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Heavy ion fusion: Possible dynamical solution of the problem of the abnormally large
diffuseness of the nucleus-nucleus potential
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We attempt to make some progress in the problem of the apparently large diffuseness of the Woods-Saxon
strong nucleus-nucleus interaction potential (SnnP) needed to fit a large number of precision fusion excitation
functions. This problem has been formulated in Newton et al. [Phys. Lett. B 586, 219 (2004); Phys. Rev. C 70,
024605 (2004)]. We applied the classical dissipative trajectory model to describe the data on fusion (capture) of
16O with 92Zr, 144Sm, and 208Pb. No fluctuations or dynamical deformations of the interacting nuclei are accounted
for. The friction force is supposed to be proportional to the squared derivative of the SnnP (the surface friction
model). The SnnP is calculated within the framework of the double-folding model with the density-dependent
M3Y NN forces. This potential is known to possess rather small diffuseness in contradistinction to what is
required by the data analysis in Newton et al. [ Phys. Lett. B 586, 219 (2004); Phys. Rev. C 70, 024605 (2004)].
Varying slightly the strength of radial friction (universally for all three reactions) and the diffuseness of the charge
density of 208Pb we have obtained satisfactory agreement of the calculated excitation functions with the data.
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I. INTRODUCTION

During last two decades an enormous amount of experi-
mental data have been accumulated on the cross sections of
the processes in which the collision of two complex nuclei
(heavy ions) results in the formation of a single excited
object [1,2]. In its consequent evolution, it does not necessarily
pass through the spherical shape. The decay channels are
very different: fission, quasifission, and neutron, light charged
particle, and γ emission. The unifying signature of such
reactions is that the decay products in the center-of-mass frame
are emitted isotropically. This means that the dinuclear system
(or the mononucleus) rotates several times before decaying.
Considering the process from the theoretical point of view,
one says that the fictitious particle with the reduced mass
is captured in the potential pocket of the entrance channel.
It seems natural to call the corresponding cross sections the
capture cross sections. These are the cross sections which are
referred to as the fusion cross sections in Ref. [1].

The capture cross sections are usually analyzed within the
framework of the coupled-channels model [3,4]. The nucleus-
nucleus strong interaction potential (SnnP) is the key element
of this model. Conventionally, the Woods-Saxon (WS) ansatz

Un(R) = VWS

{
1 + exp

[
R − rWS

(
A

1/3
P + A

1/3
T

)
aWS

]}−1

(1)

is used as the SnnP in the coupled-channels calculations. In
Eq. (1) R denotes the distance between the centers of mass
of two spherical nuclei: the projectile with the mass number
AP and the target of the mass number AT . The WS potential
is defined by three parameters: the depth VWS, the radius
parameter rWS, and the diffuseness aWS. Systematic analysis
of the experimental capture excitation functions in Ref. [1]
demonstrated that the values of aWS ranging between 0.75 and
1.5 fm are needed to reproduce those functions. This is much
larger than the value of 0.65 fm, which is required by the
elastic scattering data. It was pointed out in Ref. [1] that these

abnormally large diffusenesses might be an artifact masking
some dynamical effects.

Following this idea, we undertake an effort to analyze the
experimental capture excitation functions using the simplest
dynamical model: the classical dissipative trajectory model
with the surface friction [5]. This model was first proposed in
Ref. [6] and developed later in Refs. [7–9].

In Ref. [6] only the conservative and dissipative forces
between the colliding nuclei were accounted for. The nuclei
were considered to be solid spheres. Two collective variables
characterized the motion of the system: the center-of-mass
distance R and the rotation angle ϕ. The dissipative forces
were taken to be proportional to the squared derivative of the
SnnP. The authors of Ref. [6] managed to find a universal
(i.e., system independent) parameter set making it possible to
reproduce about 20 experimental capture excitation functions.

In Ref. [8] the model was supplemented with the dynamical
quadrupole deformations of the colliding nuclei. Within the
framework of this refined model it turned out to be possible
to reproduce satisfactorily about 100 experimental capture
excitation functions with typical agreement of about 20%. For
this aim again a universal parameter set was used which was
close to the one of Ref. [6].

Further modification of the model [8] was done in
Refs. [7,9,10], where the thermal fluctuations of all the vari-
ables were taken into consideration. This modification forced
the authors to revise the capture criterion. The comparison with
the experiment, although rather successful, was performed in
this version of the model for a significantly smaller number of
reactions (less than 10).

In Refs. [6,7,9,10] the SnnP was calculated by means
of folding the nucleus-nucleon optical potential with the
nucleon density (single-folding). Nowadays, a more elaborated
double-folding (DF) SnnP with the density-dependent M3Y
NN forces [11,12] is available. Moreover, the data analyzed
in Refs. [6,7,9,10] typically had an accuracy worse than
10%. Presently, high-precision data (typically 1%) have been
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accumulated (see, e.g., Refs. [13–15]). So, it is tempting to
analyze these new data with the DF potential to see whether
accounting for the dynamical effects can resolve the problem
of the apparently large diffuseness. This is what we aim to
explore in the present work.

The paper is organized as follows. In Sec. II the model is
described with the emphasis on the potential energy and its
approximation by the analytical formulas. Here the initial and
capture conditions are also discussed. In Sec. III the impact of
the model parameter variation on the calculated capture excita-
tion functions is studied and the comparison with earlier work
is made. Our resulting cross sections are compared with the ex-
perimental data in Sec. IV. In Sec. V the conclusions are drawn.

II. DESCRIPTION OF THE MODEL

Within the framework of the classical (nonquantum)
dissipative trajectory model [6], the fictitious particle with
the reduced mass moves experiencing the action of the
conservative and dissipative forces. Despite the description
of the model can be found in Ref. [6], we prefer to give all the
equations to help in reading and understanding the results. We
also modify some relations of the model.

