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Nuclear Drell-Yan effect in a covariant model
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We investigate effects of a nuclear medium on antiquark distribution in nuclei by applying the results of
a recently developed relativistically covariant self-consistent model for the pion and the isobar. We take into
account Fermi motion, including Pauli blocking and binding effects on the nucleons and medium effects on the
isobar and pion, leading to modest enhancement of the pion light-cone-momentum distribution in large nuclei.
As a consequence, the Drell-Yan cross-sectional ratio with respect to the deuteron exceeds one only for small
values of the light-cone momentum.
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I. INTRODUCTION

Improving our understanding of the quark and gluon
degrees of freedom of nucleons bound in nuclei neces-
sitates further efforts in spite of numerous investigations
and successes [1]. The planned nuclear Drell-Yan (DY)
scattering experiment SeaQuest at Fermilab (E-906) [2–4]
strongly motivates recent advancements in analysis of nuclear
parton distributions [5] as well as attempts directed at more
reliable and accurate calculation of experimentally observable
quantities. In line with the second objective is our aim to
update and extend to larger x values previous calculations
of nuclear DY effect presented in Refs. [6,7]. Furthermore,
our physics interest is twofold: (i) to investigate the role of
nonperturbative physics (pion cloud) in the ū − d̄ asymmetry
in the nucleon and (ii) to study possible antiquark enhancement
due to the presence of virtual mesons in the nuclear medium.
From symmetry properties of QCD we may infer that the
pion is one possible source of nonperturbative quark-antiquark
physics, in particular u − d asymmetry.

In conventional models based upon meson exchange,
nuclear binding of nuclear matter comes from about 50% from
(virtual) pions present in the nucleus. Can we observe these?
Some indication for pions is present in the European Muon
Collaboration (EMC) effect enhancement around x = 0.1,
which can be ascribed to the fact that pions (and heavier
mesons) carry a fraction of the momentum sum rule. Can
one see these pions more explicitly, e.g., in the form of an
enhancement of antiquarks in the nucleus? Antiquarks can be
probed directly in Drell-Yan scattering but previous experi-
ments [8] within the experimental uncertainty of about 10%
did not show a nuclear enhancement; results of calculations
varied strongly.

In practice one can distinguish two main types of theoretical
interpretations of the classical EMC effect: (i) in terms of
nucleon as constituents which are bound but not modified
in the medium and (ii) in terms of off-shell nucleons with
medium modified structure functions, e.g., through scalar and
vector fields acting on the quarks. In the first category one
has the nonrelativistic models which use a computed spectral
function that accounts for large removal energy (50 MeV

in nuclear matter) and Fermi motion due to correlations.
This approach can reproduce the observed slope of the
reduction for x < 0.5 in the EMC ratio 2FA

2 (x)/AFd
2 (x) but

not the behavior around the minimum in the ratio at x = 0.8.
The latter seems to require ad hoc off-shell effects [9]. In the
second category [10,11]) one usually starts from the Walecka
model in the mean-field approximation, which has a small
net binding effect (8 MeV per nucleon) and hence yields
a very small EMC effect, and then one adds the effects of
external scalar and vector fields. Since in the present study
we are interested in the antiquark distribution for x < 0.4
we rely on the conventional convolution approach using a
parameterized nucleon distribution, which has the two above
mentioned parameters related to the removal energy η and the
Fermi momentum.

In Sec. II we study the antiquark distributions in the free
nucleon and determine the off-shell πNN and πN� form
factors which lead to good description of the isovector part
of the proton antiquark distribution by the pion cloud. In
Sec. III we turn to general discussion of the nuclear effects
consisting of binding and Fermi motion of nucleons and
modification of the pion cloud. Detailed consideration of
the medium effects on the nucleon’s pion cloud follows in
Sec. IV where expressions are derived for the pion light-cone
distributions originating from the πN and π� states. We
emphasize the careful treatment of the in-medium � baryon
based on a complete relativistically covariant basis for its
dressed propagator. Numerical results for the in-medium pion
distribution and DY cross-section ratios for nuclear targets
relative to the deuteron are presented and discussed in Sec. V.
Finally, Sec. VI contains a summary of our results.

II. ANTIQUARKS IN FREE NUCLEONS

Before turning to the nuclear case we investigate whether
the pion cloud approach we will use in the medium can
reproduce the observed flavor asymmetry in the free nucleon.
The distribution of antiquarks in the nucleon can be decom-
posed into a flavor-symmetric isoscalar part (originating from
gluon splitting and possibly meson cloud) and a nonpertur-
bative isovector meson-cloud contribution. The latter can be
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considered to be the source of the ū − d̄ asymmetry. In addition
to the pion cloud of the nucleon we include also the isobar
with its pion cloud since it was shown to give substantial
contributions [12]. In this way one can constrain the πNN
and πN� form factors using the empirical antiquark u − d
flavor asymmetry. The physical free nucleon state is expressed
approximately as

|N〉 =
√

Z|N〉bare + α|Nπ〉 + β|�π〉. (1)

By neglecting off-shell effects, the light-cone momentum
distribution of a quark with flavor f in a proton can be written
as (B = N,�)

qf (x) = Zqf,bare(x) +
∑
B,i

ci

[ ∫ 1

x

dy

y
f Bi/N (y)qBi

f,bare(x/y)

+
∫ 1

x

dy

y
f πi/N (y)qπi (x/y)

]
, (2)

where ci (i labels the charge states) are the appropriate
isospin Clebsch-Gordan coefficients, q

Bi

f,bare(x) is the parton
distribution in the bare Bi baryon, and qπ (x) is the pion parton
distribution function.

