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Channel coupling effect and important role of imaginary part of coupling potential for high-energy
heavy-ion scatterings
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The recent works by the present authors and their collaborator predicted that the real part of heavy-ion optical
potentials changes its character from attraction to repulsion around the incident energy per nucleon E/A =
200–300 MeV on the basis of the complex G-matrix interaction and the double-folding model (DFM) and
revealed that the three-body force plays an important role there. In the present paper, we have analyzed the
energy dependence of the coupling effect with the microscopic coupled channel (MCC) method and its relation
to the elastic and inelastic-scattering angular distributions in detail in the case of the 12C + 12C system in the
energy range of E/A = 100–400 MeV. The large channel coupling effect is clearly seen in the elastic cross
section although the incident energies are enough high. The dynamical polarization potential (DPP) is derived
to investigate the channel coupling effect. Moreover, we analyze the effect of the imaginary part of the coupling
potential on elastic and inelastic cross sections.
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I. INTRODUCTION

The collective excitation of nuclei is known to play an
important role in heavy-ion (HI) reactions. The strong coupling
among the ground and low-lying collective states of colliding
nuclei requires a nonperturbative treatment to properly account
for the coupling effects on the elastic and inelastic scatterings.
The coupled-channel (CC) method is one of the most reliable
and established reaction theories to study the role of nuclear
excitations in HI reactions and to extract nuclear-structure
information through the CC analyses of the experimental
data [1].

In the conventional CC calculations, the phenomenological
optical potentials are used for constructing the diagonal and
coupling potentials. In the case of collective excitations,
the form factors of the coupling potentials are given by
the derivative forms of the optical potential (in the case of
vibrational excitations) or by the deviation of the deformed
optical potential from the spherical one (in the case of
rotational excitations). The strengths of the coupling potentials
are determined so as to reproduce the known electric transition
rates such as the B(Eλ) values, if available. Otherwise, they
are treated as the free parameters that are chosen so that the
CC calculation reproduces the experimental data of the elastic
and inelastic scattering [2–7].

Despite the successful applications of the conventional CC
method for various HI reactions, serious problems have been
pointed out frequently in connection with large ambiguities
in the shape and strength of the phenomenological optical
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potentials for HI systems [1,8]. The ambiguity of the optical
potential adopted in the CC calculation leads to a serious
difficulty in the proper evaluation of the channel coupling
effects as well as unknown nuclear-structure information
such as the deformation lengths and electric transition rates.
To overcome these difficulties, microscopic coupled-channel
(MCC) [1,9–11] methods have been proposed on the basis
of microscopic optical potential models [12]. In the MCC
method, the diagonal and coupling potentials used in the
CC calculations are constructed by the double-folding model
(DFM) with the use of an effective nucleon-nucleon (NN )
interaction.

In the early stage of the MCC studies of HI reactions, the
effective NN interactions called the M3Y interaction [13]
or its density-dependent version called DDM3Y [14,15] (in-
cluding its modified versions) have been used in constructing
the diagonal and coupling potentials [9–12,16–18]. These
interactions, especially the density-dependent versions, have
proved to give a good account of the strength and shape of
the internuclear potentials. However, all these effective NN
interactions have a real part only and, therefore, one has to add
an phenomenological imaginary part by hand to the diagonal
and coupling potentials obtained by the DFM calculations
with the real NN interactions, which makes the results of
CC calculations still ambiguous. It is of particular importance
to note that the channel coupling effects largely depend on the
real to imaginary ratio of the coupling potentials [10,11,16].

Recently, several types of microscopic interaction models
that predict complex optical potentials for composite pro-
jectiles have been proposed and applied to the analyses of
elastic and inelastic scattering. One is the complex DFM
[19–21] with the use of the Jeukenne-Lejeune-Mahaux (JLM)
interaction [22,23]. The JLM interaction is a very simple
complex effective NN interaction and easy to handle in the
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folding calculations and, hence, has widely been used in the
nucleon-nucleus systems. Another widely used interaction
model is the São Paulo potential (SPP) [24–26], that is, the
DFM potential multiplied by the local-velocity-dependent
Pauli nonlocality correction factor. Both models still suffer
from uncertainty originating from either existence of the free
parameters or the lack of a theoretical foundation of the models
and assumptions.

The latest interaction model based on the complex G-matrix
interaction [27,28] is the most fundamental microscopic model
for complex optical potential that was successfully applied
to proton-nucleus [27] and nucleus-nucleus [28–31] elastic
scattering over the wide range of incident energies. In this
model, a new type of complex effective NN interaction called
CEG07 [27] was constructed on the basis of the Breuckner
G-matrix theory and the CEG07 interaction is doubly folded
with the nucleon density distributions of the colliding nuclei
giving a complex optical potential for the HI system. Because
of its reliable microscopic foundation, it is interesting to apply
the present complex interaction model to the coupled-channel
calculations of the HI reactions.

It is somewhat straightforward to generalize the successful
microscopic theory for complex HI optical potential to the
study of inelastic scattering of the HI system that excites low-
lying collective excited states. Namely, it is just to replace the
real effective NN interaction (such as the DDM3Y one) by the
complex one (CEG07) in the DFM calculation of the diagonal
and coupling potentials within the MCC framework. This kind
of MCC method based on the complex NN interaction was
first applied to the elastic and inelastic scattering of the 16O +
16O system at medium energies [32].