A. Equations of motion

The level of complexity of the model is dictated by the data
the model is designed to describe. Because the problem of the
apparently large diffuseness of the SnnP appears at rather high
incident energy it seems unnecessary to account for quantum
effects like tunneling. For our exploratory work we choose
three experimental precision capture excitation functions:
16O + 92Zr [13], 16O + 144Sm [14], and 16O + 208Pb [15]. All
nuclei involved in these reactions are spherical and rather stiff
owing to their closed shells. That is why we account only for
two degrees of freedom corresponding to the radial and orbital
motion. The dimensionless coordinates are q = R/RPT and
ϕ. The latter is the angle between the line connecting the center
of force with the fictitious particle at the given time moment
and the linear momentum of the fictitious particle at q � 1.
Here R is the distance between the centers of the colliding
nuclei and RPT is equal to the sum of the half-density radii:
RPT = RP + RT (P and T denote the projectile and target
nuclei, respectively).

The equations of motion read

�p = (FU + Fcen + FDq)ht , (2a)

�q = p

mq

ht , (2b)

�L = FDϕht , (3a)

�ϕ = h̄L

mq

ht (3b)

FU = −dUtot

dq
, (4a)

Fcen = h̄2L2

mqq3
, (4b)

FDq = − p

mq

KR

(
dUn

dq

)2

, (5a)

FDϕ = − (L − Ls)

mq

Kϕ

(
dUn

dq

)2

. (5b)

Here p stands for the linear momentum corresponding
to the radial motion ([p] = MeV zs); FU and Fcen are the
conservative and centrifugal forces, respectively; FDq and FDϕ

are the dissipative forces corresponding to the radial and orbital
motion, respectively. Utot(q) is the total interaction energy of
two nuclei which consists of the Coulomb UC(q) and SnnP
Un (q) parts ([U ] = MeV); h̄L is the projection of the orbital
angular momentum onto the axis perpendicular to the reaction
plane ([h̄] = MeV zs); mq = mnAP AT R2

PT (AP + AT )−1 is
the radial inertia parameter ([mq] = MeV zs2); mn is the bare
nucleon mass; KR denotes the coefficient defining the strength
of dissipation of the radial motion ([KR] = MeV−1 zs); ht is
the time step of the computer modeling ([ht ] = zs); Kϕ denotes
the coefficient defining the strength of dissipation of the
orbital angular momentum ([Kϕ] = MeV−1 zs). Ls = 7L0/5
stands for the value of the orbital quantum number to which
L is relaxing during its evolution (when L becomes equal to
Ls the dinuclear system rotates as the solid body). Note that
Ls is present in Refs. [7] [Eq. (9)], [8] [Eq. (3)], and [16]
[Eq. (4)] and is absent in Refs. [5] [Eq. (12.13)], [6] [Eq.
(2.3)], [9] [Eq. (1)], and [10] [Eq. (69)]. Equations (2) and (3)
are solved using the Runge-Kutta method of the fourth order.

Of course, our model is very simple with regard to the
dynamics because it does not account for the dynamical defor-
mations of the colliding nuclei and the thermal fluctuations of
the collective variables. However, we prefer first to be certain
about the role of the potential and friction in failure or success
in resolving the apparently large diffuseness problem in the
description of the capture excitation function. We do not expect
the above-mentioned deformations and fluctuations play the
decisive role in that.

B. Dynamical trajectories

It is instructive to see the dynamical behavior of the
fictitious particle in the cases of capture and reflection from
the barrier. This is illustrated in Fig. 1, where the time
dependence of the radial coordinate [Fig. 1(a)], the radial
momentum [Fig. 1(b)], the dissipative radial force [Fig. 1(c)],
and the dissipated energy [Fig. 1(d)] are shown. The collision
16O +144 Sm at the angular momentum L = 8 and four values
of the center-of-mass energy (55 MeV, particle 1; 60 MeV,
particle 2; 62 MeV, particle 3; 67 MeV, particle 4) were
selected as the representative examples. The barrier height
is UB8 = 60.4 MeV, its dimensionless radius qB8 = 1.31
[it is shown by the horizontal line in Fig. 1(a)].

In Figs. 1(a) and 1(b) it is seen that particle 1 is reflected
from the barrier significantly below its summit. The second
particle is reflected as well but spends somewhat longer
time near the barrier. These particles move almost uniformly
accelerated because the dissipative forces are small and the
motion proceeds near the turning point.
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FIG. 1. (Color online) The time dependence of the radial co-
ordinate q (a), the radial momentum p (b), the dissipative radial
force FDq (c), and the dissipated energy ED (d) for four trajectories
corresponding to the reaction 16O + 144Sm at different values of
Ec.m. = 55, 60, 62, 67 MeV (L = 8). The calculations are performed
using the GK approximation of the DF2 potential (for details, see
Sec. II D).

Particle 3 loses almost all of its kinetic energy as it comes
to the barrier top. Beginning from t = 1.5 zs it moves very
slowly, creeping to the point of capture (the capture conditions
are specified in part E of this section). The fourth particle
overcomes the barrier and still possesses significant linear
momentum.

The dissipative forces and the dissipated energies are
substantially different for our four particles. That is why these
quantities are multiplied by a factor of 5 for the second and

the third particles and by a factor of 100 for the fourth one.
Comparing Figs. 1(a) and 1(d) we see that the dissipative
force appears at approximately q = 1.6. The nonmonotonic
behavior of the dissipative force in Fig. 1(c) is explained by
its structure [see Eq. (5a)]. This force increases as the particle
comes closer to the force center owing to the form factor.
However, the particle velocity decreases and finally the force
goes down.

Let us discuss a bit in detail the reflected particles 1 and 2.
For them the dissipative force changes the sign at the turning
point. In Fig. 1(d) the two regions where the dissipated energy
increases are clearly seen. The regions coincide with the
locations of the extremes of FDq in Fig. 1(c). The absolute
values of both FDq and ED are very small (for the particle 1
by factor of 100 smaller than it appears in the figures) but the
behavior of these quantities is correct and understandable. This
corroborates our confidence that the division of the particles
into reflected and captured is correct.

