
PHYSICAL REVIEW C 87, 014608 (2013)

Regular family structures observed in neutron resonance energies:
Breathing model of the compound nucleus
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In neutron resonances, which are long believed to be a form of quantum chaos, simple regular family structures
are found for many even-even nuclei in the several tens of keV to MeV region. Resonance energies can be written
by simple arithmetic expressions with good accuracies, where separation energies Sn and G play essential roles
and where G ≈ 34.5 MeV is almost equal to the Fermi energy. Family structures are described for the observed
resonances in 40Ca, 54Cr, 64Ni, 90Zr, and 208Pb. Statistical probability tests are performed for the appearance of
these family structures. A classical dynamic model of the compound nucleus is proposed where the recurrence
of multiple oscillators produces “breathing” and seems to successfully reproduce observed resonance families.
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I. INTRODUCTION

In classical physics, resonance phenomena always include
the time sinusoidal behaviors of physical quantities of the
system. Similar situations are found in resonances in many
fields of quantum physics and in neutron resonance reactions
where an incident neutron excites the compound nucleus (CN).
When many oscillators are excited coherently at resonances,
they form time-periodic breathing of the CN coherent with the
incident neutron wave.

Neutron-nucleus cross sections are essentially important in
reactor technology and are widely measured and compiled
as basic nuclear data. These cross sections are observed
mainly by neutron time-of-flight spectrometers using pulsed
accelerator neutron sources. In these cross sections, many
sharp resonances (fine structure resonances) are seen for all
nuclei as quasistable states of nuclei above neutron separation
energies Sn ∼ 8 MeV. These resonance cross sections are well
fitted by the Breit-Wigner formula or the R-matrix formula.
Averaged neutron reduced widths are in good agreement with
the predictions of the optical model or Ramsauer model.
Level densities are very high depending on the target mass
number—for example, ∼40/MeV for 16O, ∼400/MeV for
56Fe, and ∼105/MeV for 238U. Each resonance is considered to
be a quasistable state of the CN. The CN has a very complicated
structure composed of many excited degrees of freedom, and
statistical models of the CN work well. In fact, statistical
properties of the observed resonances are in good agreement
with the predictions of random matrix theory (RMT); the
Wigner Gaussian orthogonal ensemble (GOE) distribution for
the spacings of nearest neighbor levels of the same Jπ , the
Porter-Thomas distribution for strengths, and �3 statistics
for long-range correlations. Therefore, neutron resonances are
thought to be a typical example of quantum chaos [1–4].

However, as is seen in every field of science, different
methods of analysis extract different features of the system
considered. In fact, many nonrandom properties in observed
resonance level positions and spacings have been reported
over the past five decades. Using Dij (spacings between
two arbitrary levels) distributions and Fourier-like analyses,
dominant level spacings are detected which appear more

frequently than expected from the random (GOE) distribution
of resonance levels [5–12].

Examples of the dominant spacings include, in the eV reso-
nance region, 4.4 eV (177Hf), 5.5 eV (123Sb), 14.6 eV (238U),
17.6 eV (168Er), 142 eV (75As), and 213 eV (240Pu). In the
keV or MeV resonance region, spacings are at 460,
515, and 1515 keV (16O), 575 keV (32S), 184 keV (40Ar),
478.4 keV (86Kr), and 86.2 keV (140Ce). These dominant
spacings range from several times to several tens of times the
average level spacings and were deemed not to be statistical
fluctuations but to occur for some physical reason.

Moreover, it is very interesting that simple integer ra-
tios are found among these dominant spacings of dif-
ferent nuclei: 5.5 eV (123Sb)/4.4 eV (177Hf) = 5/4, 14.6
eV (238U)/17.6 eV (168Er) = 5/6, 142 eV (75As)/213 eV
(240Pu) = 2/3, etc. in the eV region and 460 keV
(16O)/575 keV (32S) = 4/5, 460 keV (16O)/184 keV(40Ar) =
5/2, 575 keV (32S)/478.4 keV (86Kr) = 6/5, 515 keV
(16O)/86.2 keV (140Ce) = 6/1, etc. in the keV and MeV
region [15] On this subject, detailed descriptions are made
by Sukhoruchkin in Ref. [16].

Integer ratios among dominant spacings of different nuclei
suggest the existence of a common original energy and spacing
over many nuclei. We searched for the original value by
repeating least common energies (LCEs) analysis among the
dominant spacings of different nuclei, similar to searching
for the least common multiple (LCM) among integers. We
reached a value G ≈ 34.5 MeV as the origin of energy and
spacing over many nuclei, which is almost equal to the Fermi
energy, the maximum energy of the nucleon trapped in the
nuclear potential [11]. G ≈ 34.5 MeV and τ0 = 2πh̄/G =
1.2 × 10−22 s play essentially important roles in (quasi)stable
states of nuclei under strong interactions.

In this article, excitation energies Ex are expressed as Ex =
(A/B)G, where A and B are integers and G ≈ 34.5 MeV.
Through this expression, transparent relations are found
among Ex , Sn, and En, which evoke a semiclassical dynamic
model of resonance reactions.

In a previous paper, we reported a recurrence model of the
CN where the recurrence times τrec for multiple oscillators
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are deduced classically by assuming tolerable phase angle
errors of 1 rad. Oscillator numbers M excited in the CN are
deduced from average level spacings D and Ex for many
nuclei. Time behaviors of the CN with periodic recurrences
coherent with the incident wave are considered [13]. Simple
integer ratios in Ex/Sn are found in many resonances of
16O + n. For light nuclei, Ex/Sn values equaling 4/3 and
5/3 appear frequently [14]. For the s-wave resonances of
40Ca + n, we found that Sn/En values are in the form
17(l/m) for many resonances where l, m are small integers.
Separation energy Sn = (17/70)G is the sum of two oscillators
of E1 = (1/7)G and E2 = (1/10)G with recurrence energy
Erec = (1/70)G = 492 keV. Many s-wave resonances locate
at En = 492(m/l) keV [15].

