σ, �, T ) = −�qq̄ (σ, �, T ), (21)

e(σ, �, T ) = T
∂p(σ, �, T )

∂T
− p(σ, �, T ). (22)

A simple relation for p(e) cannot be obtained as σ and � are
propagated explicitly and can be out of equilibrium and the
pressure as well as the energy density of the quarks depends
explicitly on the local values of these fields.

III. EQUILIBRATION IN A BOX

In this section we study the relaxational behavior of the
order parameters in a box of finite size after several temperature
quenches. The aim is to give estimates and compare relaxation
times near and far away from the transition point for first-order
and CP scenarios. Furthermore, we investigate fluctuations
during and after the equilibration process.

A. Numerical implementation

We solve the equations of motion for the fields and the quark
fluid on a fixed spatial cube of size L3, where L = N�x with
N equal to the number of cells in each direction and a grid
spacing of �x = 0.2 fm. The fluid dynamic equations (18) are
solved using the full (3 + 1)-dimensional SHarp And Smooth
Transport Algorithm (SHASTA) ideal fluid dynamic code [64,
65]. To ensure numerical stability we use a time step of �t =
0.4 · �x = 0.08 fm.

Rewriting the equation of energy and momentum conser-
vation for the coupled system with a source term Sν for the
fluid we obtain

∂μT μν
q = −∂μ

(
T μν

σ + T
μν
�

) = Sν. (23)

After performing the fluid dynamical step for vanishing Sν in
the standard fashion, we subtract the sources from the energy
and momentum density in the global rest frame of the fluid.
This is especially interesting for an expanding medium and has
been successfully implemented in previous studies of chiral
fluid dynamics simulations without a Polyakov loop [37,38].
As will be shown later, this enables us to conserve the total
energy for our Polyakov-loop-extended model (see Sec. IV B).

To implement the source term in the numerical simulation
we apply the same strategy as in [38]. Equations (19) and (20)
provide us with the energy density dissipated into the heat
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bath:

�ediss =
[(

∂�qq̄

∂σ
+ ησ ∂tσ

)
∂tσ

+
(

∂�qq̄

∂�
+ η�∂t�T

2

)
∂t�

]
�t. (24)

The energy transfer due to stochastic fluctuations �efluc can be
calculated by comparing this term to the numerically obtained
energy difference in the sigma and Polyakov loop fields before
and after each time step. The energy density of the sigma field
is given by the sum of a potential, kinetic, and fluctuation
terms while for the Polyakov loop it is associated only with
the potential energy due to the lack of a kinetic term in the
Lagrangian:

eσ = U (σ ) + 1

2

(
∂σ

∂t

)2

+ 1

2
( �∇σ )2, (25)

e� = U(�). (26)

Altogether this gives us the zero component of the source term,

S0 = 1

�t
(�ediss + �efluc) . (27)

The spatial components accounting for momentum transfer are
calculated in an analogous fashion. The momentum transfer
due to dissipative processes is given by

� �Mdiss =
[(

∂�qq̄

∂σ
+ ησ ∂tσ

)
�∇σ

+
(

∂�qq̄

∂�
+ η�∂t�T

2

)
�∇�

]
�t, (28)

and � �Mfluc is obtained by comparing this to the change in the
momentum density of the fields, which is vanishing for the
Polyakov loop:

�Mσ = ∂tσ �∇σ, (29)
�M� = 0. (30)

This gives us the spatial part of the source term,

�S = 1

�t
(� �Mdiss + � �Mfluc). (31)

The Langevin equations of motion for the fields σ and � are
solved by using a staggered leap-frog algorithm (cf. Ref. [66]).
For this algorithm the time step is chosen smaller than for the
propagation of the fluid. We use a �t of 0.1 · �x = 0.02 fm.
That is, four consecutive time steps of calculation for the fields
are performed with the same fluid background, followed by one
step for the fluid propagation. After that, the local temperatures
T (�x) are adjusted in each cell via a root finder of

efluid(�x) − e{σ (�x), �(�x), T (�x)} = 0. (32)

These local temperatures then enter the local potentials (7)
and (10) and consequently the equations of motion (11)
and (16), which are then used in the next time step for the
propagation of the order parameter fields.