Here, it should be noted that the microscopic HI optical
potentials predicted by the DFM with CEG07 shows a
characteristic energy dependence. The real part of the HI
optical potential becomes shallower as the increase of the
incident energy and changes its sign from negative (attractive)
to positive (repulsive) at the incident energy per nucleon (E/A)
around the 300-MeV region, whereas the imaginary part of
the optical potential gradually increases with the increase of
the incident energy [30]. Although the precise energy region
where the attractive to repulsive transition occurs is still to
be examined through experimental confirmation [33], there
is no doubt that the real to imaginary ratio of the optical
potentials must drastically change in such a medium to high
energy region.

This kind of characteristic behavior of the microscopic
optical potential will manifest itself also in the complex
coupling potentials calculated with the CEG07 interaction
within the MCC framework. In the present paper, we study
the energy dependence of the real and imaginary parts of the
coupling potentials derived from the CEG07 interaction and
investigate its relation to the channel coupling effects on the
elastic and inelastic scattering of the 12C + 12C system in
the MCC framework. Particular attention will be paid to the
characteristic energy dependence of the so-called dynamical
polarization potential (DPP) and its relation to the energy
dependence of the real to imaginary ratio of the coupling
potential predicted by the microscopic interaction model with
the CEG07 interaction.

II. MICROSCOPIC COUPLED CHANNEL METHOD

We apply the complex G-matrix interaction CEG07 to
analyze the channel coupling effect on elastic scattering and
the energy dependence of the inelastic cross section through
the MCC calculations.

The coupled-channel (CC) equations for the radial compo-
nent of the wave functions, χ

(J )
αL (R) for a given total angular

momentum of the projectile-target scattering system J , are
written as[

− h̄2

2μ

d2

dR2
+ h̄2L(L + 1)

2μR2
− Eα

]
χ

(J )
αL (R)

= −
∑
β,L′

F
(J )
αL,βL′(R)χ (J )

βL′(R), (1)

where μ is the reduced mass of the scattering system. The
suffix α for the radial wave function χ

(J )
αL (R) denotes the

channel number designated by the intrinsic spins of colliding
two nuclei I1 and I2, the channel spin S defined by the vector
coupling of I1 and I2, and the sum of the excitation energies of
the two nuclei εα = ε1 + ε2. Namely, χ

(J )
αL (R) ≡ χ

(J )
αS(I1I2)L(R)

explicitly. Here, we assign α = 0 to the entrance (elastic)
channel. Eα = Ec.m. − εα is the center-of-mass (c.m.) energy
of the projectile-target relative motion in the channel α, where
Ec.m. is the c.m. energy in the elastic channel. L is the orbital
angular momentum for the relative motion between the two
nuclei which takes the values of |J − S| � L � J + S for
given S and J . Thus, the scattering channel is defined by
a set of α and L for a given J . F

(J )
αL,βL′(R) represents the

diagonal (α = β and L = L′) or coupling (α �= β and/or
L �= L′) potential that is defined more explicitly [17,18] by

F
(J )
αL,βL′(R) ≡ F

(J )
αS(I1I2)L,βS ′(I ′

1I
′
2)L′(R)

=
∑

λ

iL+L′−λ(−1)S+L′−J−λL̂L̂′ W (SLS ′L′ : Jλ)

× (L0L′0|λ0)2NI1I2NI ′
1I

′
2

[
U

(λ)
αS(I1I2),βS ′(I ′

1I
′
2)(R)

+ (−1)SU (λ)
αS(I2I1),βS ′(I ′

1I
′
2)(R)

]
, (2)

where NI1I2 = [2(1 + δI1I2δε1ε2 )]−
1
2 and L̂ = (2L + 1)

1
2 .

W (SLS ′L : Jλ) and (L0L′0|λ0) denote the Racah and
Clebsch-Gordan coefficients, respectively. The second term on
the right-hand side appears for scattering of identical nuclei as
in the present case of the 12C + 12C system [18,34].

In Eq. (2), U
(λ)
αS(I1I2),βS ′(I ′

1I
′
2)(R) is the intrinsic component

of the diagonal or coupling potential with the multipolarity
of rank λ, that only contains nuclear structure information in
channels α and β and is irrelevant to the angular momenta L
and J associated with the projectile-target relative motion. It
consists of the Coulomb and nuclear parts,

U
(λ)
αS(I1I2),βS ′(I ′

1I
′
2)(R)

= V
(λ,Coul.)
αS(I1I2),βS ′(I ′

1I
′
2)(R) + U

(λ,Nucl.)
αS(I1I2),βS ′(I ′

1I
′
2)(R), (3)

and they are obtained by the double folding of the Coulomb
and nuclear parts of the nucleon-nucleon (NN ) interaction,
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respectively, as

V
(λ,Coul.)
αS(I1I2),βS ′(I ′

1I
′
2)(R)

=
√

4πŜŜ ′Î1Î2

∑
λ1λ2

⎧⎨
⎩

I1 I2 S
I ′

1 I ′
2 S ′

λ1 λ2 λ

⎫⎬
⎭

∫
ρ

(λ1,p)
I1I

′
1

(r1)ρ(λ2,p)
I2I

′
2

(r2)v(Coul.)
NN (s)