In Sec. II of this article, theoretical descriptions are made
on the breathing model and the family structures based on
the classical analogy of resonance phenomena. In Sec. III,
resonance families are described for the observed resonances
in 40Ca, 54Cr, 64Ni, 90Zr, and 208Pb. A discussion is found in
Sec. IV, and conclusions are offered in Sec. V.

II. BREATHING MODEL OF THE COMPOUND NUCLEUS

A. Neutron resonances

In classical resonance phenomena, time coherencies are
maintained between resonators and the incident waves at
resonance frequencies. In neutron resonance reactions, analo-
gous relations will be maintained between the neutron wave
frequencies and the oscillation frequencies of the compound
nucleus, the Poincaré cycle frequency for multiple oscillators
in the CN.

The wave packet length (coherent length) of a slow neutron
in the eV region is measured by a neutron interferometer
to be ∼100 Å = 10−8 m, which is very long compared to
the nuclear size ∼10−14 m and is formally expressed as a
plane wave exp[i(ωt − kx)], where the frequency ω = En/h̄,
En is the neutron kinetic energy, t is time, k is the wave
vector, and x is the space coordinate. In crystal diffraction,
an incident neutron plane wave is scattered from atoms at
periodic lattice points and is diffracted to directions where
constructive interference of the scattered wave is maximal.
From the diffraction patterns, crystal structures are deduced
by Fourier transform. The crystal diffraction is in the (k, x)
domain.

In contrast, neutron resonances are in the (ω, t) domain.
Time-periodic scattering centers will be produced on the CN
surface caused by a change of size or flare-up of neutron den-
sity, which is time coherent (synchronized) with the incident
wave at resonances. These time behaviors can be deduced
from the dispositions of the resonance energies. In the absence
of size changes or flare-ups, only the energy-independent
potential scattering cross section (∼10 b = 10 × 10−28 m2)
will be observed. Therefore, a dynamic picture of the CN is
needed to understand neutron resonances. To this end, we
have developed the “breathing model” [13] based on the
time-periodic recurrence or flare-up of neutron density on
the compound nucleus. This perspective is supported by the
S-matrix theory described below.

B. S matrix

An S matrix S(E) is defined for neutron-nucleus reactions
from which the cross section σs(E) = (π/k2)(2l + 1) | 1 −
S(E) |2, etc. is determined. A relation between S(E) and the
response function is based on Sitenko [17]. For an s-wave
resonance, the incident wave ψ−(r, t) and outgoing wave
ψ+(r, t) around the interaction region of radius R are

ψ−(r, t) =
∫ ∞

0
dE′a(E′)(1/r) exp[−ik′r − (i/h̄)E′t],

(2.1)

ψ+(r, t) =
∫ ∞

0
dE′a(E′)S(E′)(1/r) exp[ik′r − (i/h̄)E′t].

(2.2)

where a(E′) is the amplitude of the incident wave at energy
E′. The response function F (τ ) is defined by the causality
principle as

ψ+(r, t) =
∫ ∞

0
dτF (τ )ψ−(r, t − τ ). (2.3)

By multiplying Eqs. (2.1), (2.2), and (2.3) by exp(−iEt/h̄)
and integrating over t from −∞ to ∞, S(E) can be expressed
as a Fourier transform of the response function F (τ ) as

S(E)e2ikR =
∫ ∞

0
dτF (τ )ei Eτ

h̄ , (2.4)

where τ is the time for the response to return.
Equation (2.4) is a basic relation on which the following

discussions are based. In the continuum region, S(E) has no
peak, and F (τ ) is expected to be a nonperiodic or stochastic
function of an infinitely long time period. In contrast, for
an isolated resonance at E0, S(E) has a peak at E0 (recoil
corrected). That is, the scattered wave ψ+(r, t) is significant
if F (τ ) and the incident wave ψ−(r, t) are time coherent
with each other, during the lifetime ∼h/�, where � is the
total width of the resonance. Off resonance, only potential
scattering remains. At resonance, F (τ ) must be a periodic
function with a period τrec = 2πh̄/E0, or, more generally,
τrec = (l/m)(2πh̄/E0), where l, m are small integers.

C. Requirement of time periodicity for the normal modes

At resonance, the response function F (τ ) can be expressed
by a Fourier series with higher harmonics of periods τj =
τrec/kj and frequencies ωj = kj (l/m)E0/h̄, where kj are
integers (j = 1, 2, . . . , M), with M the number of harmonics,
which are considered to be equivalent to the degrees of
freedom excited at resonance. Frequency ratios as well as
time periods of these higher harmonics are commensurable
(forming integer ratios) with each other. A unit time τ0 =
1.20 × 10−22 s exists as the greatest common divisor (GCD)
of τj (j : 1, 2, . . . ,M), and τj is quantized as njτ0 where nj

is an integer. The recurrence time τrec is the least common
multiple for the ensemble (nj ; j = 1, 2, . . . , M) multiplied
by τ0. The frequency component ωj is proportional to the
inverse integers ωj = (2π/τ0)/nj = (1/h̄)G/nj . These higher
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harmonics are equivalent to the normal modes excited on the
CN at resonances.