C. Temperature

The temperature does not enter explicitly Eqs. (2) and (3).
However, the colliding nuclei must heat up and their tem-
perature tells us about the dissipated energy. Moreover, the
temperature enters the capture condition [see Eq. (27)].

Following Refs. [7,9,10] we assume that the colliding
nuclei are in thermal equilibrium with each other. Thus, the
dinuclear system is characterized by the only temperature θ.
In Refs. [7,9,10] the temperature was calculated using the
Fermi-gas equation of state:

θ =
√

αEDP (T )A
−1
P (T ). (6)

Here EDP (T ) is the intrinsic excitation energy of the projectile
(target) nucleus. This energy coincides with the dissipated
energy of the collective motion shared by the particular
nucleus. When Eq. (6) is used the dissipated energy is divided
between the reagents proportionally to their mass numbers.

It is well known, however (see, e.g., Refs. [5,10,17,18]),
that the single-particle level density parameter is not a linear
function of the mass number. Thus, we use the following
equation:

θ =
√

EDP (T )
(
a1AP (T ) + a2A

2/3
P (T )

)−1
, (7)

where a1 = 0.073 MeV−1 and a2 = 0.095 MeV−1 [17]. In this
case the dissipated energy is pumped from the heavy nucleus
to the light one compared to the case of Eq. (6). The energy
change can reach 10% for the light nucleus.

D. Potential energy

In Refs. [6–10] the SnnP was calculated by means of folding
the nucleus-nucleon optical potential with the nucleon density
(the symmetrized single-folding potential). In the present work
we use the following potentials and their approximations:

(i) the WS potential with the parameters fitted to repro-
duce the large number of precision fusion excitation
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functions using the single barrier penetration model
(BPM) [1];

(ii) the DF potential with zero radius exchange forces
(DFz);

(iii) the DF potential with the finite radius exchange forces
without the density dependence of the NN forces
(DF0);

(iv) the DF potential with the finite radius exchange forces
with the density dependent NN forces (DF2);

(v) the analytical approximation of the symmetrized single-
folding potential (Gross-Kalinowski formula [6], GK
formula),

Un(R) = ln

{
1 + exp

(
−�R

aGK

)}
× [A0GK + A1GK�R + A2GK�R2], (8)

�R = R − rGK
(
A

1/3
P + A

1/3
T

)
, (9)

r0GK = 1.30 fm, aGK = 0.61 fm, A0GK = 33 MeV,

A1GK = 2 MeV, A2GK. = 3 MeV. (10)

Note that in the original GK formula of Ref. [6] there are two
more terms in the polynomial; however, the authors claimed
that these extra terms are not of importance to obtain good
fit of the symmetrized single-folding potential “all over the
periodic table.”

The description of the DF potential can be found in many
papers (see, e.g., Refs. [11,19]). Presently the code designed
to calculate the nucleus-nucleus interaction energy for two
spherical nuclei is available [12]. Let us stress that in these
papers the option of the finite-range density-dependent NN
forces is included. The DF SnnP consists of the direct UnD

and the exchange UnE parts:

Un(R,EP ) = UnD(R,EP ) + UnE(R,EP ). (11)

The direct part reads

UnD(R,EP )

= g(EP )
∫

d�rP

∫
d�rT ρAP (�rP )Fv(ρFA)vD(s)ρAT (�rT ). (12)

Here the vector �s = �R + �rT − �rP corresponds to the distance
between two specified interacting points of the projectile and
target nuclei, whose radius vectors are �rP and �rT , respectively;
ρAP and ρAT are the distributions of the nucleon centers
of mass (the nucleon densities) at the ground state of the
colliding nuclei, vD is the direct part of the effective nuclear
interaction between two nucleons. The multiplier g (EP )
reflects the additional (explicit) collision energy dependence
of the potential and depends upon the energy per nucleon
EP = Elab/AP . It reads

g(EP ) = 1 − kgEP . (13)

The function Fv (ρFA) is responsible for the density
dependence of the NN interaction according to Ref. [11]:

Fv(ρFA) = Cv{1 + αv exp(−βvρFA) − γvρFA}. (14)

The argument of this function corresponds to the density at the
midpoint between two interacting nucleons and reads

ρFA = ρAP (�rP + �s/2) + ρAT (�rT − �s/2). (15)

The exchange part of the nuclear interaction has the form

UnE(R,EP ) = g(EP )
∫

d�rP

∫
d�rT ρAP (�rP ; �rP + �s)

×Fv(ρFA)vE(s)ρAT (�rT ; �rT − �s)

× exp(i�krel�smn/mR). (16)

Here vE is the exchange part of the effective NN interaction.
In the present work we use the Paris NN forces [20].

They comprise a sum of the Yukawa-type terms, known as
the M3Y effective NN interaction, for both the direct vD and
the exchange vEf parts:

vD(s) =
3∑

i=1

GDi[exp(−s/rvi)]/(s/rvi), (17)

vEf (s) =
3∑

i=1

GEf i[exp(−s/rvi)]/(s/rvi). (18)

Here the subscript Ef refers to the finite-range exchange part
of the NN interaction. Each term is determined by the radius
parameters rvi and the coefficients GDi and GEf i. In the case
of the zero-range exchange NN interaction,

vEδ(�s) = GEδδ(�s). (19)

The values of GDi, GEf i, GEδ, rvi , and kg are collected in
Table I.

Different approximations are used for describing the nu-
clear densities. The most widespread ansatz is the WS profile
[21–24],

ρAP (T )(r) = ρ0P (T )

{
1 + exp

(
r − RP (T )

aP (T )

)}−1

. (20)

Here ρ0P (T ) is the parameter extracted from the normalization
condition, the diffuseness parameter aP (T ) defines a surface
layer thickness, and RP (T ) is a half density radius.

The wave number krel, associated with the relative motion
of the colliding nuclei, reads

krel(R) = {2mR[Ec.m. − Utot(R)]/h̄2}1/2. (21)

TABLE I. The parameters of the M3Y
interactions in Eqs. (13) and (17)–(19).