B. Results

We are interested in the investigation of relaxational
processes of the coupled system of fields and fluid after a
temperature quench. Using a cubic 643 grid with periodic
boundary conditions we set the temperature Tini uniformly to a
value above Tc and then initialize the sigma and Polyakov loop
field at their equilibrium values including thermal fluctuations
with a variance given by

〈δσ 2〉 = T

V

1

m2
σ

, (33)

〈δ�2〉 = T

V

1

m2
�

. (34)

Here we have defined the mass of the Polyakov loop, m�,
analogously to the sigma mass as

m2
� = 1

T 2

∂2Veff

∂�2

∣∣∣∣
σ=σeq, �=�eq

. (35)

We then quench the temperature to various values T < Tc and
initialize the quark heat bath by calculating its energy density
and pressure out of the given quantities T , σ , and � via Eqs. (21)
and (22). After that we let the system evolve according to
Eqs. (11), (16), and (23). Fields and fluid now influence each
other in the following way: The amount of energy that the
fields lose through damping gets transferred to the fluid, which
causes an adjustment of the temperature on account of Eq. (32).
This new temperature then reshapes the thermodynamic
potential that influences the dynamics of the fields. In this
kind of box calculations pressure gradients in the fluid are
small, so we expect the dynamics to be governed by the fields.

We are now interested in the relaxational behavior of the
sigma field and the Polyakov loop by comparing volume
averages over all cells of the box as they evolve in time for
different quench temperatures and two transition scenarios.
The volume averages in a single event are defined as

〈σ 〉 = 1

N3

∑
ijk

σijk, 〈�〉 = 1

N3

∑
ijk

�ijk, (36)

where σijk (�ijk) is the instantaneous value of the sigma field
(Polyakov loop) in a cell with coordinates i, j, k. These values
are furthermore averaged over Ne events with different noise
configurations

〈σ 〉 = 1

Ne

Ne∑
n=1

〈σ 〉n, 〈�〉 = 1

Ne

Ne∑
n=1

〈�〉n. (37)

Results for both transition scenarios are shown in Fig. 3.
They show the evolution of the noise and volume-averaged
value of the sigma field in time for different quenching temper-
atures T . The solid curves indicate the case where the system
relaxes near the corresponding transition temperature. In both
cases the dynamics is slowed down, however for different
reasons. At the first-order phase transition the barrier that
separates minima near Tc is responsible for a significant delay
in the relaxation dynamics. For the second-order transition we
observe critical slowing down. This is inherent in the model
due to the vanishing of the damping coefficient around the crit-
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FIG. 3. (Color online) (a) Equilibration of the sigma field for several quench temperatures T < Tc through the first-order transition.
The barrier between the minima in the potential increases the relaxation time when the system relaxes near Tc = 172.9 MeV. We chose
Tini = 180 MeV. (b) Equilibration of the sigma field for several quench temperatures T < Tc through the CP. Critical slowing down delays the
dynamics and causes oscillations around the flat minimum when the system relaxes near Tc = 180.5 MeV. We chose Tini = 186 MeV.

ical temperature that causes the system to oscillate around the
equilibrium state and prolong the relaxation time up to infinity.

The average values of the Polyakov loop as a function of
time are shown in Fig. 4. Here we find again a prolongation
of the relaxation time near the first-order phase transition,
where the average value is slowly growing until t = 25 fm,
while for the other quenching temperatures, the system is
equilibrated after 5 fm. For a CP scenario, we observe the
same effect as for the sigma field: critical slowing down near
the transition temperature, but with a small amplitude.

We performed these simulations with various damping
coefficients for the Polyakov loop η� ranging from 1/fm
up to 10/fm. A significant difference in the relaxational
behavior could only be observed in the case where the system
equilibrated near the first-order phase transition, where a larger
value of η� caused a larger relaxation time. In all other cases the
results are not sensitive to the choice of damping. Therefore we
may consider our choice of η� = 5/fm as justified, especially
for the case of an expanding hot medium, which we finally
aim to describe.

The fluctuations of the order parameters can be analyzed
by calculating their intensities Nσ and N�. For the sigma field
this quantity is given by [38,67,68]

dNσ

d3k
= a

†
kak

(2π )32ωk

= ω2
k |δσk|2 + |∂tσk|2

(2π )32ωk

, (38)

where a
†
k and ak are the Fourier coefficients of the expansion

of the sigma field around its equilibrium value δσ = σ − σeq

and of the conjugate momentum field ∂tσ . The energy of the

kth mode is ωk =
√�k2 + m2

σ . We use an analogous definition
for the Polyakov loop,

dN�

d3k
= T 2 ω2

k |δ�k|2 + |∂t�k|2
(2π )32ωk

, (39)