Attributing the asymmetry in the ū and d̄ antiquark
distributions to the nucleon meson cloud we are concerned
with the pion light-cone distribution in the nucleon, which gets
contributions from final states with either nucleon or isobar:

f π/N (y) = f πN/N (y) + f π�/N (y). (3)

The nucleon term was calculated by Sullivan [13]:

f π0N/N (y) = g2
πNN

16π2
y

∫ ∞

M2y2(1−y)
dt

∣∣F (π)
πNN (t)

∣∣2
t(

t + m2
π

)2 , (4)

where y = (k0 + k3)/M is the pion light-cone momentum
fraction, M is the physical mass of the nucleon (as a convenient
scale), F (π)

πNN (t) is the off-shell form factor of the πNN vertex,
and gπNN is the π0NN coupling. The free-pion propagator,
D0

π , appears in the above expression in the form (t + m2
π )−1,

where t ≡ −q2 and where q denotes the pion four-momentum.
The isobar contribution also plays an important role [12]
despite the kinematical suppression coming from the isobar-
nucleon mass difference. In Ref. [12] it was calculated using
the free isobar propagator, i.e., neglecting its width. A complete
relativistically covariant treatment of the isobar in vacuum and
nuclear medium was introduced in Ref. [14] and we use that
formalism to take into account the vacuum width, which is
consistent with the measured pion-nucleon scattering phase
shift in the spin-3/2 isospin-3/2 channel. The full Lorentz
structure of the vacuum propagator of the Rarita-Schwinger
field can be expressed in terms of 10 Lorentz scalar functions
[14,15] which contain both spin-3/2 and spin-1/2 sectors [16].
However, using the convenient basis from Ref. [14] it turns out
that a single term, namely the (on-mass-shell) positive-energy
spin-3/2 contribution gives the dominant contribution and all
others (some terms in the propagator are identically zero)
are completely negligible. In the notation of Ref. [14] this
is the coefficient of the projector sum Q

′μν
[11] ≡ Q

μν
[11] + P

μν
[55],

which we denote by G
(Q′)
[11] (p). The pion light-cone distribution

originating from the �π state then can be expressed as

f π−�/N (y) = yMg2
πN�

6π3

∫ −(My+mπ )

−∞
dp ′

3

×
∫ ∞

0
p ′

⊥dp ′
⊥F

(π)
πN�(t)2 F

(�)
πN�(p ′)2

× (M + pp̂ ′)[t + (kp̂ ′)2](
t + m2

π

)2 Im G
(Q′)
[11] (p ′), (5)

where p and p ′ are the four-momenta of the nucleon and
isobar, and t ≡ −(p − p ′)2 and F

(π,�)
πN� are the form factors of

the πN� vertex. The form factor

F
(�)
πN�(p) = exp

[
−p2 − (M + mπ )2

�2

]
(6)

with � = 0.97 GeV (and gπN� = 20.2 GeV−1) was used in
Ref. [15] and was shown to give a good fit to the relevant
pion-nucleon phase shift. For the πNN and πN� off-shell
form factors which take into account the off-shell pion, we
take a dipole form:

F
(π)
πNX(t) =

(
�2

πX − m2
π

�2
πX + t

)2

, (7)

with X standing for N or �.
In order to calculate the d̄ − ū distribution for the free

proton we assume that the pion sea is isospin symmetric,
leaving only the contribution of valence distributions. The
final state with nucleon contributes through the presence of
π+ with distribution 2f π0N/N , while the isobar final state can
have also a π+ with isospin weight 1/3 or a π− with minus
sign (because of the pion valence ū distribution) with respect
to f π−�/N , giving in total:

(d̄ − ū)p(x)

=
∫ 1

x

dy

y

(
2f π0N/N (y) − 2

3
f π−�/N (y)

)
qπ

v (x/y), (8)

with qπ
v (x) denoting the valence parton distribution of charged

pion. In Fig. 1 we show the pion distributions with nucleon

FIG. 1. (Color online) Pion distribution in the free proton:
f π0N/N (y) is shown by the solid line and f π−�/N (y) is shown by
the dashed line.
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FIG. 2. (Color online) The pion-cloud result for the d̄ − ū

asymmetry in free proton (solid line) compared to the difference of the
proton d̄ and ū distributions (dot line) from the fit CT10 [17] and data
points by the Fermilab E866/NuSea Collaboration [18]. The isobar
contribution (dash-dotted line) is negative and much smaller than the
nucleon term (dashed line). Used parameter values: �(π )

πN = 0.95 GeV
and �

(π )
π� = 0.75 GeV.

final state (solid line) and isobar final state (dashed line). For
the form-factor cutoff we used the following values: �

(π)
πN =

0.95 GeV and �
(π)
π� = 0.75 GeV. The bare-nucleon probability

then takes the value Z = 0.69, which suggests that higher order
terms with more than one pion do not contribute significantly.

The calculated value for the d̄ − ū asymmetry in the free proton
is shown in Fig. 2 by solid line and compared to the result
using the ū and d̄ fits CT10 [17] (dotted line). Also shown
separately are the contributions from the nucleon final state
(dashed line) and isobar final state (dash-dotted line). These
results are quite similar to the d̄ − ū obtained in Ref. [19],
although there the infinite-momentum-frame formalism was
used with suitably adjusted values of the πN and π� form
factors.