GD1 (MeV) 11 062
GD2 (MeV) −2537.5
GD3 (MeV) 0
GEf 1 (MeV) −1524.25
GEf 2 (MeV) −518.75
GEf 3 (MeV) −7.847
(rv1)−1 (fm) 4.0
(rv2)−1 (fm) 2.5
(rv3)−1 (fm) 0.7072
GEδ (MeV fm3) −592
kg (MeV−1) 0.002
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FIG. 2. (Color online) The SnnPs versus the dimensionless
center-to-center distance for the reaction 16O + 92Zr with different
scales (a) in general and (b) in details [the box in (a) indicates the
region displayed in (b)]. The vertical lines indicate the Coulomb
barrier radii range. WSC, the WS potential with the parameters fitted
by the Canberra group [1]; DFz, the DF potential with the zero-range
NN interaction; DF0, the DF potential with the finite-range density
independent NN interaction; DF2, the DF potential with the finite-
range density dependent NN interaction; GK, the analytical profile
fitting the single-folding potential (Gross-Kalinowski formula).

Equations (11), (16), and (21) result in a self-consistency
problem. It is solved by the iterative procedure which con-
verges rather quickly if, for instance, one takes the total
potential without the exchange nuclear part at the first step.
All the details of the DF potentials calculation can be found in
Ref. [12].

Because the application of Eq. (19) is the simplest and the
fastest way to calculate the DF potential, this version is used
most often [22–27]. We denote this potential as DFz. A more
realistic case is the DF potential with the density-independent
finite range NN forces. We refer to this potential as to
DF0. To avoid the violation of the nuclear-matter saturation
condition, the NN interaction with the density dependence

FIG. 3. (Color online) Total nucleus-nucleus potentials calculated
for L = 0 versus the dimensionless center-to-center distance for the
system 16O + 92Zr. The notations are as in Fig. 2.

was introduced in Ref. [28]. In Ref. [19] it was shown that
the Coulomb barrier (and consequently the potential itself)
calculated using the set of the density-dependence parameters
DD2 (Cv = 0.3429, αv = 3.0232, βv = 3.5512 fm−3, γv =
0.5 fm−3) has the largest difference against the one calculated
without the density dependence. In the present work we denote
this potential as DF2. These are the three versions of the DF
potential we use.

The five potentials (WSC, DFz, DF0, DF2, and GK)
calculated for the 16O +92 Zr reaction are shown in Fig. 2.
The vertical lines indicate the range of the barrier radii. Their
values as well as other parameters used in these calculations
are collected in Table II. It is seen in Fig. 2(a) that the effective
diffusenesses of all three DF potentials are intermediate
between those of the GK and WSC potentials. Because the
DF potentials are very close to each other in Fig. 2(a), we
show the potentials in Fig. 2(b) more in detail. One can
conclude from this figure that the barriers should range as
follows: UBL(DF2) < UBL(DF0) < UBL(DFz). This is in
accord with Table II.

Let us note that among the five potentials in Fig. 2 the
WSC and GK potentials provide the upper and lower limits.
These are the two potentials using which good agreement
with the data was obtained in Refs. [1] and [6], respectively.
This observation supports the idea that the apparently large
diffuseness of the SnnP seems to be an artifact.

It is interesting to inspect the total nucleus-nucleus poten-
tials calculated with the parameters of Table II. The potentials
are shown in Fig. 3 for zero angular momentum. A remarkable
feature of the potentials is that none of them provides a
pocket. In some works (see, e.g., Refs. [23,29]) its absence

TABLE II. Parameters of the potentials for the system 16O + 92Zr displayed in Figs. 2–10, 12, and 13.

Potential qB0 RB0 (fm) UB0 (MeV) Parameters of the potential

WSC 1.330 10.00 41.94 aWS = 0.841 fm, rWS = 1.046 fm, VWS = −100.0 MeV [1]
DFz 1.360 10.23 41.96 A0 = 21.5 MeV, A1 = 3.2 MeV, A2 = 0.0 MeV, r0 = 1.28 fm, a = 0.60 fm
DF0 1.377 10.36 41.51 A0 = 21.0 MeV, A1 = 3.4 MeV, A2 = 0.2 MeV, r0 = 1.30 fm, a = 0.58 fm
DF2 1.392 10.47 41.06 A0 = 20.5 MeV, A1 = 4.8 MeV, A2 = 4.4 MeV, r0 = 1.32 fm, a = 0.50 fm
GK 1.430 10.76 39.81 As in Eq. (10)
DFz, DF0, DF2 RP = 2.608 fm, aP = 0.465 fm, RT = 4.913 fm, aT = 0.533 fm [19]
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TABLE III. Parameters of the potentials for the system 16O + 144Sm displayed in Figs. 1, 6, 10, and 12.

Potential qB0 RB0 (fm) UB0 (MeV) Parameters of the potential

WSC 1.30 10.84 61.09 aWS = 0.75 fm, rWS = 1.108 fm, VWS = −100.0 MeV [1]
DFz 1.31 10.88 61.25

RP = 2.608 fm, aP = 0.465 fm A0 = 21.5 MeV, A1 = 4.6 MeV, A2 = 1.2 MeV,

r0 = 1.28 fm, a = 0.56 fm
RT = 5.719 fm, aT = 0.557 fm [19]DF2 1.34 11.17 59.83 A0 = 20.0 MeV, A1 = 4.6 MeV, A2 = 4.6 MeV,

r0 = 1.32 fm, a = 0.50 fm

is considered as a disadvantage of the potential. In our opinion
any SnnP calculated using the frozen density approximation
(diabatic potential) is suitable only for q > qt , where qt = 1
is the contact radius (this is clearly stated in Ref. [8], p. 347).
At this separation the nucleon density ρA in the overlap
region reaches the value of saturation of ρAs = 0.17 fm−3.
At q < qt an intensive redistribution of the charge and the
mass must start, which is expected to be described by another
potential. Consequently, the speculations on whether the
entrance channel potential possesses a pocket or it does not
are of little value.