with ωk =
√�k2 + m2

� , although this field formally has no
kinetic energy term (see the discussion at the end of Sec. II C).
In equilibrium the quantities Nσ and N� may be interpreted
as particle numbers, but to avoid confusion we call them
“intensities of fluctuations.” Several histograms of Nσ and
N� as a function of the wave number |k| evaluated at different
times are shown in Figs. 5(a) and 5(b) for the sigma field and
in Figs. 5(c) and 5(d) for the Polyakov loop. The figures on the
left-hand side show the intensity at early times during the tran-
sition process. We see that here fluctuations at the first-order
transition are clearly enhanced compared to the CP scenario.
On the right-hand side the intensities are shown for the time t =
24 fm after the system has equilibrated. Here we see that the
long-wavelength modes of both order parameters are enhanced
at the CP, a typical and well-known critical phenomenon [16].
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FIG. 4. (Color online) (a) Equilibration of the Polyakov loop for several temperature quenches T < Tc through the first-order transition. We
chose Tini = 180 MeV. (b) Equilibration of the Polyakov loop for several temperature quenches T < Tc through the CP. We chose Tini = 186 MeV.
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FIG. 5. (Color online) (a) Intensity of sigma fluctuations during the transition process at t = 12 fm (first order) and t = 3 fm (CP). (b)
Intensity of sigma fluctuations after equilibration at t = 24 fm. In the CP scenario we find an enhancement of the soft modes. (c) Intensity of
Polyakov loop fluctuations during the transition process at t = 12 fm (first order) and t = 3 fm (CP). (d) Intensity of Polyakov loop fluctuations
after equilibration at t = 24 fm. In the CP scenario we find an enhancement of the soft modes.

IV. DYNAMICS IN AN EXPANDING MEDIUM

Here we are interested in the coupled dynamics of a system
which is not confined in a box but freely expands into vacuum,
similar to what happens after a heavy-ion collision. We study
the relaxational behavior of the sigma field and Polyakov
loop during the nonequilibrium evolution and investigate the
influence of energy-momentum exchange on the temperature
evolution in both transition scenarios.

A. Numerical implementation

For this simulation we use a 1283 grid and initialize in
its center a droplet which is ellipsoidal in the x-y plane and

uniform in the z direction. This resembles the almond shape
of the overlap region of two colliding nuclei. The droplet has
a temperature of Tini = 200 MeV, well above both transition
temperatures, and is smoothed by a Woods-Saxon distribution
function at its edges:

T (�x, t = 0) = Tini

{1 + exp[(r̃ − R̃)/ã]}{1 + exp[(|z| − lz)/ã]} .
(40)

Here, r̃ =
√

x2 + y2, ã = 0.6 fm is the thickness of the
transition layer to vacuum, and

R̃ =
{

abr̃√
b2x2+a2y2

, r̃ �= 0,

a, r̃ = 0.
(41)
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FIG. 6. (a) The total energy as composed of the energy of the sigma field, Polyakov loop, and the quark fluid of an expanding system for
a first-order transition scenario. (b) The total energy as composed of the energy of the sigma field, Polyakov loop, and the quark fluid of an
expanding system for a scenario with a CP.
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The ellipsoidal parameters are chosen as a = rA − b̃/2 and
b =

√
r2
A − b̃/4, with rA = 6.5 fm denoting the radius of

the two nuclei and b̃ = 6 fm the impact parameter. The
extent in the z direction is 2lz = 12 fm. The sigma and
Polyakov loop fields are initialized with their respective
equilibrium distribution, then the energy density and pressure
of the quark fluid are calculated. We choose an initial
velocity profile with vz(�x, t) = |z|/lz · vmax with vmax = 0.2.
The transverse velocities vx and vy are set to zero in the
beginning.

B. Energy conservation

We let the system expand by full (3 + 1)-dimensional fluid
dynamics and check the conservation of the total energy
throughout the evolution. The energies of the sigma and
Polyakov loop field are given by (25) and (26), respectively.
Figure 6 shows the total energy and the partial energies of the
quark fluid, the sigma field, and the Polyakov loop during the
fluid dynamical expansion. For both scenarios the total energy
is well conserved until the quark fluid reaches the edges of the
computational grid after 8 fm.

C. Supercooling and reheating

During the fluid dynamic expansion we extract the average
temperature 〈T 〉, sigma field 〈σ 〉, and Polyakov loop 〈�〉 in
a central cubic volume of 1 fm3 inside the hot matter as a
function of time. The results are shown in Fig. 7(a) for the
first-order transition and in Fig. 7(b) for a scenario with a CP.
One can observe significant differences in the evolution of the
average temperatures between the two scenarios: For the case
of the first-order transition [Fig. 7(a)], a reheating occurs after
6 fm as a consequence of the formation of a supercooled phase
below the transition temperature. We see that, as the average
temperature falls below Tc, the average values of the sigma
field and Polyakov loop remain close to their high-temperature
values around σ/fπ = 0.1 and � = 0.4. This supercooled state
decays after about 2 fm to the global minimum and transfers its
energy into the fluid, which consequently causes an increase
in the average temperature.