[
[Yλ1 (r̂1) ⊗ Yλ2 (r̂2)]λ ⊗ Yλ(R̂)

]
00d R̂d r1r2, (4)

U
(λ,Nucl.)
αS(I1I2),βS ′(I ′

1I
′
2)(R)

=
√

4πŜŜ ′Î1Î2

∑
λ1λ2

⎧⎪⎨
⎪⎩

I1 I2 S

I ′
1 I ′

2 S ′

λ1 λ2 λ

⎫⎪⎬
⎪⎭

{ ∫
ρ

(λ1)
I1I

′
1
(r1)ρ(λ2)

I2I
′
2
(r2)v(D)

NN (s, ρ, ε)
[
[Yλ1 (r̂1) ⊗ Yλ2 (r̂2)]λ ⊗ Yλ(R̂)

]
00

d R̂d r1d r2

+
∫

ĵ1
(
keff
F (p)s

)
ρ

(λ1)
I1I

′
1
(p)ĵ1

(
keff
F (t)s

)
ρ

(λ2)
I2I

′
2
(t)v(EX)

NN (s, ρ, ε) exp

{
iMk(R) · s

μ

}[
[Yλ1 ( p̂) ⊗ Yλ2 ( t̂)]λ ⊗ Yλ(R̂)

]
00d R̂d pds

}
,

(5)

where s = R − r1 + r2, p = r1 + 1
2 s, t = r2 − 1

2 s, and
YLM (r̂) = iLYLM (r̂). In this expression, the Wigner 9-j
symbol is introduced. ε = E/A is the incident energy per
nucleon and M is the nucleon mass. Here, the quantities ρ

(λ)
II ′(r)

represent the λ-rank multipole component of the diagonal or
transition density of the projectile or target nucleus that is
defined as

ρIm,I ′m′(r) =
√

4π
∑
λν

(I ′m′λν|Im)ρ(λ)
II ′(r)Y ∗

λν(r̂), (6)

where m and m′ are the z component of I and I ′, respectively.
Note that ρ(λ,p)

II ′ (r) with the superscript (p) in Eq. (4) represents
the proton part of the density to be used in the Coulomb part of
the folding potential. v

(Coul.)
NN is the NN Coulomb interaction,

whereas v
(D)
NN and v

(EX)
NN are the direct and exchange parts of

the nuclear interaction, respectively, for which we adopt the
complex G-matrix interaction CEG07 and they are written as

vD,EX = ± 1
16v00 + 3

16v01 + 3
16v10 ± 9

16v11, (7)

in terms of the spin-isospin components vST (S = 0 or 1 and
T = 0 or 1) of the CEG07 interaction.

The effective NN interaction actually used in the preset
MCC calculation is the CEG07b interaction [27,28]. The
CEG07b includes the three-body force (TBF) effect that is
found to be essentially important to predict proper shape and
strength of the nucleus-nucleus interaction that are consistent
with the observed elastic scattering data [28–30].

In the exchange part of Eq. (5), k(R) is the local momentum
of the nucleus-nucleus relative motion defined by

k2(R) = 2μ

h̄2

[
Ec.m. − ReU (0,Nucl.)

0,0 (R) − V
(0,Coul.)

0,0 (R)
]
, (8)

and the exchange part of the diagonal and coupling potentials
is calculated self-consistently on the basis of the local energy
approximation through Eq. (8). Here, the local momentum is
evaluated with the use of the nuclear and Coulomb potentials,
Re U

(0,Nucl.)
0,0 and V

(0,Coul.)
0,0 , in the elastic channels, because

the incident energies considered in the present paper are so
high that the difference of the potentials between the elastic

and inelastic channels is negligible in evaluating the local
momentum. Note that U

(0,Nucl.)
0,0 and V

(0,Coul.)
0,0 in Eq. (8) are

the abbreviations of the λ = 0 component of the nuclear
and Coulomb potentials for the elastic channel defined by
Eqs. (5) and (4), respectively. In Eq. (5), ĵ1(keff

F (x)s) ≡
3

keff
F (x)s

j1(keff
F (x)s), where keff

F is the effective Fermi momentum

[35] defined by

keff
F =

(
(3π2ρ)2/3 + 5Cs[∇ρ]2

3ρ2
+ 5∇2ρ

36ρ

)1/2

, (9)

where we adopt Cs = 1/4 following Ref. [36]. The exponential
function in Eq. (5) is approximated by the leading term of
the multipole expansion, namely the spherical Bessel function
of rank 0, j0(Mk(R)s

μ
), following the standard prescription

[27,37–41].
The present G-matrix interaction, CEG07, depends on the

density of nuclear medium and we have to specify the density
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FIG. 1. The real and imaginary part of the folding potential in the
elastic channel of the 12C + 12C system calculated at E/A = 100,
200, 300, and 400 MeV.
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to be used in the above folding-model calculations. We employ
the so-called frozen-density approximation (FDA) [28] for
evaluating the local density ρ in Eq. (5). In the FDA, the
density-dependent NN interaction is assumed to feel the local
density defined as the sum of the densities of the projectile and
target nuclei:

ρ = ρ(P) + ρ(T). (10)

In calculating the diagonal (I1 = I ′
1, I2 = I ′

2) potential,
U

(λ,Nucl.)
αS(I1I2),αS(I1I2)(R), we use the monopole (λ = 0) component

of the nucleon density defined by Eq. (6) in the corresponding
states of the projectile and the target nuclei,

ρ(P) = ρ
(0)
I1I1

, ρ(T) = ρ
(0)
I2I2

, (11)

that are nothing but the normal nucleon density in the states,
while in calculating the coupling potential U (λ,Nucl.)