III. NUCLEAR EFFECTS

First calculations of the nuclear Drell-Yan process [20] sug-
gested an enhancement coming from the medium modification
of the pion cloud. However, the experimental data [8] did
not show that enhancement within a 10% uncertainty. Later
on other groups reported more detailed calculations of the
Drell-Yan ratio with a large variation in results as shown in
Refs. [2–4]. Here we consider the ratio of the cross sections of
proton-nucleus and proton-deuteron scattering,

RA/d = 2

A

dσpA/dx1dx2

dσpd/dx1dx2
, (9)

where A denotes the nucleus and its nucleon number. We
specialize the case of isoscalar targets for which the cross-
section ratio becomes

RA/d =
∑

f e2
f

{
q

p
f (x1)

[
q

p/A
f (x2) + q

n/A
f (x2)

] + q
p
f (x1)

[
q

p/A
f (x2) + q

n/A
f (x2)

]}
∑

f e2
f

{
q

p
f (x1)

[
q

p
f (x2) + qn

f (x2)
] + q

p
f (x1)

[
q

p
f (x2) + qn

f (x2)
]} . (10)

In the case when x1 is large, say, x1 > 0.3, the second term in the numera-
tor becomes negligible and only a medium effect on the antiquarks plays a role.

The (anti)quark distribution in the medium can be modified in two ways: (i) through Fermi motion and binding of
the nucleon and (ii) through modification of the nucleon’s pion cloud. To establish the connection to the (anti)quark distribution
of the free nucleon we use Eq. (2), which for the free proton gives (with isobar terms not written out for brevity)

q
p
f (x) = Zq

p
f,bare(x) + 1

3

∫ 1

x

dy

y
f N/N (y)

[
q

p
f,bare(x/y) + 2qn

f,bare(x/y)
] +

∫ 1

x

dy

y
f π0N/N (y)

[
qπ0

f (x/y) + 2qπ+
f (x/y)

]
, (11)

with

Z ≡ 1 −
∫ 1

0
dyf N/N (y) = 1 − 3

∫ 1

0
dyf π0N/N (y), (12)

where the last equality expresses flavor-charge conservation. Similarly, the quark distribution for the nuclear proton can be written

q̃
p
f (x) = ZAq

p
f,bare(x) + 1

3

∫ A

x

dy

y
f N/A(y)

[
q

p
f,bare(x/y) + 2qn

f,bare(x/y)
] +

∫ A

x

dy

y
f π0N/A(y)

[
qπ0

f (x/y) + 2qπ+
f (x/y)

]
, (13)

where isospin-symmetric nuclear medium was assumed. Adding the difference of the left-hand side and right-hand side of
Eq. (11) to the right-hand side of Eq. (13) and repeating the same procedure for the neutron, we obtain

q̃
p
f (x) + q̃n

f (x) = q
p
f (x) + q

p
f,bare(x)

∫ 1

0
f N/N (y)dy −

∫ 1

x

dy

y
f N/N (y)qp

f,bare(x/y) − q
p
f,bare(x)

∫ A

0
f N/A(y)dy

+
∫ A

x

dy

y
f N/A(y)qp

f,bare(x/y) + (p → n) + 2
∫ A

x

dy

y

[
f π0N/A(y) − f π0N/N (y)

]

× [
q

f

π0 (x/y) + q
f

π+ (x/y) + q
f

π− (x/y)
]
, (14)
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where we used that

ZA ≡ 1 −
∫ 1

0
dyf N/A(y).

To proceed with the above expression one needs the bare anti-
quark distributions, which could be determined from Eq. (11),
and their analogs for the neutron. A much simpler, though
approximate, procedure is just to subtract the meson-cloud
contribution form the antiquark distribution of the physical
nucleon. Indeed, using the fact that antiquark distributions at
small x behave as 1/x, one can confirm that the first and
second terms on the right-hand side of Eq. (11) combine to
give the bare distribution if one adds to Eq. (11) its neutron
analog. Using the same argument about the small x behavior
of antiquark distributions, one can establish an approximate
cancellation of the second and third as well as the fourth and
fifth terms on the right-hand side of Eq. (14) and of the corre-
sponding terms involving the neutron. This simplification was
used in our previous work [6], but in the present calculation we
take into account these contributions with the bare antiquark
distributions determined by the abovementioned subtraction
of the pion contribution from the physical distribution. In
Fig. 3 we show the proton-neutron average of the sum of
the second, third, fourth, and fifth terms in Eq. (14) divided by
the antiquark distribution of the free “isoscalar” nucleon for
two used pion parameter sets. For the distribution of the bare
nucleon in the free nucleon we use the relation f N/N (y) =
3f π0N/N (1 − y), which follows from the probabilistic inter-
pretation of these functions [19] and its analog for the in-
medium case, f N/A(y) = 3f π0N/A(1 − y). We remark that the
latter relationship can be only approximate since the support of
the pion in-medium distribution is not strictly limited by value
one, but in view of the similarity of the pion distributions in
the two cases it should be a reasonable approximation for the
estimate of a small effect. We observe that this contribution
is indeed quite small, as expected from the form of the
nucleon antiquark distribution and pion (as well as related
nucleon) light-cone-momentum distributions. The parameter
set (1) is M∗ = 0.89 GeV, 
v

N = 0, 
s
� = −0.1 GeV, 
v

� =

FIG. 3. (Color online) Sum of the second, third, fourth, and fifth
terms in Eq. (14) divided by the antiquark distribution of the free
“isoscalar” nucleon. The solid line is for the pion parameter set (1)
and the dashed line is for parameter set (2).