For the CP scenario [Fig. 7(b)], no reheating effect is
observed. The temperature decreases monotonically with only
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critical point
first order

FIG. 8. (Color online) Correlation length of the sigma field as a
function of time, for CP and first-order transition scenarios.

a small plateau well below the transition temperature where
the dynamics slightly slows down due to the flat shape of
the effective potential. The evolution of the averaged fields,
especially for 〈σ 〉, proceeds less rapidly than at the first-order
phase transition.

D. Domain formation

In our previous calculations we used the correlation
functions (14) and (17), assuming that the stochastic noise
fields in neighboring cells are not correlated as expressed by
the spatial delta function. This leads to results that correspond
to averaging over many events (see Ref. [38]). However, to
better understand the differences between the two scenarios
it is instructive to compare the microscopic structure of
individual events. This requires a more consistent treatment
of the field fluctuations by implementing realistic correlation
lengths. Figure 8 shows the correlation length of the sigma
field, ξ = 1/mσ , as a function of time for the expansion
through both the CP and the first-order phase transition. Here,
mσ is calculated out of the volume-averaged temperature
in the previous section. The effect of such an averaging on
the correlation length in inhomogeneous systems has been
discussed in [69]. For the first-order transition, ξ lies in a range
of 0.3–0.5 fm for the whole evolution while in the CP scenario
it reaches a peak of about 1.5 fm when the system crosses the
transition temperature after t = 3.2 fm [cf. Fig. 7(b)].
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FIG. 7. (Color online) (a) Evolution of the average temperature, sigma field, and Polyakov loop in a system evolving through the first-order
transition. Supercooling followed by reheating can be observed. The horizontal line denotes the critical temperature. (b) Evolution of the
average temperature, sigma field and Polyakov loop in a system evolving through the CP. The temperature decreases monotonically with a
small plateau slightly below Tc. The horizontal line denotes the critical temperature.

014907-9



HEROLD, NAHRGANG, MISHUSTIN, AND BLEICHER PHYSICAL REVIEW C 87, 014907 (2013)

FIG. 9. (Color online) (a) Sigma field for z = 0 at t = 4 fm in a first-order phase transition scenario. (b) Sigma field for z = 0 at t = 3.2 fm
in a scenario with a CP.

Below we present results obtained by correlating the noise
fields over the spacelike distance ξ = 1/mσ in each time step.
The numerical procedure that implements such correlations
has been described in [35]. For each spatial cell we perform
an averaging of the randomly distributed noise field over a
surrounding cube of linear size ξ = n�x via

ξ ′
σ (�x) = 1

n3

∑
i,j,k=0,...,n−1

ξσ (�x + i�x�e1 + j�x�e2 + k�x�e3).

(42)

As this procedure weakens the fluctuations, i.e., 〈δξ ′2
σ 〉 �=

〈δξ 2
σ 〉, we have to rescale the noise field in order to obtain

again the initial distribution width:

ξ ′′
σ (�x) = ξ ′

σ (�x)

√ 〈
δξ 2

σ

〉
〈
δξ ′2

σ

〉 . (43)

An analogous correlation procedure is done for the
Polyakov loop, correlating ξ� over the distance 1/m�. The
spatial distributions in the transverse plane (z = 0) are shown
for the sigma field in Fig. 9, for the Polyakov loop in Fig. 10,
and for the energy density in Fig. 11. We chose a time of
t = 4 fm for the first-order scenario, corresponding to the onset
of the transition process where 〈T 〉 = Tc [cf. Fig. 7(a)]. Here
we expect to observe phase coexistence, i.e., domains of the

chirally broken phase in the chirally symmetric background
or vice versa. For the CP scenario we chose a time of t = 3.2
fm, where again 〈T 〉 = Tc [cf. Fig. 7(b)], and furthermore the
correlation length reaches its maximum value as shown in
Fig. 8. In this scenario there are no degenerate or metastable
phases around Tc but one single equilibrium state for each
temperature. We therefore expect a more regular structure with
no domains.