αS(I1I2),βS ′(I ′
1I

′
2)(R),

we use the average of the nucleon densities in the initial and
final states for each nucleus [18,34]:

ρ(P) = 1
2

{
ρ

(0)
I1I1

+ ρ
(0)
I ′

1I
′
1

}
, (12)

ρ(T) = 1
2

{
ρ

(0)
I2I2

+ ρ
(0)
I ′

2I
′
2

}
. (13)

The local densities are evaluated at the position of each
nucleon for the direct part and at the middle point of the
interacting nucleon pair for the exchange part following the
preceding works [11,18]. The FDA has widely been used also
in the standard DFM calculations [12,18,28,42,43] and it was
proved that the FDA was the most appropriate prescription
for evaluating the local density in the DFM calculations with
realistic complex G-matrix interactions [28].

The imaginary part of the calculated potential is multiplied
by a renormalization factor NW , the value of which is the only
free parameter in the present folding model. In the previous
analyses [28,29], its values were determined so as to reproduce
the experimental data on the elastic-scattering cross sections
to be compared with the calculated ones. However, there exist
no experimental data to be compared with the calculations in
the high energy region E/A = 100–400 MeV and we fix the
NW value to unity unless otherwise mentioned as in Ref. [30].

We discuss the channel coupling effect not only in the
calculated cross sections but also in terms of the dynamical
polarization potential (DPP) [1]. The DPP in the elastic
channel (α = 0) discussed in the present paper is the so-called
wave-function equivalent DPP [9,10,16] that is defined by

�U
(J )
DPP(R) =

∑
β �=0,L′

F
(J )
0J,βL′ (R)χ (J )

βL′(R)/χ (J )
0J (R), (14)

where we use the fact that I1 = I2 = 0 and L = J for the
elastic channel in the present 12C + 12C scattering.

III. RESULT AND DISCUSSION

A. Channel coupling effect on the elastic scattering

We apply the MCC method with the CEG07 G-matrix
interaction to the 12C + 12C elastic and inelastic scatterings
at four incident energies per nucleon, E/A = 100, 200, 300,
and 400 MeV and first analyze the energy dependence of the
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=
2,

N
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FIG. 2. The real and imaginary part of the coupling potential
[nuclear part defined in Eq. (5)] between the elastic channel and the
2+

1 single-excitation channel of the 12C + 12C system calculated at
E/A = 100, 200, 300, and 400 MeV.

channel coupling effect on the elastic scattering. In the present
MCC calculations, the single and mutual excitations of 12C
to the 2+

1 (4.44 MeV), 0+
2 (7.65 MeV), 3−

1 (9.64 MeV), and
2+

2 (10.3 MeV)1 excited states are taken into account. The
diagonal and transition densities among the ground state and
those excited states are taken from Ref. [45] that were obtained
by the 3α-RGM (resonance group method) calculation [46].
In this paper, we call the CC calculation that takes account
of the full combination of excited states of the projectile and
target nuclei as the full-CC calculation. However, the single
excitation to the 2+

1 state are found to play a dominant role in
the elastic and inelastic scattering discussed here.

First, we plot the energy dependence of the real and
imaginary parts of the diagonal potential in Fig. 1.2 In the
energy evolution, the real part of the folding potential in the
elastic channel changes its sign between E/A = 200 and
300 MeV, which was already reported in the previous work
[30] and referred to as the attractive to repulsive transition.
The experimental confirmation of the transition predicted by
the microscopic folding model will be a big challenge [33].
Figure 2 shows the energy evolution of the coupling potential
between the elastic channel and the 2+

1 single-excitation
channel. The real part of the coupling potential changes its sign
between E/A = 200 and 300 MeV in the same manner as in
the case of the elastic-channel potential, whereas the strength

1The excitation energy, 10.3 MeV, of the 2+
2 state adopted here

is slightly higher than that of the latest publication, 9.84 ±
0.06 MeV [44]. However, the difference is completely negligible
in the high-energy scattering studied in the present paper.

2A minor difference of the potentials shown in Fig. 1 in the present
paper and those given in Fig. 3 of Ref. [30] is due to the difference in
the adopted density for 12C and in the position where the local density
is evaluated.
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FIG. 3. The Rutherford ratio of the elastic-scattering cross sec-
tions displayed as the functions of the momentum transfer q. The
dotted and solid curves are the results of the single-channel and
full-CC calculations, respectively.

of the imaginary part slowly and monotonically increases with
the increase of the energy that also follows the trend of the
elastic-channel potential. One should note here that the real and
imaginary parts of the coupling potential have similar strength
at E/A = 100 MeV, while the real to imaginary ratio as well as
their relative sign drastically changes with the increase of the
energy, which will be a very important point in understanding
the energy dependence of the DPP as will be discussed later.