Though the details are not known, the Hamiltonian and
wave functions for these normal modes are formally written
as

H = H1 + H2 + · · · + HM, (2.5a)

ψ(x, t) = ψ1(x1, t) ⊗ ψ2(x2, t) · · · ⊗ ψM (xM, t). (2.5b)

The time periodic conditions are

ψj (xj , t) = ψj (xj , t + nJ τ0), (2.6a)

ψ(x, t) = ψ(x, t + τrec), (2.6b)

where

τrec = LCM(n1, . . . , nM )τ0. (2.6c)

The total excitation energy Ex = Sn + E0 for these normal
modes,

Ex = h̄(ω1 + ω2 + · · · + ωM ), (2.7a)

is rewritten as

Ex = 2πh̄

τ0

M∑
j=1

1

nj

= G

M∑
j=1

1

nj

(nj : integer). (2.7b)

For multiple excitations, the ones in the numerators in (2.7b)
will be replaced by small integers aj .

D. Resonance energy

There are many cases shown in Sec. III where the separation
energies Sn are the sum of q oscillators, where q = M − 1,

Sn = G

q∑
j=1

1

nj

, (2.8)

with recurrence time τrec = LCM(n1, . . . , nq )τ0. Analogous
to the classical resonance phenomena, neutron resonance
reactions take place when the time periods of the neutron
wave τw are simple integer ratios (m/l) to τrec, i.e.,

τw =
(

l

m

)
τrec =

(
l

m

)
LCM(n1, . . . , nq )τ0, (2.9a)

that is,

En = Erec

(
m

l

)
. (2.9b)

This is a kind of Fermi resonance (described in Sec. IV) where
the recurrence energy Erec of the CN is defined as

Erec = 2πh̄

LCM(n1, . . . , nq)τ0
= G

LCM(n1, . . . , nq)
. (2.10)

For incident neutron energies of Erec(m/l), the recurrence
of (CN + neutron wave) takes place every l × τrec. For two
oscillators q = 2, LCM(n1, n2) = n1n2 (irreducible case), and
Sn is

Sn =
(

1

n1
+ 1

n2

)
G, (2.11)

and Erec is

Erec = G

n1n2
= Sn

n1 + n2
. (2.12)

Then

En = Erec

(
m

l

)
(l, m : small integers), (2.13)

Ex = Sn + En =
[(

1

n1
+ 1

n2

)
+ 1

n1n2

m

l

]
G

=
[

1 + 1

n1 + n2

m

l

]
Sn. (2.14)

These relations are valid for many observed resonances of
small l, m composing a family as described in Sec. III.

E. Dynamic behaviors of the compound nucleus

The breathing model is developed as a mechanism of
the neutron resonance reaction and is outlined below. A
neutron wave incident on a target nucleus is divided into
two components: (1) a pass-by component that passes by
without interaction and (2) a penetrating component which
excites q oscillators (normal modes) in the CN simultaneously.
The observed cross section is the result of (1) and (2).
The separation energy is divided into q oscillators in the
form Sn = G

∑q
j=1(1/nj ). These oscillators will be fast

deformations (phonon) or particles in orbit or other oscillations
with cycle times quantized by unit time τ0 = 1.20 × 10−22 s.
The recurrence time of the CN is τrec = LCM(n1, . . . , nq)τ0.
The response function F (τ ) behaves like a pulse array with a
pulse separation τrec with intermittent pulses like breathing of
the CN, making scattering centers on the time axis. Resonance
reactions take place for the case τw = (l/m)τrec. The breathing
frequency (equivalent to the recurrence frequency) depends on
the LCM, which is a complicated function of Ex as described in
Sec. III. The envelope of the pulse array decays exponentially
with the time constant h̄/�, where � is a fine structure level
width.

For the physical meaning of (m/l), the stroboscopic
analogy described in Sec. IV is plausible.

At every τrec, the penetrating component reverts to the
initial phase, gathers to form a high neutron-density flare on
the CN surface, and interferes with the pass-by component.
The nuclear potential deformation is maximized so that the
neutron wave penetrates easily through the nuclear surface.
The instance of the recurrence (�g ∼ a few τ0) is called the
coalescent phase in [13], or the gather phase in [14], and is
analogous to a time slit which opens to allow interference
between the two components during �g at every τrec. Energy
spectra expected from these time structures are almost consis-
tent with the observed facts [13], are equidistant fine structure
resonances of width � and level spacing D = 2πh̄/τrec, and
are enveloping giant resonances of width �G corresponding to
the opening durations, i.e., �G ∼ 2πh̄/�g ∼ 10 MeV. Also
spatial distributions of wave functions will be related to Jπ

and strengths for each resonances. Further discussions are in
Sec. IV and Fig. 4.
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III. REGULAR FAMILY STRUCTURES IN NEUTRON
RESONANCES OF EVEN-EVEN TARGET NUCLEI

In this section, we show family structures on the observed
s-wave neutron resonances in 40Ca, 54Cr, 64Ni, 90Zr, and 208Pb.
S-wave resonances have generally large �n values and are
thought to be caused by relatively simple reaction mechanisms.
Average level spacings of these nuclei are fairly large, which
is important for this analyses. The probabilities of appearance
for these family structures are calculated on the assumptions
described below. In many cases, several families of Groups
(I) and (II) coexist and overlap. Classification of resonances
into several groups can be made by Erec, which is determined
as described below. Though somewhat tedious, we will show
detailed numerical data to support our viewpoint.

A. Assumptions on statistical tests

In order to assert family structures (patterns) among the
level sequences, probabilities of appearance of the patterns Ps

are very important. If the calculated Ps for a pattern A is in
the several tens of percent range, the pattern A almost always
appears and has no special meaning. If the Ps for a pattern B
is less than a few percent, the appearance of pattern B is a rare
event and is considered to be caused by some physical reason.