The DF potential with the M3Y NN forces is known for
about 30 years however, it seldom is used (if it is) for dynamical
calculations of the capture cross sections. The trouble is that
the integrals entering Eqs. (12) and (16) are difficult to be
calculated accurately enough at the large values of q. The
situation is illustrated by Fig. 4, where the SnnPs are shown
in the logarithmic scale for the large values of separation.
It is seen that already at q > 2.2 the DF potentials start
to oscillate. These oscillations are of no importance for the
BPM calculations where only the height and curvature of the
barrier are needed. However, for the dynamical calculations
the derivative of the potential is required which cannot be
stable as the potential oscillates. Another thing we notice in
Fig. 4 is that the WSC and GK potentials are less steep than the
DF ones. This can result in smaller radial friction coefficient
KR needed to describe the capture data with the DF potentials
compared to the case of the GK potential.

The standard way to circumvent the problem of the
oscillations of the DF potential at q > 2.2 is to approximate
the numerical potential by an analytical formula. In Ref. [19]
the DF potential was fitted near the barrier by the WS
formula (1). The relative accuracy of this fit turned out to
be of order of 10−5. This is enough to compute the capture
cross sections using the BPM. However, a much wider range
of separation influences the dynamical modeling. Using the
formula, approximating the DF potential near the barrier, for

calculations of the dissipative forces [see Eqs. (5)] one can be
in error.

That is why we decided, in addition to the WS formula, to
approximate the calculated DF potential by means of the GK
formulas (8) and (9). The q-dependence of the DF potentials
(solid lines) and their WS and GK approximations (dashed-
dotted lines and dashed lines, respectively) are presented
in Fig. 5. These calculations are done for the 16O + 92Zr
reaction. The approximations are performed in the range
0.8qB0 < q < 1.2qB0. The barrier positions are indicated by
the vertical lines. Near the barrier [Figs. 5(a), 5(c), 5(e)] the
WS and GK fits are equally good. However, in the region of
large separations [Figs. 5(b), 5(d), 5(f)] the GK approximation
is certainly preferential.

For q < qB0 [Figs. 5(a), 5(c), 5(e)] it is not that clear which
approximation should be preferred. However, our dynamical
trajectories seldom penetrate deeper than q = 0.9qBL. Thus,
everywhere below the GK approximations of the DF potentials
are used.

E. Capture cross sections

The capture cross sections are calculated according to the
commonly used formula (see, e.g., Ref. [18]):

σ = πh̄2

2mREc.m.

Lmax∑
L=0

(2L + 1) TL. (22)

Obviously, the values of the cross sections should not depend
upon the value of the technical parameter Lmax. The trans-
mission coefficients TL are evaluated using two models: the
classical dissipative trajectory model with the surface friction
(TMSF) and the single BPM.

Within the framework of the TMSF the transmission
coefficient can be equal to either 1 provided the trajectory
corresponding to L is captured into the orbital motion or 0
otherwise. At Ec.m. > UBLc all the trajectories with L ranging

TABLE IV. Parameters of the potentials for the system 16O + 208Pb displayed in Figs. 6, 10, and 11.

Potential qB0 RB0 (fm) UB0 (MeV) Parameters of the potential

WSC 1.22 11.31 74.53 aWS = 1.11 fm, rWS = 1.035 fm, VWS = −100.0 MeV [1]
DFz 1.25 11.53 76.70

RP = 2.608 fm, aP = 0.465 fm A0 = 20.0 MeV, A1 = 4.8 MeV, A2 = 3.2 MeV,

r0 = 1.28 fm, a = 0.50 fm
RT = 6.631 fm, aT = 0.505 fm [19]DF2 1.27 11.75 75.28 A0 = 21.0 MeV, A1 = 4.8 MeV, A2 = 3.4 MeV,

r0 = 1.30 fm, a = 0.50 fm
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FIG. 4. (Color online) The absolute values of the SnnPs for the
system 16O + 92Zr versus the dimensionless center-to-center distance
in the logarithmic scale and for the wide range of q. The notations
are as in Figs. 2 and 3.

from 0 up to Lc are captured. Let us stress that unlike
Refs. [6,8,10] we keep our variable L (and consequently Lc)

to be discrete in calculating the cross sections. Performing in
Eq. (22) summation up to Lc we obtain

σ = πh̄2

2mREc.m.

Lc(Lc + 2). (23)

Within the framework of the BPM using the parabolic
barrier approximation the transmission coefficient reads [30]

TL = {1 + exp [2π (UBL − Ec.m.) / (h̄ωBL)]}−1 . (24)

It was demonstrated in Ref. [1] that the experimental capture
cross sections are reproduced with good accuracy by the
BPM with the transmission coefficients (24) and the WS
potential provided the collision energy is at least 5%–10%
above the barrier. The depth of the WS potential was fixed
VWS = −100 MeV, whereas the radius and diffuseness were
fitted individually for each reaction. We denote this potential
as WSC (Woods-Saxon with the Canberra parameters).

The quality of the data reproduction by the BPM with
different potentials is illustrated by Fig. 6. In addition to

FIG. 5. (Color online) The absolute values of the SnnPs versus the dimensionless center-to-center distance for the reaction 16O + 92Zr in
linear (a), (c), (e) and logarithmic (b), (d), (f) scales. The Woods-Saxon and the Gross-Kalinowski formula approximations for the double-folding
potentials (denoted as DF_WS and DF_GK, respectively) are shown as well. The calculations are performed for three versions of the SnnP:
DFz (a), (b), DF0 (c), (d), and DF2 (e), (f).
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FIG. 6. (Color online) Experimental data for the fusion excitation
functions (semiopen circles) for the systems 16O + 92Zr (a), 16O +
144Sm (b), and 16O + 208Pb (c) from Refs. [13–15], respectively,
are compared with the results of our calculations made using the
BPM. Thick lines without symbols correspond to the WSC potential;
lines with solid symbols correspond to the GK approximation of
the double-folding potentials (squares, DFz; triangles, DF2) BZ =
ZP ZT /(A(1/3)