Figure 3 shows the angular distributions of the 12C + 12C
elastic cross sections calculated at the four incident en-
ergies. The relativistic-kinematics correction was made in
all the calculations presented in this paper. The dotted and
solid curves are the results of the single-channel and full-CC
calculations, respectively. A sizable channel coupling effect is
clearly seen in the elastic cross sections at all incident energies
including the highest energy. It is found that the dominant
contribution to the channel coupling effects on the elastic
scattering comes from the 2+

1 single-excitation channel. In the
comparison of the single-channel calculation with the full-CC
one, one notices that the diffraction pattern of the cross sections
slightly shifts backward and the cross sections decrease at large
angles by the channel coupling effect. Although the effect on
the cross sections looks similar to all the incident energies, the
contents of the effect are very different from each other as will
be discussed below in terms of the DPP.

B. Dynamical polarization potential

Next, we investigate the channel coupling effect on the
elastic scattering in terms of the dynamical polarization
potential (DPP) defined by Eq. (14). By definition, the DPP is
J dependent and we calculate the DPP for a J value close to
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FIG. 4. The DPP for Jgr = 52 obtained by the full-CC calculation
at E/A = 100 MeV, plotted along with the absolute value of the radial
wave function in the elastic channel. The solid and dotted curves are
the real and imaginary parts of the DPP, respectively.

the grazing J value defined by

Jgr = bgr

√
2μEc.m./h̄. (15)

Here, bgr denotes the grazing impact parameter and we take
bgr 	 4 fm in the present 12C + 12C system. Figures 4–7 show
the real and imaginary parts of the DPP for E/A = 100,
200, 300, and 400 MeV calculated at Jgr for each incident
energy, along with the absolute value of the elastic-channel
wave function,

∣∣χ (J )
0J (R)

∣∣. For the grazing J values, the
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FIG. 5. Same as Fig. 4 but for Jgr = 74 at E/A = 200 MeV.

014618-5



T. FURUMOTO AND Y. SAKURAGI PHYSICAL REVIEW C 87, 014618 (2013)

0

1

2

0 2 4 6 8

−10

0

10

R (fm)

12C + 12C at E/A = 300 MeV

(J = 90)

Real
Imaginary

ΔU
(J

) D
P

P
 (

M
eV

)
|χ

(J
) 0J

|

Dynamical polarization potential

FIG. 6. Same as Fig. 4 but for Jgr = 90 at E/A = 300 MeV.

elastic-channel wave function has visible magnitudes outside
R ≈ 3.5 fm and reaches its maximum around the grazing
impact parameter positions R ≈ 4 fm, as seen in the figures.
The J dependence of the DPP will be discussed later.

The oscillation of the DPP seen in the region outside the
grazing distances is mainly due to the oscillation of the elastic-
channel wave function that appears in the denominator in the
definition of the DPP [Eq. (14)]. The oscillation, however,
does not give rise to any anomaly in the calculated cross
sections because the DPP multiplied by the elastic-channel
wave function in the CC equations is a smooth function of
the radial variable R. It should be noted that the DPP at short
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FIG. 7. Same as Fig. 4 but for Jgr = 104 at E/A = 400 MeV.
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FIG. 8. Real (upper) and imaginary (lower) parts of the DPP at
E/A = 100 MeV. The solid, dotted, dashed, and dot-dashed curves
are the results at J = 32, 42, 52, and 62, respectively.

distances, say less than about 3 fm, plays little role in the
scattering because of the repulsion of the centrifugal barrier
on one hand and, on the other hand, because of the strong
absorption in the internal region [30], that make the magnitude
of the elastic-channel wave function negligibly small. Thus,
hereafter, we discuss the DPP only in the region of R � 3 fm
outside the insensitive domain.

As the increase of the incident energy, the real part of the
DPP shows the rapid transition from positive (repulsive) to
negative (attractive) around E/A = 200 MeV, whereas the
imaginary part changes its sign from negative to positive in
the surface region. The characteristic energy dependence of the
real and imaginary parts of the DPP calculated at the grazing
J values still persists to other J values, as shown in Figs. 8–11
that show the DPP calculated for various J values around the
Jgr value for each incident energy. One can clearly see that
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FIG. 9. Same as Fig. 8 but at E/A = 200 MeV and J = 54, 64,
74, and 84.
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the J dependence of the DPP is small outside the insensitive
radial region R � 3 fm for all the incident energies and the
characteristic trend of the energy dependence of DPP is almost
independent of the J value.

C. Relation between complex coupling potential and DPP

It is well known that the sign and the strength of the DPP
have a close relation to the relative sign and the strength of the
real and imaginary parts of the coupling potential [10,16,47].
Therefore, the characteristic energy evolution of the DPP can
be easily understood through the energy dependence of the
complex coupling potential shown in Fig, 2. For example, the
negative (attractive) sign of the real part of DPP at E/A =
300 and 400 MeV is the result of the different sign of the
real and imaginary parts of the coupling potential at those
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FIG. 11. Same as Fig. 8 but at E/A = 400 MeV and J = 84, 94,
104, and 114.

energies, whereas the positive sign of the imaginary part of
DPP at E/A = 200 and 300 MeV can be understood by the
dominance of the imaginary coupling at the sensitive region
(R � 3 fm) at these energies [16].