0, g′
11 = 0.9, g′

12 = 0.3, g′
22 = 0.3, while the set (2) is

given by M∗ = 0.89 GeV, 
v
N = 0, 
s

� = −0.05 GeV, 
v
� =

0, g′
11 = 1.0, g′

12 = 0.4, g′
22 = 0.3. M∗ is the mean-field

shifted nucleon mass, 
v
N the energy shift of the nucleon,


s
� and 
v

� are the δ mean-field shifts, and g′
ij are the Migdal

four-fermion interaction parameters.
By introducing a shorter notation for the bare nucleon

contribution to the in-medium antiquark distribution,

q
p+n
f,bare(x) = q

p
f (x) + q

p
f,bare(x)

∫ 1

0
f N/N (y)dy

−
∫ 1

x

dy

y
f N/N (y)qp

f,bare(x/y)

− q
p
f,bare(x)

∫ A

0
f N/A(y)dy

+
∫ A

x

dy

y
f N/A(y)qp

f,bare(x/y) + (p → n), (15)

we can finally write the sum of in-medium proton and neutron
antiquark distribution as

q
p/A
f (x) + q

n/A
f (x) =

∫ A

x

dy

y
f N

Fb(y)qp+n
f,bare(x/y)

+ 2
∫ A

x

dy

y
[f π0/A(y) − f π0/N (y)]

× [
q

f

π0 (x/y) + q
f

π+ (x/y) + q
f

π− (x/y)
]
.

(16)

The convolution with f N
Fb(z) takes into account Fermi motion

and binding effects on the in-medium nucleons. For the
function f N

Fb(z) we take the result of Birse [21]:

f N
Fb(z) = 3

4ε3
[ε2 − (z − η)2]
(ε − |z − η|), (17)

where ε ≡ pF /M , η is a parameter with value slightly below
one which takes into account the nuclear binding, and 
(x) is
the unit step function. In Fig. 4 we show the ratio of the F2(x)

FIG. 4. (Color online) The ratio of F2(x) per nucleon for
isospin symmetric nuclear medium with the following parameters:
Fermi momentum pF = 250 MeV, η = 0.97, and deuteron. Pion
contributions with parameter sets (1) and (2) are included in the
results shown by solid and dash-dotted lines.
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structure functions for the isospin symmetric nuclear matter
and the deuteron. We assume negligible medium effects in
the deuteron and for the nuclear medium use the convolution
model with light-cone distribution (17) and parameters pF =
250 MeV and η = 0.97. In this way one can reproduce the
negative slope in the classical EMC effect for 0.1 < x <
0.5 as shown, for example, in Ref. [22]. The experimental
enhancement observed around x = 0.1 can be attributed to the
pion enhancement as shown in the figure for the two parameter
sets (1) and (2) used also for the plots in Fig. 3 and given above.
The pion enhancement term was calculated by the convolution
of the in-medium pion light-cone distribution enhancement
relative to the free nucleon and the pion F2 distribution. Note
that expected shadowing effects would lead to decrease of the
nuclear cross section for x � 0.05.

IV. ANTIQUARKS IN BOUND NUCLEONS:
PION CONTRIBUTION

We now turn to consideration of the pion contribution
to antiquark distributions in nucleons bound in large nuclei,
which we model by an infinite system with appropriate average
nuclear density.

For corresponding pion properties in the nuclear matter,
we use the results of a fully covariant self-consistent model
developed in Ref. [23]. Compared to the case of the free
nucleon, the nuclear environment changes the pion propagator
appearing in the Sullivan formula (4) and renormalizes the
πNN as well as the πN� vertices through nucleon-nucleon
correlations modeled by the Migdal four-fermion interactions
[24]. Nucleon properties are also affected, and we take into
account the binding effects through mean-field mass and
energy shifts consistent with the approach in Ref. [23].

The inclusion of the dressed pion propagator is straightfor-
ward but the dressing of the πNN and the πN� vertices
requires summation of nucleon-hole and δ-hole bubbles.
The types of relevant diagrams are shown in Fig. 5. For
resummation of these diagrams we use the relativistically
covariant formalism introduced in Ref. [25] and applied for
pion and δ self-energy calculation in Ref. [23]. In the present
case it concerns a different type of contribution which for the
nucleon in the final state can be written as

KN = ū(p′)γ5γ
μu(p)�μν(q)qν, (18)

where q = p − p′ is the pion four-momentum, u(p) is the
nucleon in-medium spinor (with mean-field shifts of mass and
energy), and �μν(q) is the resummed contribution of nucleon-
hole and δ-hole loops. Using the decomposition of nucleon-
hole and δ-hole loops [23],

�(Nh)
μν (q) =

2∑
i,j=1

�
(Nh)
ij (q) L(ij )

μν (q) + �
(Nh)
T (q) Tμν(q) ,

(19)

�(�h)
μν (q) =

2∑
i,j=1

�
(�h)
ij (q) L(ij )

μν (q) + �
(�h)
T (q) Tμν(q)

where L
(ij )
μν (q) and Tμν(q) have projector properties. The

nonzero contribution involving one particle-hole (nucleon-

FIG. 5. Types of diagrams contributing to the in-medium pion
distribution with outgoing nucleon. The same types appear also
with outgoing � baryon. The dashed line denotes the dressed pion
propagator, while the solid and the double lines correspond to nucleon
and δ.