P + A
(1/3)
T ). The parameters of the potentials are shown

in Tables II–IV.

the experimental points (semiopen circles) and the results
obtained using the WSC potential (solid line without symbols),
shown in Fig. 6 are the cross sections calculated using the
GK approximations of the DFz (squares) and DF2 (triangles)
potentials. The error bars for the experimental data are inside
the symbols. Remember that for the BPM calculations it
does not matter which of the following to use: (i) the DF
potential itself, (ii) the WS approximation of the DF potential,
(iii) the GK approximation of the DF potential. One sees that
whatever the DF potential is, the values of the calculated cross
sections exceed the data at high collision energies. Moreover,
the excitation functions calculated using the DF potentials are
rising faster than the experimental ones. As we have seen
in Fig. 2, the principal difference between the WSC and DF
potentials consists of the large diffuseness of the former. Yet
the DF2 potential is based on the well-founded microscopic
effective M3Y density-dependent NN forces.

This is the essence of the problem of the apparently large
diffuseness we are trying to tackle in our present work.

F. Initial and capture conditions

The dynamical calculations start from a final value of the
radial coordinate q0 and a particular value of L. Therefore,
the initial value of the radial momentum is also L- and q0-
dependent through the energy conservation law:

p0L = √
2mq[Ec.m. − UC(q0) − Un(q0) − Ucen(q0, L)].

(25)

The initial value of the radial coordinate q0 is chosen to
obey two conditions. First, it should not be too large to avoid
slowing down calculations (especially considering in future
accounting for fluctuations of the collective variables). Second,
it should not be too close to the capture barrier; otherwise,
the not accounted dissipative part of the trajectory can spoil
the results. Obviously, the calculated cross sections should
not depend on q0. The excitation functions for the 16O + 92Zr
reaction calculated at different values of q0 are shown in Fig. 7.
The GK potential is used for this particular example. We start
to vary q0 from 5.1 and move closer to the barrier. Figure 7(a)
shows that in the range 3.5 < q0 < 5.1 the excitation function
does not exhibit any regular variations. There are some rare
jumps owing to the bifurcation of the single partial wave.
To prove this we plot the cross sections [Fig. 8(a)] and the
corresponding Lc values [Fig. 8(b)] calculated at four values
of Ec.m. as functions of q0. Now the jumps are seen in detail
between q0 = 4.5 and q0 = 3.5 on the curves corresponding
to Ec.m. = 51.4 and 47.0 MeV. They occur owing to a tiny

FIG. 7. (Color online) The capture excitation functions for the
different initial values of the radial coordinate q0 for the reaction
16O + 92Zr [TMSF, GK potential of Eqs. (8)–(10)].
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FIG. 8. (Color online) The capture cross sections (a) and Lc (b)
versus the initial values of the radial coordinate q0 for four different
values of Ec.m.. It is the same calculation as in Fig. 7. Ec.m./MeV =
69.0 (closed triangles), 51.4 (squares), 47.0 (open triangles), 40.6
(circles).

amount of energy dissipated when the fictitious particle moves
between q = 4.5 and q = 3.5.

Moving q0 closer to the barrier whose radius for the s wave
is qB0 = 1.43 (see Table II) we see in Fig. 7(b) that the cross
section starts to increase faster with Ec.m.. The reason for this
is that a part of the trajectory, which, in fact, is dissipative, is
not considered as such owing to Eq. (25). The increase of σ
with the decrease of q0 is larger at high values of Ec.m. because
the larger initial energy results in an earlier appearance of the
dissipation. So, in all the calculations below we use q0 = 4.5.

The capture conditions should be tuned as well as the initial
conditions. The capture is supposed to happen at a particular
value of the radial coordinate qc (or Rc). In the TMSF without
fluctuations it is usually assumed that capture happens if the
fictitious particle overcomes the top of the Coulomb barrier
[6,8] (qc = qB). Accounting for the thermal fluctuations makes
the picture more complicated: After overcoming the barrier the
fictitious particle can be scattered back with some probability.
That is why in Ref. [9] the capture (no return) point is defined
by the condition dUn/dR = 2 MeV/fm; i.e., this point is
positioned somewhat deeper beyond the barrier. This condition
was founded only by the fit of the calculated capture cross
sections to the data (see Fig. 2 of Ref. [9]). In the recent
paper [16] the “touching” cross sections were calculated. From
our point of view these are the same capture cross sections with
the capture condition qc = qt = 1, i.e., Rc = Rt = RP + RT .

We assume the capture happens in one of the following two
cases. First, two conditions must be fulfilled:

(i) the radial coordinate of the particle must become
smaller than the particular share fcq of the L-dependent

barrier radius qBL,

q (t) < qc = fcqqBL; (26)

(ii) the radial kinetic energy must become of order of the
temperature:

p2 (t) /(2mq) < fcEθ (t) . (27)

The second case is when the trajectory penetrates beyond the
barrier significantly deeper than in the first case:

q (t) < qc = 0.5 (qt + qBL) . (28)

This condition works if we make the strength coefficient of the
radial friction very small.

We varied the coefficient fcE between 1 and 2, and the
coefficient fcq between 0.94 and 1.00 and found that the
calculated excitation functions did not change. Thus, in all
the calculations below the values fcE = 1 and fcq = 0.98 are
used.

III. TESTING THE MODEL

A. The influence of the friction strength coefficients

The calculated values of the cross sections depend upon
the method of computing (either the BPM or the TMSF).
In the latter case, for the given potential, the cross sections
depend upon the friction strength coefficients KR and Kϕ.
This subsection is devoted to studying this influence. Reaction
16O + 92Zr has been chosen as an example. Results are shown
in Fig. 9.