To understand the close relation between the signs of the
complex DPP and those of the complex coupling potentials,
we make use of the following simplified model adopted in
Refs. [10,16] in the analysis. In this model, one assumes the
same radial form factor to the real and imaginary parts of
the coupling potential to clarify the close relation between
the complex coupling potential and the complex DPP and
discusses the DPP evaluated in the second-order approxima-
tion of the reaction processes. Here, we define the complex
coupling potential between the elastic channel (α = 0) and a
channel β having the same radial form factor which we write
symbolically as

U0β(R) = (NV + iNW)f0β(R). (16)

f0β(R) denotes the radial form factor of the coupling potential
that is taken to be a real function of R, whereas NV and NW

represent the strength parameters for the real and imaginary
parts of the complex coupling potential, respectively.

Then, the DPP generated by the complex coupling between
the elastic channel and various excited channels {β} in the
second-order perturbation theory will be written symbolically
as

�UDPP =
∑

β

U0βĜ
(+)
β Uβ0 (17)

= (NV + iNW)2
∑

β

f0βĜβfβ0 (18)

≡ (NV + iNW)2(�v + i�w), (19)

where Ĝ
(+)
β represents the Green function operator (prop-

agator) in the β channel and �v + i�w is the complex
DPP generated by the real coupling potential f0β(R) with
a unit strength. It is well known [1,48,49] that the DPP
generated by the real coupling potential having a moderate
strength corresponding to the normal collective excitations
is dominated by the imaginary part of an absorptive nature
(�w < 0) and the real part of the DPP is somewhat small or
even negligible, |�w| � |�v| ≈ 0. In this situation, the real
and imaginary parts of the DPP given by Eq. (19), �VDPP and
�WDPP, generated by the complex coupling U0β(R) will be

�VDPP 	 −2NVNW�w, (20)

�WDPP 	 (
N2

V − N2
W

)
�w, (21)

in good approximation.3

The relations (20) and (21) clearly show the close relations
between the real and imaginary parts of the DPP and the
strength and sign of the real and imaginary coupling potential.
For instance, one can see that the existence of the imaginary
coupling (NW �= 0) is essential to generate the real part of
DPP and that the same sign of the real and imaginary coupling

3A more detailed discussion in the situation with �v �= 0 can be
found in Refs. [10,16].
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potentials gives rise to a repulsive DPP (�VDPP > 0) because
of the fact that �w < 0, whereas the similar strength of the
real and imaginary coupling potentials leads to the pure real
DPP (�WDPP ≈ 0), that was really the case of the repulsive
DPP generated by the coupling to the breakup processes for
the loosely bound 6,7Li and 9Be projectile nuclei [9,10,16].

Based on the relations (20) and (21), one can clearly and
easily understand the peculiar energy dependence of the real
and imaginary parts of the DPP that we saw in Figs. 4–7 in
terms of the characteristic energy dependence of the coupling
potential shown in Fig. 2. At E/A = 100 MeV, the similar
strengths of the real and imaginary part of the coupling
potential with the same negative sign (NV ≈ NW < 0) lead to
the strongly repulsive �VDPP > 0 with a negligible imaginary
part �WDPP ≈ 0 as seen in Fig. 4, whereas at E/A = 200 MeV,
the weak real coupling (NV ≈ 0) and the negative imaginary
coupling still having a considerable strength (NW < 0) lead
to the completely opposite situation to the E/A = 100 MeV
case, i.e., a negligible real DPP (�VDPP ≈ 0) with a sizable
imaginary DPP having the positive sign (�WDPP > 0) as we
have seen in Fig. 5. As one goes further to the higher energy
of E/A = 400 MeV, the real and imaginary couplings have
similar strength but of opposite signs, which may correspond
to the situation of −NW ≈ NV > 0 in the present schematic
model, which leads to the real DPP of the strongly attractive
nature (�VDPP < 0) with a relatively weak imaginary DPP
(�WDPP ≈ 0), although the situation somewhat depends on
the radial region as will be understood in the comparison of
Figs. 2 and 7.

D. Effect of DPP on the elastic cross sections

Now, we make a comment about the channel coupling effect
on the elastic-scattering cross sections shown in Fig. 3. As was
already mentioned concerning the figure, the channel coupling
effects on the angular distribution of elastic scattering at four
incident energies look very similar to each other but we will
point out that the origin of the effect is very different from
each other.

At the lowest energy E/A = 100 MeV, the real part of
the bare folding potential is a strongly attractive potential
that acts to swing the trajectory of the incoming projectile
nucleus toward the opposite side of the target nucleus in the
semiclassical picture. This implies that, in terms of the near-
side/farside decomposition picture [50], the attractive potential
enhances the farside-scattering amplitude at backward angles
that leads to a crossover around the middle angles with the
nearside-scattering amplitude that dominates the scattering at
forward angles as shown by the dashed lines in Fig. 12(a)
(upper panel). At this energy, the real part of the DPP has a
positive sign (being of the repulsive nature) as we have seen in
Fig. 4. This implies that the sum of the attractive bare folding
potential and the repulsive DPP [V + �V ; the solid curve
in Fig. 12(a)] leads to a less attractive potential compared
with the bare folding potential V (the dashed curve). This
results in the hindrance of the farside amplitude and the
enhancement of the nearside one [the red and blue solid lines
in the right panel of Fig. 12(a)], which leads to the decrease

FIG. 12. (Color online) Schematic picture for the relation of the
bare potential + DPP and the nearside and farside cross sections.

of the coherent sum of the nearside and farside cross sections
accompanied by the slightly backward shift of the diffraction,
as seen by the change from the dotted curve to the solid one
for the E/A = 100 MeV case in Fig. 3.