By inspecting the figures we indeed find a striking differ-
ence between the two transition scenarios. At the first-order
transition, both the fields and fluid evolve irregularly. This
effect is best observed in the sigma field [Fig. 9(a)], where
one can see the expected domains of the chirally broken
phase embedded in the chirally symmetric background [see
for instance the region around (x, y) = (2, 2)]. Here, the
system produces large fluctuations in small spatial regions
that are able to overcome the potential barrier and create these
characteristic structures. Nevertheless, the different phases
are connected smoothly, and there are no sharp boundaries
between the domains. This is a result of the Laplacian in
the equation of motion which smoothens the gradients. Also,
in the Polyakov loop [Fig. 10(a)], and even more in the
energy density [Fig. 11(a)], we observe a bumpy and irregular
structure. Regions of high energy density are embedded in a
background of lower energy density in the periphery, such

FIG. 10. (Color online) (a) Polyakov loop for z = 0 at t = 4 fm in a first-order phase transition scenario. (b) Polyakov loop for z = 0 at
t = 3.2 fm in a scenario with a CP.
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FIG. 11. (Color online) (a) Energy density for z = 0 at t = 4 fm in a first-order phase transition scenario. (b) Energy density for z = 0 at
t = 3.2 fm in a scenario with a CP.

as for instance around (x, y) = (−2, 5). These embedded
regions are then going to grow and merge, leaving small
islands of the symmetric phase, which gradually shrink until
the whole system is in the low-temperature chirally broken
phase.

On the other hand, the evolution through the CP proceeds
smoothly, and the regular ellipsoidal structure is preserved.
Especially at the transition point, where the correlation length
grows large, we see a smooth shape in both the fields and the
energy density of the quark fluid [see Figs. 9(b), 10(b), and
11(b)]. This striking difference in the event structure should
manifest itself in the experimental data, e.g., in the nonstatis-
tical multiplicity fluctuations of produced hadrons [70].

V. SUMMARY AND OUTLOOK

We presented a fully dynamical model to study the chiral
and deconfinement phase transitions of QCD simultaneously.
In our previous studies of chiral fluid dynamics we have
derived the coupled dynamics of the sigma field and the
quark heat bath within a self-consistent 2PI effective action
approach. The results were now extended for the Polyakov
loop so that both order parameters are propagated via
Langevin equations with the interaction with the quark heat
bath via dissipation and noise taken into account. We assume
that the structure of the source term for the Polyakov loop is
analogous to that for the sigma field. During all simulations
the total energy is well conserved.

We studied the relaxational behavior of the coupled system
for different quench scenarios in a box. For both first-order and
CP scenarios, relaxation near the transition point is delayed.
At the first-order phase transition the relaxation process is
significantly delayed due to the barrier in the thermodynamic
potential. The transition actually starts only when this barrier
disappears. Near the CP, when the sigma mass drops to zero
and therefore the damping vanishes, we observe perpetual
oscillations of the sigma field around the equilibrium value.
These fluctuations are also visible in the Polyakov loop,
although with a small amplitude. Performing a Fourier analysis
of the fluctuations for both order parameter fields we have
observed another interesting peculiarity. While during the

transition process the intensity of fluctuations is much stronger
in a first-order than in a CP scenario, the soft modes are more
strongly enhanced near the CP as compared with the first-order
transition if the systems are allowed to equilibrate.

For the evolution of an expanding fluid through the
first-order transition we have found clear evidence for the
formation of a supercooled phase. Its decay later on leads
to a substantial reheating of the quark fluid. This contrasts
with the simulation with a CP, where the temperature decreases
monotonically. Furthermore, during the onset of the first-order
transition, small domains of different phases coexist and create
inhomogeneities in the energy density. In the CP scenario,
where the correlation length grows large near the critical
temperature, we observe a more homogeneous structure in
the fields and fluid. A detailed analysis of domain formation at
the first-order phase transition will be provided in future work.
Furthermore, we will extend this model to finite baryochemical
potential and study trajectories in the full T -μ plane as well
as fluctuations of baryon number densities.

We have thought about several extensions and refinements
of the model. The damping coefficient for the sigma field
should include not only the σ ↔ qq̄ decay but also the decay
into pions. The soft modes, which are linked to the order
parameter of the chiral transition, are furthermore affected by
interaction with the hard modes, which would give another
contribution to the heat bath and the dissipation process.
For the Polyakov loop we used a purely phenomenological
Langevin equation with a constant damping coefficient.
This needs improvement, for instance by extracting this
term from Monte Carlo simulations, as has been proposed
in [42]. The present studies will allow for a better quantitative
understanding of the signatures of the CP especially at FAIR
energies.
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