The influence of the variation of the tangential friction
strength on the results of the trajectory calculations was
studied in Ref. [6]. However, in that work the range of the
angular momenta which is interesting for us (L < 80) is not
even shown (see Fig. 21 of Ref. [6]). The capture excitation
functions calculated at different values of Kϕ ranging from
10−5 MeV−1 zs up to 10−2 MeV−1 zs are presented in Fig. 9(a).
The excitation function calculated using the nondissipative
BPM is shown there too. It is seen that the reduction of Kϕ

from its standard value 10−4 MeV−1 zs does not influence the
excitation function. Enhancing Kϕ results in the slight increase
of the cross section which is qualitatively correct. However,
quantitatively this effect is very weak: The two orders of
magnitude variation of Kϕ results in an alternation of Lc

by several units (typically from 1 to 3). This insensitivity of
the capture cross sections to the value of Kϕ was discussed
recently in Ref. [16]. Thus, we fix Kϕ = 10−4 MeV−1 zs in all
the calculations below.

The capture excitation functions calculated at different
values of KR are presented in Fig. 9(b). The excitation
function calculated using the nondissipative BPM is shown
there too (the curve with solid triangles up). It provides the
upper limit which is reached in the dynamical calculations at
KR = 10−3 MeV−1 zs (the curve with squares). It seems to us
to be of importance that calculating the cross sections within
the framework of the quantum BPM and the classical trajectory
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FIG. 9. (Color online) The influence of the coefficients Kϕ (a) and
KR (b) on the fusion cross section for the reaction 16O + 92Zr (calcula-
tions are performed with the GK approximation of the DF2 potential;
see Table II). In the upper panel KR = 3.5 × 10−2 zs MeV−1, in the
lower panel Kφ = 1.0 × 10−4 zs MeV−1.

model without dissipation but with an absorptive border inside
the barrier results in the same excitation functions. Increasing
the value of KR we suppress capture strongly, as expected.
Thus, one can use the strength coefficient of the radial friction
as a fit parameter if needed.

B. Comparing to the predecessors

Before comparing our results to the experimental data we
consider that it is useful to make sure that our code reproduces
the results of the previous theoretical works. We present the
comparison with the results of Ref. [6] in Table V. It is
pointed out in Ref. [6] that the standard parameter set of
the GK potential [Eqs. (10)] provides good agreement with
the experiment. However, in Ref. [6] these parameters had
been adjusted individually for each reaction. Accounting for
this remark we consider the agreement between the results of
Ref. [6] and of our work to be reasonable.

TABLE V. Comparing our calculated capture cross section σ with
those of Table 2 of Ref. [6].

Reaction Elab Ec.m. σ (mb) σ (mb)
(MeV) (MeV) [6] (this work)

84Kr + 208Pb 718 511.45 522 473
510 363.3 27 27
494 351.9 0 0

136Xe + 209Bi 1130 684.55 198 89
136Xe + 165Ho 1130 619.4 440 343

FIG. 10. (Color online) The fusion excitation functions calculated
using the TMSF with the DF2 potentials (the curves with open
triangles) are compared with the same experimental data as in Fig. 6
(semiopen circles). The results of the BPM with the same DF2
potentials are shown as well (the curves with solid triangles). The
parameters of the potentials are shown in Tables II–IV.

The second comparison is made with the results of Ref. [8]
and presented in Table VI, the compared quantities are the
dissipative barrier energies Bdiss, i.e., the values of Ec.m. at
which the dissipative trajectory with L = 0 is captured. Let
us remind the reader that in contradistinction to Ref. [8] in our
calculations the deformations of both reagents are not taken
into account. Another difference is that we do not make an
approximation of the results of the single folding calculations
for each reaction: We use the standard parameter set of the GK

TABLE VI. Comparing our calculated dissipative barrier energies
Bdiss with those of Table 1 of Ref. [8].

Reaction Bexp Bdiss Bdiss

(MeV) [8] (MeV) [8] (MeV) (this work)

40Ar + 206Pb 162 ± 3 166.6 166.5
64Ni + 208Pb 264.5 265.9 266.6
52Cr + 208Pb 209.5 227.8 227.5
50Ti + 209Bi 190 ± 3 207.2 206.9
50Ti + 208Pb 191 ± 3 204.2 203.9
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TABLE VII. Parameters of the DF2 potential for the system 16O + 208Pb displayed in Figs. 11 and 12.

Potential qB0 RB0 (fm) UB0 (MeV) Parameters of the potential

DF2 1.27 11.75 75.28 RP = 2.608 fm, aP = 0.465 fm A0 = 20.0 MeV,

RT = 6.631 fm, aT = 0.616 fm A1 = 4.0 MeV,

A2 = 4.8 MeV,

r0 = 1.34 fm,

a = 0.52 fm

potential [Eqs. (10)]. The third difference is that the capture
conditions do not coincide. Accounting for these differences,
the agreement between our dissipative barrier energies and the
ones from Ref. [8] is surprisingly good.

IV. RESULTS

We calculated the capture excitation functions mostly
within the framework of the classical dissipative trajec-
tory model using Eq. (23). Sometimes for comparison we
show the cross sections resulting from the BPM [Eqs. (22)
and (24)]. As the first iteration we apply the friction
strength coefficients (KR = 3.5 × 10−2 MeV−1 zs, Kϕ =
1.0 × 10−4 MeV−1 zs) which were found in Ref. [8] with
the symmetrized single-folding potential. Remember that the
GK formula is always used as the approximation of the DF2
potential.

Results of this first iteration are presented in Fig. 10. Before
discussing these results let us mention the slight irregularities
in our calculated excitation functions. These irregularities are
discussed in the Appendix and should not distract the reader.

Note first the evidence of the apparently large diffuseness
problem: The cross sections resulting from the BPM (the
curves with solid triangles) are significantly above the data
(semiopen circles). The cross sections calculated dynamically

FIG. 11. (Color online) The fusion excitation functions for the
16O + 208Pb reaction with the modified radial dissipation strength
coefficient KR and matter density target diffuseness aT . The curve
with open triangles up corresponds to our original calculations (aT =
0.505 fm,KR = 3.5 × 10−2 MeV−1 zs); the curve with solid triangles
right shows the result of the calculation with the reduced radial friction
coefficient; the curve with open triangles down corresponds to the
calculation with the additional increase of aT . The results of the
BPM (the curve with solid triangles up) and the experimental data
(semiopen circles) are shown as well.