The problem here is to estimate the probability of appear-
ance of the family structures: nl levels disposed in the region
R and ns levels out of nl are on the special points at (m/l)Erec

within total deviation widths ε, where (l, m � 10).
For the nl levels, an RMT ensemble must be used for this

case. The Wigner (GOE) distribution for the nearest neighbor
level spacings, next-nearest neighbor distribution, next-next-
nearest one, . . . are given by complicated formulas. The sum
of these distribution functions is a constant value for a large
sequence of levels. However, exact probability calculations
for the RMT ensembles are very difficult for these family
structures.

Therefore, we substitute random (homogeneous) level
ensembles where probabilities of appearance are given by
binomial distributions. For a distance larger than the average
spacing, small differences are expected between the two. The
probabilities of appearance summarized in Table II are esti-
mated for random ensembles which are good approximations
for RMT ensembles.

B. Search for Erec in resonance energies

The recurrence energy Erec values of a CN at resonances
are essential for the breathing model. To read out Erec among
observed resonances, we use three methods: (1) Search for
a common factor α in the integer ratios Sn/En for many
resonances. For example, factor 17 in 40Ca(I) is shown in
Table I. Erec is Sn/α. (2) Search for a simple integer ratio in
Sn/G = α/β where G ∼ 34.5 MeV; for example, Sn/G =
17/70 in 40Ca(I) where G = 34434 keV. (3) Search for a pair
of resonances E1, E2 whose energy ratios are a simple integer
ratio belonging to the same family. That is,

E1 = (m1/l1)Erec, E2 = (m2/l2)Erec (3.1)

and the ratio is

E2

E1
= m2l1

m1l2
. (3.2)

The LCE is given as

LCE = E1m2l1 = E2m1l2 = m1m2Erec, (3.3)

which is an integer multiple of Erec. Sn/LCE is an integer
divisor of the common factor α:

Sn

LCE
= 1

m1m2

Sn

Erec
= α

m1m2
. (3.4)

The spectrum Sn/LCE for many pairs of levels shows α
visually.

By complementary use of these methods, Erec can be
derived. For the sake of convenience, integer multiples or
divisors of Erec are used depending on the case.

C. 40Ca(I) s-wave resonances

The original resonance data of 40Ca + n are from Toepke
[18], where 40 s-wave resonances below En � 2.4 MeV
are reported. The separation energy is Sn = 8362.7 keV.
The cumulative number of levels versus neutron energy is
shown in Fig. 1(a), and the nearest neighbor level spacing
distribution is shown in Fig. 1(b) with a Wigner distribution.
In Fig. 2, g�n values versus neutron energy are shown, where
classifications to Groups (I) and (II) are made. Numerical data
for the 40 resonances, En, g�n, Sn/En, = Sn/En, Group, m/l,
E1

rec(m/l), E2
rec(m/l), and δ are shown in Table I, where E1

rec
and E2

rec means Erec for Groups (I) and (II), respectively.
In Figs. 1(a) and 1(b), common statistical features are

seen for this nucleus. As described in the introduction, we
have remarked on the frequent appearance of the factor 17
as Sn/En = 17(l/m), where l, m are small integers [Group
(I)] [15]. The existence of these special structures [En =
(m/l)(1/17)Sn] seems to have no effect on the statistical
distributions in Figs. 1(a) and 1(b).

Moreover, it is very interesting that the separation energy
Sn = 8362.7 keV can be expressed as (17/70)G, which can
be rewritten as (1/7 + 1/10)G with G = 34434 keV. This
corresponds to two oscillators of cycle time 7τ0 and 10τ0,
and with recurrence time LCM(7, 10)τ0 = 70τ0. The recur-
rence energy is E1

rec = (1/70)G = (1/17)Sn= 491.9 keV. The
observed resonances En dispose nearby calculated energies
Ec

n = 491.9(m/l) keV with deviation δ, as shown in Table I.
These resonances are called the “492 keV family.” 40Ca(I) is a
typical example of the breathing model.

Arithmetic relationships for 40Ca(I) are as follows (where
n1 = 7 and n2 = 10):

Sn = 8362.7 keV = 17

70
G =

(
1

7
+ 1

10

)
G,

(3.5)
G = 34434 keV,

E1
rec = G

70
= Sn

17
= 491.9 keV, 40Ca(I), (3.6)
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TABLE I. 40Ca + n S-wave resonances. Group (I): Sn = 8362.7 keV = (17/70)G = (1/7 + 1/10)G, G = 34434 keV, E1
rec = G/70 =

Sn/17 = 491.9 keV. Group (II): Sn = 8362.7 keV = (39/162)G = (1/6 + 1/18 + 1/54)G, G = 34737 keV, E2
rec = G/162 = Sn/39 =

214.4 keV, δ = En − (m/l)Erec.

j En (keV) g�n (keV) Sn/En =Sn/En Group m/l 492(m/l) (keV) 214(m/l) (keV) δ (keV)

1 86.8 0.14 390/4 39 × 5/2 II 2/5 85.8 1.0
2 128.6 3.3 65/1 39 × 5/3 II 3/5 128.6 0.0
3 164.4 2.5 51/1 17 × 3/1 I 1/3 163.9 0.5
4 211.2 7.4 119/3 17 × 7/3 I 3/7 210.8 0.4

39/1 39 × 1/1 II 1/1 214.4 − 3.2
5 244.8 20 34/1 17 × 2/1 I 1/2 245.9 − 1.2

273/8 39 × 7/8 II 8/7 245.0 − 0.3
6 283.8 2 117/4 39 × 3/4 II 4/3 285.9 − 2.1
7 319.9 14 26/1 39 × 2/3 II 3/2 321.6 − 1.7
8 346.2 1.8 170/7 17 × 10/7 I 7/10 344.3 1.9