The situation is completely opposite in the case of E/A =
400 MeV, where the real part of the bare folding potential
is strongly repulsive while the real part of the DPP has a
negative sign (being of the attractive nature) as we have seen
in Figs. 2 and 7, which is schematically shown in the left
panel of Fig. 12(b). In such a situation, the elastic scattering is
dominated by the nearside amplitude over the whole angular
region because of the repulsive nature of the bare folding
potential (V > 0) [30] but the addition of the attractive DPP
(�V < 0) lead to a less repulsive potential, as shown by
the solid curve in the left panel of Fig. 12(b). The nearside
amplitude (red lines) generated by the less repulsive potential
slightly decreases, while the farside amplitude (blue lines)
slightly increases, which leads again to the decrease of the
coherent sum of the two amplitudes. This is what we have
observed in Fig. 3 in the case of E/A = 400 MeV.

E. Role of the real and imaginary coupling in the elastic and
inelastic cross sections

As discussed in the previous section, the basic idea of the
relation between the channel coupling effect on the elastic
scattering and the strength/sign of the real and imaginary parts
of the coupling potential can be understood in terms of the
DPP through Eqs. (20) and (21) and we understand that both
the real and imaginary parts of the coupling potential play
important roles. Here, we investigate the individual roles of
the real and imaginary parts of the coupling potential on the
elastic and inelastic cross sections. To this end, we perform
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FIG. 13. The effects of the real and imaginary coupling potentials
on the elastic cross section. The solid, dotted, dashed, and dot-dashed
curves are the results by full CC with complex coupling, single
channel, full CC without imaginary coupling, and full CC without
real coupling calculations, respectively.

the CC calculations by switching off either the real part or the
imaginary part of the coupling potential and see the effects on
the elastic and inelastic cross sections.

Figure 13 shows the calculated elastic cross sections for the
12C + 12C system at E/A = 100–400 MeV. The dotted and
solid curves show the results of the single-channel calculation
and the full-CC ones with the complex coupling, respectively,
which are the same as those in Fig. 3. The large difference
between the dotted and solid curves shows the significant
effects of the channel coupling with the complex coupling
potentials. The dot-dashed (dashed) curves show the results
of the CC calculations without the real part (imaginary part)
of the coupling potential. In the cases without either the
real or imaginary coupling potentials, the channel coupling
effect becomes much smaller than the case with the complex
coupling potentials, as seen in Fig. 13. These results clearly
indicate that both the real and imaginary parts of the complex
coupling potential play important roles to give the large
channel coupling effect on the elastic cross section.

It is interesting to note that the elastic cross sections by the
CC calculation without the real coupling potential (dot-dashed
curves) are larger than those by the single-channel ones (dotted
curves) at backward angles. This can be understood through
Eqs. (20) and (21). Namely, the CC calculation with a pure
imaginary coupling (NV = 0, NW �= 0) leads to �VDPP

∼= 0 and
�WDPP

∼= −N2
W �w > 0, which implies the simple decrease

of the absorption with respect to the bare folding potential
used in the single-channel calculation, |W + �WDPP| < |W |,

0 2 410−15

10−12

10−9

10−6

10−3

100

103

106

q (fm−1)

dσ
/d

Ω
c.

m
. (

m
b/

sr
)

12C + 12C inelastic scattering

E/A = 100 MeV

200 MeV

300 MeV

400 MeV

(x 10−3)

(x 10−12)

(x 10−8)

Ex = 4.44 MeV (21
+)

complex coupling
w/o imaginary coupling
w/o real coupling

FIG. 14. The effects of the real and imaginary coupling potentials
on the inelastic cross section. The solid, dashed, dot-dashed curves
are the results by the full CC with complex coupling, full CC without
imaginary coupling, and full CC without real coupling calculations,
respectively.

leading to the enhancement of cross sections at backward
angles.

Next, we show the results on the inelastic cross sections.
Figure 14 shows the calculated cross sections of the 12C + 12C
inelastic scattering to the 2+

1 single-excitation channel at
the same incident energies, E/A = 100–400 MeV. The
solid curves show the results with the complex coupling
potential, whereas the dot-dashed (dashed) curves show the
results without the real part (imaginary part) of the coupling
potential. At E/A = 100 MeV, the real and imaginary parts
of the coupling potential have comparable contributions to
the inelastic cross sections and their coherent sum (the solid
curve for the complex coupling) has twice those individual
contributions.

The situation completely changes as one goes to the higher
energies, where the inelastic cross sections are dominated
by the imaginary part of the coupling potential and the
contribution of the real part of the coupling potential is quite
small, particularly at E/A = 300 MeV where the contribution
is by two orders of magnitude smaller than that of the
imaginary part and almost negligible, as far as the cross
sections at forward angles [i.e., for low momentum transfer
(low-q) regions] is concerned.