hole or δ-hole) loop comes from

�(1)
μν = g′

11

(
�

(Nh)
11 (q) L(11)

μν (q) + �
(Nh)
21 (q) L(21)

μν (q)
)

+ g′
12

(
�

(�h)
11 (q) L(11)

μν (q) + �
(�h)
21 (q) L(21)

μν (q)
)
, (20)

where g′
11, g

′
12, g

′
22 are the usual Migdal parameters [23] and

where index 1 refers to the nucleon and index 2 to the δ. We
took into account that

L(12)
μν (q)qν = L(22)

μν (q)qν = Tμν(q)qν = 0. (21)

In order to perform the summation involving arbitrary number
of nucleon-hole or δ-hole loops it is convenient to introduce
the following matrices [25]:

g(L) =

⎛
⎜⎜⎜⎝

g′
11 0 g′

12 0

0 g′
11 0 g′

12

g′
12 0 g′

22 0

0 g′
12 0 g′

22

⎞
⎟⎟⎟⎠ ,

(22)

�(L) =

⎛
⎜⎜⎜⎜⎝

�
(Nh)
11 �

(Nh)
12 0 0

�
(Nh)
21 �

(Nh)
22 0 0

0 0 �
(�h)
11 �

(�h)
12

0 0 �
(�h)
21 �

(�h)
22

⎞
⎟⎟⎟⎟⎠ .

The lowest order contribution (20) can then be written as

�(1)
μν = [(�(L)g(L))11 + (�(L)g(L))31] L(11)

μν (q)

+ [(�(L)g(L))21 + (�(L)g(L))41] L(21)
μν (q). (23)

Higher order terms are accounted for by taking appropriate
matrix elements of products of (�(L)g(L)) matrices, and the
summation of terms with arbitrary number of loops is simply
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achieved by replacing (�(L)g(L)) in Eq. (23) by �(L)g(L) (1 −
�(L)g(L))−1, leading to

�μν = ([�(L)g(L) (1 − �(L)g(L))−1]11

+ [�(L)g(L) (1 − �(L)g(L))−1]31) L(11)
μν (q)

+ ([�(L)g(L) (1 − �(L)g(L))−1]21

+ [�(L)g(L) (1 − �(L)g(L))−1]41) L(21)
μν (q). (24)

Adding gμν to �μν in Eq. (18), we obtain the full contribution
of the diagram with nucleon final state. By squaring its absolute
value, performing summation over the spin projections of the
nucleon in the final state, and averaging for the nucleon in the
initial state, we obtain

1

2

∑
s,s ′

|KN |2 = Aqq

(
2
(
p − 
v

Nu
)
q

(
p′ − 
v

Nu
)
q − q2

× [
M2

∗ + (
p′ − 
v

Nu
)(

p − 
v
Nu

)])
+ 2Aqu

((
p − 
v

Nu
)
u

(
p′ − 
v

Nu
)
q

+ (
p′ − 
v

Nu
)
u

(
p − 
v

Nu
)
q

− qu
[
M2

∗ + (
p′ − 
v

Nu
)(

p − 
v
Nu

)])
+Auu

(
2(p − 
v

Nu
)
u

(
p′ − 
v

Nu
)
u − M2

∗

− (
p′ − 
v

Nu
)(

p − 
v
Nu

))
, (25)

where u is the four-velocity of the medium [implicitly present
also in Eqs. (18)–(24)] and M∗ = MN + 
s

N , 
s
N and 
v

N are
the nucleon mean-field mass and energy shifts. The factors
Aqq,Aqu, Auu are given by

Aqq = 2|1 + A + quB/
√

q2 − (qu)2|2,
Aqu = −2 Re[q2B/

√
q2 − (qu)2(1 + Ā

(26)
− qu B̄/

√
q2 − (qu)2)]

Auu = 2|q2 B/
√

q2 − (qu)2|2,
where the bar denotes complex conjugation,

A ≡ [�(L)g(L) (1 − �(L)g(L))−1]11

+ [�(L)g(L) (1 − �(L)g(L))−1]31,
(27)

B ≡ [�(L)g(L) (1 − �(L)g(L))−1]21

+ [�(L)g(L) (1 − �(L)g(L))−1]41,

and we used that

L(11)
μν (q) qν = qμ,

(28)

L(21)
μν (q) qν = qu√

q2 − (qu)2
qμ − q2√

q2 − (qu)2
uμ.

To compute the pion light-cone distribution per nucleon
in the medium, we integrate over incoming nucleons in the
Fermi sea and outgoing ones above the Fermi sea, restricting

the pion light-cone momentum fraction to the specified value
by inserting a δ function and finally divide by the nucleon
density. The final expression obtained is

fN (y) = 3My

(
fN

mπ

)2 1

32π3p3
F

∫ pF

−pF

dp3

∫ √
p2

f −p2
3

0
p⊥dp⊥

×
∫ ∞

p′min
⊥

p′
⊥dp′

⊥

∫ 2π

0
dϑ

1

2b

∑
s,s ′

|KN |2

× ∣∣F (π)
πNN (−q2) Dπ (q)

∣∣2
, (29)

where Dπ (q) is the in-medium dressed pion
propagator, b ≡ My − p3 −

√
M2

∗ + p2
3 + p2

⊥ , p′min
⊥ =√

2b
√

M2
∗ + p2

F − M2
∗ − b2 , ϑ is the angle between 
p⊥ and


p ′
⊥, and the πNN form factor F

(π)
πNN (−q2) was also included.