195/8 39 × 5/8 II 8/5 343.1 2.7
9 376.5 0.5 156/7 39 × 4/7 II 7/4 375.2 1.3
10 437.3 10 153/8 17 × 9/8 I 8/9 437.2 0.1
11 494.5 10 17/1 17 × 1/1 I 1/1 491.9 2.6
12 545.2 1.1 153/10 17 × 9/10 I 10/9 546.6 − 1.4
13 576.4 55 102/7 17 × 6/7 I 7/6 573.9 2.5
14 619.8 2 68/5 17 × 4/5 I 5/4 614.9 4.9
15 658.4 2.7 51/4 17 × 3/4 I 4/3 655.9 2.5
16 720.0 3.2 221/19 17 × 13/19 I 19/13 719.0 1.0
17 724.5 4.4 104/9 39 × 8/27 II 27/8 723.7 0.8
18 752.5 12 78/7 39 × 2/7 II 7/2 750.5 2.0
19 773.0 2.4 65/6 39 × 5/18 II 18/5 771.9 1.1
20 802.7 3.5 52/5 39 × 4/15 II 15/4 804.1 − 1.4
21 840.6 29 119/12 17 × 7/12 I 12/7 843.3 − 2.7
22 857.0 31 68/7 17 × 4/7 I 7/4 860.9 − 3.9

39/4 39 × 1/4 II 4/1 857.7 − 0.7
23 946.1 7.2 221/25 17 × 13/25 I 25/13 946.0 0.1

195/22 39 × 5/22 II 22/5 943.5 2.6
24 979.2 12 17/2 17 × 1/2 I 2/1 983.8 − 4.6
25 1067.9 12 102/13 17 × 6/13 I 13/6 1065.8 2.1

39/5 39 × 1/5 II 5/1 1072.1 − 4.2
26 1181.0 12 85/12 17 × 5/12 I 12/5 1180.6 0.4

78/11 39 × 2/11 II 11/2 1179.4 1.6
27 1252.4 12 260/39 39 × 20/117 II 117/20 1254.4 − 2.0

260/39 39 × 6/35 II 35/6 1250.8 1.6
28 1285.7 4 13/2 39 × 1/6 II 6/1 1286.6 − 0.9
29 1341.1 3.8 156/25 39 × 4/25 II 25/4 1340.2 0.9
30 1478.7 2 17/3 17 × 1/3 I 3/1 1475.8 2.9
31 1558.2 3.4 102/19 17 × 6/19 I 19/6 1557.8 0.4
32 1593.0 4.3 68/13 17 × 4/13 I 13/4 1598.8 − 5.8
33 1609.4 30 26/5 39 × 2/15 II 15/2 1608.2 1.2
34 1684.2 4.2 104/21 17 × 7/24 I 24/7 1686.6 − 2.4
35 1748.0 4 153/32 17 × 9/32 I 32/9 1749.0 1.1
36 1855.1 16 117/26 39 × 3/26 II 26/3 1858.4 − 3.3
37 1975.1 20 17/4 17 × 1/4 I 4/1 1967.7 7.4
38 2129.2 14 51/13 17 × 3/13 I 13/3 2131.7 − 2.7
39 2219.0 30 34/9 17 × 2/9 I 9/2 2213.7 5.3
40 2370.1 20

Ec
n = E1

rec

(
m

l

)
= 491.9

(
m

l

)
keV

(3.7)
(l, m : small integers),

Sn

Ec
n

= (n1 + n2)

(
l

m

)
= 17

(
l

m

)
, 40Ca(I). (3.8)

The deviation δ for the observed resonance energy En is
defined as

δ = En − Ec
n. (3.9)

Among the 40 s-wave resonances below En � 2.4 MeV, 15
are at En = 491.9(m/l) keV with (l, m � 10), where (m/l)
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FIG. 1. (a) Cumulative number of s-wave resonance levels vs
neutron energy. (b) Nearest neighbor level spacing distribution with
a Wigner distribution.

are 1/3, 3/7, 1/2, 7/10, 8/9, 1/1, 10/9, 7/6, 5/4, 4/3, 7/4,
2/1, 3/1, 4/1, and 9/2, with small δ.

Of course, any values of En can be fitted using large
numbers of l, m, but these have no physical meaning. Since
small integers in l, m are physically important, we restrict
l, m � 10.

The statistical probabilities of appearance are calculated
for the pseudofamily of Group (I) by assuming random
dispositions of the nl = 40 levels in the energy region from 70
to 2400 keV. Deviations of observed En from calculated values
Erec(m/l) are within a width of ε = 5 keV for ns = 10 levels.
Candidate cases (m/l) (l, m � 10) are carefully counted in the
(l, m) plane to be B = 53, where (2,2), (2,4), . . ., (3,3), (3,6),
. . . are inhibited to prevent double counting. For a level placed
at random in the region (R = 2330 keV), the probability of
being an integer ratio is p = (εB)/R = 0.114. For 40 levels
placed at random, the expected number of levels of integer
ratios is nlp = 4.6. The probability for 10 levels out of 40
being integer ratios is calculated by the binomial distribution:

Pr (10, 40, p) =40 C10 p10(1 − p)30 ≈ 0.0083 = 0.83%, and
the sum Ps = ∑40

j=10 Pr (j, 40, p) � 1.2%. Similar calcula-
tions are made for the low-energy region from 70 to 1000 keV,
where nl = 24 and ns = 9 with ε = 4 keV. The probability
of appearance of the family is calculated to be Ps � 2.6%.
Numerical data for probability calculations are summarized in
Table II.