The drastic energy dependence of the contribution of the
real and imaginary coupling on the inelastic cross sections
is found to have a close relation to the characteristic energy
dependence of the complex coupling potential shown in Fig. 2.
To make the discussion clear and simple, we again make use
of the simplified model, Eq. (16), for the coupling potential
and assume that the inelastic transition occurs in the one-step
process. On this assumption, the inelastic cross section will be
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evaluated by the distorted-wave Born approximation (DWBA)
and written symbolically as

σβ,0 = |〈ψ (−)
β |(NV + iNW)fβ0(R)|ψ (+)

0 〉|2

= (
N2

V + N2
W

)|〈ψ (−)
β |fβ0(R)|ψ (+)

0 〉|2

≡ σ
(r)
β,0 + σ

(i)
β,0, (22)

where ψ
(+)
0 and ψ

(−)
β denote the distorted waves in the

entrance and exit channels, respectively, and the first and
second terms on the right-hand side of Eq. (22) correspond
to the contributions of the real and imaginary parts of the
coupling potential to the inelastic cross section, respectively.
By referring to Fig. 2, the real and imaginary parts of the
coupling potential have comparable magnitude at E/A =
100 MeV around the nuclear surface region, which may
correspond to the situation as |NV| ≈ |NW| in this model. This
leads to σ

(r)
β,0 ≈ σ

(i)
β,0 ≈ 1

2σβ,0 and this is just what we see in
Fig. 14 in the case of E/A = 100 MeV.

As seen in Fig. 2, the magnitude of the real part of the
coupling potential decreases as the increase of the incident
energy and changes its sign around E/A = 300 MeV and
becomes positive at E/A = 400 MeV except at the most
periphery, while strength of the imaginary part monotonically
increases with the increase of the energy. These situations
may correspond to the case that |NV| � |NW| in the present
simplified model, which results in the negligible contribution
from the real coupling to the inelastic cross section that is
dominated by the imaginary coupling, σ

(r)
β,0 � σ

(i)
β,0 ≈ σβ,0.

This precisely explains the situations that we observe in Fig. 14
in the realistic CC calculations at E/A = 200–400 MeV as far
as the cross sections at forward angles are concerned.

It should be noted that the contributions of the real and
imaginary coupling potential become comparable at large
angles (at high q) even at higher energies as seen in Fig. 14.
This may also be understood within the present simplified
model, because the cross section in the high-q region reflects
the contribution of the coupling potentials at short distances
where the real part has a strength comparable to that of the
imaginary part, as shown in Fig. 2.

The imaginary part of the coupling potential has an
important role for the inelastic cross section, especially at
forward angles as shown in Fig. 14. Therefore, we analyze the
sensitivity of the strength of the imaginary coupling potential.
Figure 15 shows the inelastic cross sections calculated with
the artificial change of the strength of the imaginary coupling
potential. The dotted, dot-dashed, and dashed curves in Fig. 15
show the results with the imaginary coupling potential being
multiplied by the factor of 0.5, 0.1, and 0.0, respectively,
which are compared with the result with the original strength
(the solid curves). It is clearly seen that the inelastic cross
section at forward angles is very sensitive to the strength
of the imaginary part of the coupling potential and almost
proportional to its square in the case of E/A = 300 MeV where
the contribution of the real coupling potential is negligible. In
other words, the measurement of the absolute magnitude of the
inelastic cross sections at very forward angles around these
incident energies will provide a crucial test for the validity
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FIG. 15. The effect of the strength of the imaginary coupling
potentials on the inelastic cross section. The solid, dotted, dot-dashed,
and dashed curves are the results by the full CC with complex
coupling, full CC with the imaginary coupling multiplied by 0.5,
full CC with the imaginary coupling multiplied by 0.1, and full CC
without imaginary coupling calculations, respectively.

of microscopic interaction models, including the present one
based on the complex G-matrix CEG07, that predicts the shape
and strength as well as their energy dependence of the complex
coupling potential to be used in the reaction calculations. It is of
particular importance to test the validity of the imaginary part
of the coupling potential that should contain very complicated
reaction processes via the so-called Q space not included in
the model space for reaction calculations under consideration.

IV. CONCLUSION

The channel coupling effect on the elastic and inelastic
scattering of the 12C + 12C system is investigated with
the microscopic coupled-channel (MCC) method using the
complex G-matrix interaction CEG07 at E/A = 100, 200,
300, and 400 MeV. The large effects of low-lying excitations
are clearly seen in all the incident energies investigated, despite
the high incident energies. The present MCC method predicts
the drastic energy dependence of the shape and strength of the
complex coupling potential, that is very similar to the energy
dependence of the optical potential predicted by the CEG07
folding model.

The channel coupling effect is also analyzed in terms of the
dynamical polarization potential (DPP). The DPP drastically
changes with the incident energy. The real part of the DPP
shows the transition from repulsion to attraction in the energy
evolution, whereas its imaginary part shows the transition from
negative to positive. These transitions reflect the characteristic
energy dependence of the complex coupling potential, which
is clearly understood by the close relation between the real and
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imaginary parts of the DPP and the real and imaginary parts
of the complex coupling potential.

We have found that inelastic cross sections at these
incident energies are dominated by the imaginary part of the
coupling potential, which also reflect the characteristic energy
dependence of the real and imaginary parts of the coupling
potential. This suggests that the measurement of the absolute
magnitude of the inelastic cross sections at very forward angles
at these incident energies will provide a crucial test for the

validity of microscopic interaction models and removes the
ambiguity of the strength of the imaginary coupling potential.
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