The contribution coming from the � baryon in the final
state is made more involved by the complicated structure
of the in-medium δ propagator [14]. However, considerable
simplification can be achieved by including only the two
dominant contributions in the convenient relativistically co-
variant decomposition since the imaginary part of the other
components is typically two orders of magnitude smaller at
nuclear saturation density [26]. The dominant contributions
come from the Q

μν
[11] and P

μν
[55] terms, which were degenerate in

the free δ case but are different in the medium [14]. Summation
of particle-hole loops dressing the πN� vertex is analogous to
the πNN case, with the only difference being in the relevant
matrix elements of �(L)g(L) (1 − �(L)g(L))−1, replacing the
expression (24) with

��
μν = ([�(L)g(L) (1 − �(L)g(L))−1]13

+ [�(L)g(L) (1 − �(L)g(L))−1]33) L(11)
μν (q)

+ ([�(L)g(L) (1 − �(L)g(L))−1]23

+ [�(L)g(L) (1 − �(L)g(L))−1]43) L(21)
μν (q). (30)

The expression analogous to Eq. (25) in this case takes the
form:

1

2

∑
s,s ′

|K�|2 = 1

2
Tr[(/p − 
v

N /u + M∗)Im Gμν(p′)]

× (
gμαgνβ + ��

μα�̄�
νβ

)
qαqβ, (31)

where Im Gμν(p′) denotes the imaginary part of the in-medium
� propagator for which we take the dominant contribution
given in the basis used in Ref. [14] by just two terms:

Gμν(p′) = Q
μν
[11](p

′) G
(Q)
[11](p

′) + P
μν
[55](p

′) G
(P )
[55](p

′). (32)

In this way the expression (31) takes the form

1

2

∑
s,s ′

|K�|2

= [
A(�)

qq c(Q)
qq + 2A(�)

qu c(Q)
qu + A(�)

uu c(Q)
uu

]
Im G

(Q)
[11](p

′)

+ [
A(�)

qq c(P )
qq + 2A(�)

qu c(P )
qu + A(�)

uu c(P )
uu

]
Im G

(P )
[55](p

′),
(33)

where the expressions for A(�)
qq , A(�)

qu , A(�)
uu , c(Q)

qq , c(Q)
qu , c(Q)

uu ,

c(P )
qq , c(P )

qu , c(P )
uu are given in the Appendix. The pion
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light-cone-momentum distribution stemming from the process
with the nucleon emitting a pion and a � baryon is analogous
to expression (29) and reads

f�(y) = 3My

(
f�

mπ

)2 1

32π4p3
F

∫ pF

−pF

dp3

∫ √
p2

f −p2
3

0
p⊥dp⊥

×
∫ ∞

−∞
dp′

3

∫ ∞

0
p′

⊥dp′
⊥

∫ 2π

0
dϑ

1

2

∑
s,s ′

|K�|2

× ∣∣F�
πN�(p′) F

(π)
πN�(−q2) Dπ (q)

∣∣2
. (34)

We checked by explicit numerical calculation that both
Eqs. (29) and (34) have the correct low-density limit, i.e.,
reproduce the free nucleon and δ results.

V. NUMERICAL RESULTS AND DISCUSSION

For the computation of in-medium pion and isobar proper-
ties we rely on the recently developed relativistically covariant
self-consistent model presented in Ref. [23] and used for the
nuclear photoabsorption calculation in the isobar region in
Ref. [27]. For the medium computation we use the same
πNN and πN� form factors as in the vacuum one and
include them in the model of Ref. [23]. The values of the
Migdal g′ parameters, which model the short-range nucleon
and isobar correlations, were taken in the range preferred by
the results of Ref. [27]; in this work a good description of the
nuclear photoabsorption cross section in the isobar region was
obtained. Binding effects for the nucleon are taken into account
by the effective (mean-field) mass M∗ and the energy shift 
v

N .
A consequence of the use of the mean-field approximation is
a reduction of the in-medium pion distribution coming from
the nucleon final state. The dominant contribution to it is the
term proportional to Aqq in Eq. (25) with(

2
(
p − 
v

Nu
)
q

(
p′ − 
v

Nu
)
q

− q2
[
M2

∗ + (
p′ − 
v

Nu
)(

p −
v
Nu

)]) = −2M2
∗q2, (35)

which is the same expression as for the free nucleon, except
that M∗ appears instead of M .

Since M∗/M < 1 a further suppression in addition to that
from the Pauli blocking is obtained, depending on the actual
value of M∗/M . The latter is difficult to constrain since ob-
servables generally are only sensitive to the combination M∗ +

v

N . Since our aim is to make comparisons with experiments
on finite nuclei (rather than nuclear matter) with an average
density smaller than the saturation density, we assume small
values for the energy shift in the range zero to 
v

N = 0.04 GeV,
corresponding to effective mass values in the range of 0.85 and
0.89 GeV. These values are close to the ones used in more
elaborate treatments of nuclear matter [28,29], where values
of 0.8–0.85 GeV at saturation density give good agreement
with observables. The mean-field shifts of the isobar mass and
energy are chosen in such a way so that they reproduce the
isobar-nucleon mass difference used in Ref. [27]. This means

s

� = −0.05 GeV and −0.1 GeV and zero for the energy shift.
In Figs. 6 and 7 we show the pion distributions f π0N/A(y)

and f π−�/A(y) for in-medium nucleons for different parameter
sets. For the nucleonic distribution one observes a reduction
coming partly from the Pauli blocking of the nucleons in