D. 40Ca(II) s-wave resonances

In s-wave resonances of 40Ca + n, there are several reso-
nances which do not belong to Group (I) and show Sn/En =
13(l/m) [Group (II)]. Sn = 8362.7 keV is alternatively ex-
pressed as Sn = (13/54)G with G = 34737 keV, which is
decomposed into a sum of inverse integers as

Sn = 13

54
G = 39

162
G =

(
1

6
+ 1

18
+ 1

54

)
G,

(3.10)
G = 34737 keV, 40Ca(II).

The recurrence energy E2
rec = G/162 = Sn/39 =

214.4 keV is used. Resonance energies of the 214 keV
family are expressed as

Ec
n = 1

162

(
m

l

)
G = 1

39

(
m

l

)
Sn

= 214.4

(
m

l

)
keV, 40Ca(II). (3.11)

The lowest two s-wave resonances observed at En =
86.8 and 128.6 keV are regarded as m/l = 2/5 and 3/5,
respectively, with good accuracies with δ ∼ 1 keV. Twelve s-
wave resonances below 2400 keV are at En = 214.4(m/l)Sn,
where (m/l) for (l, m � 10) are 2/5, 3/5, 1/1, 8/7, 4/3,
3/2, 8/5, 7/4, 7/2, 4/1, 5/1, and 6/1 with deviations
|δ| � 4.2 keV. Resonances at 211, 245, 346, 857, 946, 1067,
1181, and 1252 keV belong together to Groups (I) and (II). A
resonance at En = 376 keV was first classified in Group (I)
with δ = 7.0 keV [15], but it seems reasonable to classify it in
Group (II) with m/l = 7/4 and δ = 1.3 keV. Numerical data
for the probability calculations are summarized in Table II.

E. 54Cr(I) s-wave resonances

The original data for 54Cr + n resonances are from Carlton
et al. [19]. Fifty-four s-wave resonances are observed in En �
2 MeV as shown in Tables III and IV. g�n values versus En

are shown in Fig. 3. In the integer ratios Sn/En, two types
predominate: 16(m/l) Group (I) and 9(m/l) Group (II). It is
interesting that most of the large g�n resonances belong to
Group (I). For Group (I), Sn = 6246.3 keV is regarded as

Sn = 6246.3 keV = 2

11
G = 16

88
G

=
(

1

8
+ 1

22
+ 1

88

)
G

G = 34354 keV, 54Cr(I),

(3.12)
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FIG. 2. S-wave resonances of 40Ca + n be-
low 2400 keV. Groups (I) and (II) are shown.

with LCM = 88 and E1
rec = G/88 = Sn/16 = 390.4 keV. A

large s-wave resonance at En = 585.4 keV is (3/2)E1
rec with

a deviation of less than 1 keV. Thirteen resonances including
En = 585.4 keV are at En = 390.4(m/l) keV as shown in
Tables III and IV, where (m/l) are 3/10, 1/3, 4/9, 5/7, 8/9,
10/7, 3/2, 5/3, 2/1, 5/2, 8/3, 7/2, and 5/1 for (l, m � 10)
and with deviations |δ| � 1 keV except 2/1 (778 keV), 5/2
(985 keV), and 8/3 (1046 keV). Among the energies of
large resonances in Group (I), simple multiple integer ratios
are found; 1463/585 = 5/2, 1952/585 = 10/3, 1824/1140 =
8/5, etc. Ec

n can be expressed as

Ec
n = 1

88

(
m

l

)
G = 1

16

(
m

l

)
Sn

= 390.4

(
m

l

)
keV, 54Cr(I). (3.13)

Numerical data for the probability calculations are summa-
rized in Table II.

F. 54Cr(II) s-wave resonances

For Group (II), Sn/En ratios are of the type 9(m/l). Sn is
alternatively expressed as

Sn = 6246.3 keV = 9

50
G =

(
1

10
+ 2

25

)
G,

(3.14)
G = 34701 keV, 54Cr(II),

with LCM = 50 and E2
rec = G/50 = Sn/9 = 694.0 keV.

Many small resonances belong to Group (II) with energies
at Ec

n = E2
rec(m/l), where (m/l) are 1/4, 2/5, 1/2, 4/5, 9/8,

5/4, 9/7, 4/3, and 9/5 with (l, m � 10) and with deviations
δ � 2.5 keV as shown in Tables III and IV. For resonances
of 3/2, 8/5, 7/4, and 5/2, δ values are larger. Ec

n can be
expressed as

Ec
n = 1

50

(
m

l

)
G = 1

9

(
m

l

)
Sn

= 694.0

(
m

l

)
keV, 54Cr(II). (3.15)

TABLE II. Numerical data for probability calculations. R: Energy region, nl : total number of levels, ns : number of levels being (m/l)
within ε, L: maximum of m, l, B: number of possible points (m/l) (m, l � L), ε: total deviation width, p: probability for a random point to
be in the candidate region, Ps : probability of being in the candidate region for more than ns random points out of nl .