(the curves with open triangles) are in good agreement with
the data for the lightest target nucleus. For the heavier target
nuclei this agreement is destroyed: The results of the trajectory
calculations are significantly below the data at high energies.
Moreover, in the case of lead it looks like the capture barrier
in the dynamical calculations is shifted up compared to the
experimental one.

Thus, we try to vary the most uncertain parameters for
the reaction 16O + 208Pb : the radial dissipation strength
coefficient KR and the matter density diffuseness aT . The
coefficient Kϕ is not varied because we have seen that
it does not influence the calculated cross sections in our
range of the collision energy. Reducing the radial friction is
expected to elevate the excitation function especially at high
energies. Such reduction is even expected because the value
KR = 3.5 × 10−2 MeV−1 zs was obtained in Ref. [8] with the
single-folding (GK) potential, whereas the DF2 potential is
significantly steeper and provides higher friction [see Fig. 4
and Eq. (5a)]. Increasing aT should move the whole curve left
owing to the reduction of the Coulomb barrier.

Results of the variations of KR and aT are displayed in
Fig. 11. We see that reducing KR from 3.5 × 10−2 MeV−1 zs to
2.5 × 10−2 MeV−1 zs and increasing simultaneously aT from
the initial value 0.505 to 0.616 fm brings the calculated capture
excitation function to the satisfactory agreement with the data.

Now we keep the new value KR = 2.5 × 10−2 MeV−1 zs
and calculate again the cross sections for 16O + 92Zr and
16O + 144Sm. The results are compared with the data in Fig. 12.
We believe that this amount of agreement proves that the
longstanding problem of the apparently large diffuseness of
the SnnP can be solved within the framework of the classical
dissipative trajectory model using the surface friction and the
DF potential. Let us stress that this potential possesses a small
diffuseness no matter what version of it is applied. Future
development of the model (for instance, taking into account
the dynamical deformations and fluctuations) can, of course,
influence the value of the radial friction strength.

V. CONCLUSIONS

The extensive analysis of a vast set of data on precision
capture excitation functions, in particular when both the
projectile and the target nuclei are spherical, performed in
Ref. [1] resulted in the problem of the apparently large
diffuseness of the Woods-Saxon (WS) nucleus-nucleus strong
interaction potential (SnnP). The potential was needed to fit the
data at the collision energies well above the Coulomb barrier,
where couplings to the vibrational states are of no importance.
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FIG. 12. (Color online) The fusion excitation functions calcu-
lated using the TMSF with the DF2 potential and KR = 2.5 ×
10−2 MeV−1 zs (the curves with triangles) are compared with the
same experimental data as in Figs. 6 and 10 (semiopen circles). The
parameters of the potentials are shown in Tables II, III, and VII.

The diffusenesses were much larger (about 1 fm) than those
of the potentials used to fit the elastic scattering data (about
0.6 fm). In the present work we have undertaken an effort to
see whether the problem is not in the potential itself but in the
dynamical character of the collision process. Dissipation is the
first dynamical effect which must be accounted for.

Therefore, we constructed a classical dissipative trajectory
model within the framework of which we tried to reproduce the
data on fusion (capture) of 16O with 92Zr, 144Sm, and 208Pb.
Our model resembles very much the one of Ref. [6]. However,
the models are different to a certain extent.

First, the models use the different potentials. In our case
this is the double-folding potential with the density-dependent
M3Y NN forces with the finite radius of the exchange part.
Let us stress that this potential possesses a small diffuseness of
about 0.6 fm. For making dynamical modeling of the collision
process the DF potential must be approximated by an analytical
expression. We found that the Gross-Kalinowski profile [see
Eqs. (8) and (9)] serves for this purpose significantly better
than the conventional WS formula (1) used in Ref. [1].

Second, in Ref. [6] a comparison was done with the data
whose accuracy was never better than 10%, whereas we

compare our calculation results with the data of 1% accuracy.
This circumstance forced us to tune very carefully all the
parameters of the model like, e.g., the entrance point.

It is worth that because varying slightly the strength of
radial friction (universally for all three reactions) and the
diffuseness of the matter density of 208Pb we have obtained the
satisfactory agreement of the calculated excitation functions
with the data. We dare to say that this agreement can be
considered as evidence that the old problem of the apparently
large diffuseness of the SnnP is indeed an artifact related to
the dynamics of the process.

It should be kept in mind that our classical calculations
provide an approximate description for capture cross sections
in very asymmetric systems above the Coulomb barrier. How-
ever, in the vicinity of the barrier mean trajectory calculations
break down owing to fluctuation mechanisms arising from two
different sources: (i) the diffusion mechanism associated with
dissipation and (ii) the barrier fluctuations owing to coupling
between relative motion and low-frequency surface vibrations
(see, e.g., Ref. [32]).

APPENDIX

Here we discuss the jumps (or rather the kinks) exhibited
by the cross sections calculated within the framework of the
TMSF in Figs. 9–12. This sort of irregularity is typical for the
trajectory calculations where the fluctuations are absent. To
understand this let us inspect Eq. (23). As the collision energy
increases, the first multiplier decreases in a continuous manner,
whereas Lc and consequently the second multiplier abruptly
increases by unity. The resulting kinks define the accuracy of
the calculated cross sections in whatever classical trajectory
model, provided L is considered as the discrete variable (which
it is in reality) and fluctuations are ignored (this makes the
model less realistic). To estimate the effect we performed
the cross-section calculations using a small step in the energy.
The results shown in Fig. 13 confirm our speculations.

It is expected that the quantum and thermal fluctuations
smear out (or at least weaken) this structure. However, for
lighter systems the structure seems to have been observed
[24,31].

FIG. 13. (Color online) The capture excitation function for the
system 16O + 92Zr calculated with the small Ec.m. step in the
framework of the TMSF [GK potential of Eqs. (8)–(10)].
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[9] J. Marten and P. Fröbrich, Nucl. Phys. A 545, 854 (1992).
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