FIG. 6. (Color online) Nucleon contribution to the pion distribu-
tion [f π0N/A(y)] for the in-medium nucleon compared to the case of
a free nucleon.

the medium and partly from the M∗ effect (which leads to a
suppression roughly by the factor (M∗/M)2). The pion broad-
ening in the nuclear medium only partly compensates for these
effects and a net reduction is the result. This is not completely
surprising since the computations of Ref. [23] do not lead to
appreciable softening of the pion spectrum in the medium,
which would result in enhanced pion distribution. In this re-
spect the pion dressing of Ref. [23] is not significantly different
from an older calculation [30] which used a nonrelativistic
treatment of the isobar and a softer pion-nucleon-δ form factor.
On the other hand a significant enhancement is observed for the
contribution originating from the transition N → π�, which is
not Pauli suppressed. These results emphasize the importance
of careful treatment of the in-medium isobar self-energy and
propagator, which is made possible by the convenient complete
basis introduced in this context in Ref. [14]. As a consequence,
in the nuclear medium the combined effects from the pion and
from the isobar can produce a sizable increase in the pion
light-cone distribution. The latter is constrained to smaller
light-cone-momentum ratio y values because of kinematical

FIG. 7. (Color online) Isobar contribution to the pion distribution
[f π−�/A(y)] in the in-medium nucleon compared to the free nucleon.
For both in-medium curves M∗ = 0.89 GeV and 
v

N = 0.
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FIG. 8. (Color online) Full pion distribution [f π/A(y)] in the in-
medium nucleon compared to the case of free “isoscalar” nucleon.

effect of the isobar-nucleon mass difference but can still have
significant effects on the DY cross-section ratio.

Since we are considering isospin symmetric nuclear
medium and make a comparison with the deuteron, it is
advantageous to consider the pion distribution in an “isoscalar”
nucleon, i.e., to consider a proton-neutron average. Taking
into account pions of all charges gives the complete pion
distribution of an “isoscalar” nucleon:

f π/A(y) = 3f π0N/A(y) + 2f π−�/A(y). (36)

In Fig. 8 we show the function f π/A(y) for different input
parameter values compared to the pion distribution of the free
“isoscalar” nucleon. The probability ZA of the bare nucleon in
the medium takes the values from 0.6 to 0.65, i.e., just slightly
smaller than in the free nucleon case.

Before examining the DY cross section we show the ratio
of the antiquark distribution in the in-medium proton and the
same distribution in the free proton. The up and down antiquark
distributions experience different in-medium modification due
to different weights of nucleon and δ contributions even in
isospin-symmetric nuclear medium. In Fig. 9 we show the

FIG. 9. (Color online) The ū(medium)
p /ū(free)

p (solid lines) and
d̄ (medium)

p /d̄ (free)
p (dashed lines) ratios of antiquark distributions of an

in-medium proton relative to the free proton for parameter sets (1)
and (2).

FIG. 10. (Color online) The cross-section ratio (10) as
a function of x2 for fixed values of x1. The used
parameter values are M∗ = 0.85 GeV, 
v

N = 0.04 GeV, 
s
� =

−0.1 GeV, 
v
� = 0, g′

11 = 0.8, g′
12 = 0.3, and g′

22 = 0.3.

ratios of antiquark distributions for an in-medium proton rel-
ative to the free one for two typical parameter sets denoted by
“pion (1)” and “pion (2),” already used for plots in Figs. 3 and 4.
We observe pronounced enhancement for the up antiquark
coming from the substantial pion enhancement due to the
�-baryon final state as compared to quite modest enhancement
and even suppression for the down antiquark as a consequence
of the larger weight of the nucleon final state and the smaller
weight of the �-baryon final state as compared to the up anti-
quark. This difference points to the possibility of distinguish-
ing between effects coming from the medium modification of
the nucleon and � baryon by examining observables to which
up and down antiquarks contribute with different weights.

We now turn to the DY cross-section ratio (10). In Figs. 10
and 11 we show the cross-section ratio (10) as a function of
x2 for fixed values of x1. The input parameter values are given
in the figure captions. We observe an enhancement only for
small values of x2, typically less than 0.2, and for x2 > 0.1 a

FIG. 11. (Color online) The same as Fig. 10 but with para-
meter values M∗ = 0.89 GeV, 
v

N = 0, 
s
� = −0.1 GeV, 
v

� =
0, g′

11 = 1, g′
12 = 0.4, and g′

22 = 0.3.
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FIG. 12. (Color online) Experimental results from Ref. [8] com-
pared to our calculation for different parameter values. Short dashed
line: M∗ = 0.89 GeV, 
v

N = 0; solid line: M∗ = 0.85 GeV, 
v
N =

0.05 GeV; and dash-dotted line: M∗ = 0.8 GeV, 
v
N = 0.09 GeV.

For all three curves, 
s
� = −0.1 GeV, 
v

� = 0, g′
11 = 1.0, g′

12 =
0.4, and g′

22 = 0.3.

decreasing trend as a result of the convolution with nucleon
distribution (17).