Z Target nucleus Group Region R (keV) nl ns L B ε (keV) p = εB/R Ps (%)

20 Ca-40 (I) 2330 40 10 10 53 5.0 0.114 1.2
(I) 930 24 9 10 44 4.0 0.189 2.6
(II) 2330 40 9 10 53 4.1 0.093 1.1

24 Cr-54 (I) 2000 54 10 10 58 2.0 0.058 0.10
(II) 1000 24 8 10 42 4.7 0.197 8.1

28 Ni-64 580 27 9 10 24 3.4 0.140 1.0
40 Zr-90 (A) 300 27 9 10 44 1.1 0.161 2.1

(B) 300 22 8 10 44 1.0 0.146 1.0
82 Pb-208 1750 4 4 10 40 13.4 0.304 –
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TABLE III. 54Cr + n s-wave resonances, Sn = 6246.3 keV. Group (I): Sn = (16/88)G = (1/8 + 1/22 + 1/88)G, Erec = Sn/16 =
390.4 keV, En = 390.4(m/l) keV, G = 34354 keV. Group (II): Sn = (9/50)G = (1/10 + 2/25)G, Erec = Sn/9 = 694.0 keV, En =
694.0(m/l) keV, G = 34701 keV. Several resonances belong to both groups.

j En (keV) g�n (keV) Sn/En = Sn/En Group m/l 390(m/l) (keV) 694(m/l) (keV) δ (keV)

1 22.6 0.6 3600/13 9 × 400/13 II 13/400 22.5 0.1
2 117.0 5.0 160/3 16 × 10/3 I 3/10 117.1 − 0.1
3 129.0 0.3 48/1 16 × 3/1 I 1/3 130.1 − 1.1
4 173.2 2.0 36/1 16 × 9/4 I 4/9 173.5 − 0.3

9 × 4/1 II 1/4 173.5 − 0.3
5 278.2 11.1 112/5 16 × 7/5 I 5/7 278.8 − 0.6

45/2 9 × 5/2 II 2/5 277.6 0.6
6 323.5 12.3 135/7 9 × 15/7 II 7/15 323.8 − 0.3
7 346.3 0.44 18/1 16 × 9/8 I 8/9 347.0 − 0.7

9 × 2/1 II 1/2 347.0 − 0.7
8 426.4 12.0 117/8 9 × 13/8 II 8/13 427.1 − 0.7
9 478.6 18.1 13/1 9 × 13/9 II 9/13 480.5 − 1.9
10 557.4 0.5 112/10 16 × 7/10 I 10/7 557.7 − 0.3

45/4 9 × 5/4 II 4/5 555.2 2.2
11 585.3 102 32/3 16 × 2/3 I 3/2 585.6 − 0.3
12 650.9 3.9 144/15 16 × 9/15 I 5/3 650.6 0.3

9 × 16/15 II 15/16 650.6 0.3
13 655.2 2.1 162/17 9 × 18/17 II 17/18 655.5 − 0.3
14 727.4 180/21 9 × 20/21 II 21/20 728.7 − 1.3
15 740.0 5.2 135/16 9 × 15/16 II 16/15 740.3 − 0.3
16 778.4 0.1 8/1 16 × 1/2 I 2/1 780.8 − 2.4

9 × 8/9 II 9/8 780.8 − 2.4
17 796.7 0.4 117/15 9 × 13/15 II 15/13 800.8 − 4.1
18 865.0 0.1 36/5 16 × 9/20 I 20/9 867.5 − 2.5

9 × 4/5 II 5/4 867.5 − 2.5
19 873.5 1.1 50/7 9 × 50/63 II 63/50 874.5 − 1.0
20 886.2 0.2 360/51 9 × 40/51 II 51/40 884.9 1.3
21 891.3 3.0 7/1 16 × 7/16 I 16/7 892.3 − 1.0

9 × 7/9 II 9/7 892.3 − 1.0
22 898.8 0.2 90/13 9 × 10/13 II 13/10 902.2 − 3.4
23 924.3 0.3 27/4 9 × 3/4 II 4/3 925.3 − 1.0
24 943.3 1.0 126/19 9 × 14/19 II 19/14 941.9 1.4
25 959.7 10.6 13/2 9 × 13/18 II 18/13 960.9 − 1.2
26 985.5 38.3 32/5 16 × 2/5 I 5/2 975.9 9.6
27 1018.4 26 80/13 16 × 5/13 I 13/5 1015.0 3.4
28 1046.3 0.5 6/1 16 × 3/8 I 8/3 1041.0 5.3

9 × 2/3 II 3/2 1041.0 5.3
29 1071.6 0.3 64/11 16 × 4/11 I 11/4 1073.5 − 1.9
30 1087.2 0.2 63/11 9 × 7/11 II 11/7 1090.6 − 3.4
31 1096.6 2.4 108/19 9 × 12/19 II 19/12 1098.8 − 2.2
32 1119.4 0.3 45/8 9 × 5/8 II 8/5 1110.4 9.0
33 1140.0 55 192/35 16 × 12/35 I 35/12 1138.6 1.4
34 1208.8 6.6 36/7 9 × 4/7 II 7/4 1214.5 − 5.7
35 1250.6 0.2 5/1 16 × 5/16 I 16/5 1249.2 1.4

9 × 5/9 II 9/5 1249.2 1.4

Numerical data for the probability calculations are summa-
rized in Table II.

G. 64Ni s-wave resonances

In 64Ni + n, 27 s-wave resonances were observed by Beer
et al. [20] and Farrell et al. [21] below En � 580 keV as
shown in Table V. Though the data are out of date, we found
the frequent appearance of the factor 8 in the integer ratios

Sn/En. Sn = 6098.0 keV is regarded as

Sn = 6098.0 keV = 8

45
G =

(
1

9
+ 1

15

)
G,

(3.16)
G = 34301 keV, 64Ni,

with LCM = 45 and Erec = G/45 = Sn/8 = 762.2 keV. Nine
s-wave resonances are at Ec

n = 762.2(m/l) keV, where (m/l)
are 1/6, 1/5, 3/10, 2/5, 3/7, 1/2, 5/8, 5/7, and 3/4 with
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TABLE IV. 54Cr + n s-wave resonances (Continued.).

j En (keV) g�n (keV) Sn/En = Sn/En Group m/l 390(m/l) (keV) 694(m/l) (keV) δ (keV)