For comparison with the measurements of Ref. [8] we
computed the ratio of the nuclear and deuteron cross sections
for given x2 and integrating over x1, satisfying the condition
x1 > x2 + 0.2 that corresponds to the experimental cutoff.
Figure 12 shows the measured values with error bars and
the calculated curves for different input parameters. We
consider the lowest curve in Fig. 12 with M∗ = 0.8 GeV and
corresponding rather pronounced suppression of the order
(M∗/M)2, probably exaggerating the effect of the nucleon
mean-field approximation, and regard the other two curves as
representing better our results based on the preferred parameter
sets.

VI. SUMMARY

In this work we presented an analysis of nuclear effects
on the Drell-Yan process. The approach is based on the
pion-cloud model of the nucleon and a relativistically
covariant self-consistent in-medium calculation of the pion
and � baryon propagators, taking into account nuclear
effects in the mean-field approximation. Starting with the
free nucleon we showed that the observed d̄ − ū antiquark
distribution can be well reproduced by suitable choice of
the πNN and πN� form factors with δ vacuum propagator
taking into account its free width.

Using the same values for the form factors, we computed
the pion light-cone-momentum distribution for nucleons in
an isospin symmetric medium with density corresponding to
average densities of medium mass nuclei. We took into account
the change of the pion cloud originating from both the pion-
nucleon and pion-δ states and a small correction (neglected
in previous work) attributed to the binding effect of the bare
nucleon.

Fermi motion and binding of nuclear nucleons were
accounted for by the two-parameter light-cone-momentum

distribution (17), which reproduces the negative slope of the
classical EMC effect in the region 0.1 < x < 0.5 as shown
in Fig. 4. Taking into account the pion enhancement, which
comes from the pion-δ state of the nucleon (which is significant
only for small light-cone-momentum (y ≈ 0.2) values), leads
to some enhancement of the F2(x) ratio for x � 0.2.

Pion and δ properties in the nuclear medium are calculated
in a recently developed fully covariant self-consistent model
[23], which consistently takes into account the πNN and
πN� vertex corrections due to Migdal short-range correla-
tions. Pronounced softening of the in-medium pion spectrum
present in simpler models does not appear in this approach
and consequently Pauli blocking causes some suppression of
the pion distribution coming from the pion-nucleon state for
an in-medium nucleon. However, enhancement results from a
careful treatment of the pion-δ state as a consequence of pion
broadening and δ shift and broadening.

The net effect for preferred parameter values is a modest en-
hancement of pion light-cone-momentum distribution mostly
concentrated around the y ≈ 0.2 value. As a consequence the
DY cross-section ratio exceeds 1 for small values, typically
less than 0.2, of the x2 variable for fixed x1 values or
integration over it, corresponding to some experimental cuts.
The convolution with distribution (17) acts qualitatively on
the antiquarks in the same way as on the quarks, producing
a negative slope which is less pronounced for the integrated
cross section.

As one can see in Fig. 12 the large error bars of the measured
cross-section ratio do not allow a sensitive comparison with
calculated results in order to determine more precisely the
preferred parameter values and consequently the in-medium
properties of the pion and � baryon. It would be very
desirable to achieve measurements with considerably smaller
uncertainties, which could contribute to the resolution of some
decades-old issues of nuclear physics. We remark that another
interesting possibility for studying sea quark distributions
in nuclei would be the use of an electron-ion collider, as
detailed in the joint report of the Brookhaven National
Laboratory, the Institute for Nuclear Theory (Seattle, WA),
and the Thomas Jefferson National Accelerator Facility [31].
The proposed semi-inclusive deep-inelastic electron-nucleus
scattering would provide new information about the structure
of nuclei and quantum chromodynamics of nuclear matter
and extend possibilities for studying effects of the transverse
momentum distribution of partons [32].
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APPENDIX

The terms of expression (33) necessary to calculate
the contribution of the in-medium delta are given as
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follows:

A(�)
qq = 2|1 + A� + quB�/

√
q2 − (qu)2|2, A(�)

qu = −2 Re[q2B�/
√

q2 − (qu)2[1 + Ā� − qu B̄�/
√

q2 − (qu)2]],

A(�)
uu = 2|q2 B�/

√
q2 − (qu)2|2, c(Q)

qq = [
M∗ + (

p − 
v
Nu

)
p̂′][t + (qp̂′)2 − [qX(p′)]2],

c(P )
qq = 1

3

[
M∗ + (

p − 
v
Nu

)
p̂′][t + (qp̂′)2 + 3[qX(p′)]2], c(Q)

qu = −[
M∗ + (

p − 
v
Nu

)
p̂′][qu− qp̂′ up̂′ + qX(p′) uX(p′)],

c(P )
qu = − 1

3

[
M∗+

(
p − 
v

Nu
)
p̂′][qu− qp̂′ up̂′ − 3qX(p′) uX(p′)], c(Q)

uu = [
M∗ + (

p − 
v
Nu

)
p̂′][−1 + (up̂′)2 − [uX(p′)]2],

c(P )
uu = 1

3

[
M∗ + (

p − 
v
Nu

)
p̂′][−1 + (up̂′)2 + 3[u · X(p′)]2], (A1)

with

A� ≡ [�(L)g(L) (1 − �(L)g(L))−1]13 + [�(L)g(L) (1 − �(L)g(L))−1]33,
(A2)

B� ≡ [�(L)g(L) (1 − �(L)g(L))−1]23 + [�(L)g(L) (1 − �(L)g(L))−1]43, X(p) ≡ (pu) pμ − p2 uμ

p2
√

(pu)2/p2 − 1
,

t = −q2 and p̂μ = pμ/
√

p2.
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