36 1281.8 5.6 81/14 9 × 9/14 II 14/9 1079.5 2.3
37 1344.3 14.2 14 /3 9 × 14/27 II 27/14 1338.5 5.8
38 1366.9 0.3 32/7 16 × 2/7 I 7/2 1366.3 0.6
39 1402.7 0.7 40/9 16 × 5/18 I 18/5 1405.4 − 2.4
40 1407.7 1.9 40/9 16 × 5/18 I 18/5 1405.4 2.3
41 1421.4 0.4 180/41 9 × 20/41 II 41/20 1422.7 − 1.3
42 1426.3 0.9 153/35 9 × 17/35 II 35/17 1428.9 − 2.6
43 1463.6 25 64/15 16 × 4/15 I 15/4 1463.9 − 0.3
44 1482.3 0.7 63/15 9 × 7/15 II 15/7 1487.2 − 4.9
45 1495.0 1.1 63/15 9 × 7/15 II 15/7 1487.2 7.8
46 1533.3 1.3 45/11 9 × 5/11 II 11/5 1526.8 6.5
47 1686.4 1.6 63/17 9 × 7/17 II 17/7 1685.5 0.9
48 1731.6 4.8 18/5 9 × 2/5 II 5/2 1735.0 − 3.4
49 1761.0 4.0 117/33 9 × 13/33 II 33/13 1761.7 − 0.7
50 1767.9 1.1 60/17 9 × 20/51 II 51/20 1769.8 − 1.9
51 1823.9 28 24/7 16 × 3/14 I 14/3 1821.8 2.1
52 a1868.0 18 10/3 9 × 10/27 II 27/10 1873.9 − 5.9
53 1894.5 3.4 33/10 9 × 11/30 II 30/11 1892.8 1.7
54 1952.5 6.6 16/5 16 × 1/5 I 5/1 1951.9 0.6

aIncludes a level En = 1868.3 keV, �n = 1.1 keV, given in the original data [19].

TABLE V. 64Ni + n s-wave resonances. Sn = 6098.0 keV = (8/45)G = (1/9 + 1/15)G, G = 34301 keV, Erec = Sn/8 = 762.2 keV,
En = 762.2(m/l) keV.

j En (keV) g�n Sn/En =Sn/En m/l 762(m/l) (keV) δ (keV)

1 14.1 2.9 432/1 8 × 54/1 1/54 14.1 0.0
2 33.3 8.9 184/1 8 × 23/1 1/23 33.1 0.2
3 127.3 1.4 48/1 8 × 6/1 1/6 127.0 0.3
4 146.5 0.08 125/3 8 × 125/24 24/125 146.3 0.2
5 152.6 3.95 40/1 8 × 5/1 1/5 152.4 0.2
6 160.7 0.016 800/21 8 × 100/21 21/100 160.1 0.6
7 174.9 0.47 800/23 8 × 100/23 23/100 175.3 − 0.4
8 202.1 0.06 30/1 8 × 15/4 4/15 203.3 − 1.2
9 216.4 0.03 480/17 8 × 60/17 17/60 216.0 0.4

10 223.4 0.12 600/22 8 × 75/22 22/75 223.6 − 0.2
11 228.3 3.8 80/3 8 × 10/3 3/10 228.7 − 0.4
12 265.5 2.2 160/7 8 × 20/7 7/20 266.8 − 1.3
13 279.1 0.35 240/11 8 × 30/11 11/30 279.5 − 0.4
14 293.4 1.0 560/27 8 × 70/27 27/70 294.0 − 0.6
15 303.7 1.5 20/1 8 × 5/2 2/5 304.9 − 1.2
16 327.8 0.25 56/3 8 × 7/3 3/7 326.7 1.2
17 334.9 0.5 200/11 8 × 25/11 11/25 335.4 − 0.5
18 370.1 0.5 33/2 8 × 33/16 16/33 369.6 0.5
19 382.9 6 16/1 8 × 2/1 1/2 381.1 1.9
20 414.3 8 280/19 8 × 35/19 19/35 413.8 0.5
21 475.5 5.0 64/5 8 × 8/5 5/8 476.4 − 0.9
22 514.9 1.0 320/27 8 × 40/27 27/40 514.5 0.4
23 521.0 0.75 200/17 8 × 25/17 17/25 518.3 2.7
24 528.2 10 104/9 8 × 13/9 9/13 527.7 0.5
25 543.4 2.0 56/5 8 × 7/5 5/7 544.4 − 1.0
26 567.0 4.0 140/13 8 × 35/26 26/35 566.2 0.8
27 573.9 0.3 32/3 8 × 4/3 3/4 571.7 2.2
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FIG. 3. S-wave resonances of 54Cr + n be-
low 2000 keV. Groups (I) and (II) are shown.

(l, m � 10) and deviations |δ| � 2.2 keV. Ec
n can be expressed

as

Ec
n = 1

45

(
m

l

)
G = 1

8

(
m

l

)
Sn = 762.2

(
m

l

)
keV, 64Ni.

(3.17)

Numerical data for the probability calculations are summa-
rized in Table II.

H. 90Zr s-wave resonances

The original data are from Musgrove et al. [22].

TABLE VI. 90Zr + n s-wave resonances. Sn = 7194.5 keV = (5/24)G = (1/8 + 1/12)G, G = 34533keV. Erec = Sn/40 = 179.8 keV.

j En (keV) g�n (keV) Sn/En Sn/En m/l 180(m/l) (keV) δ (keV)

1 3.8 0.011
2 13.2 0.065 6000/11 40 × 150/11 11/150 13.2 0.0
3 17.1 0.20 840/2 40 × 21/2 2/21 17.1 0.0
4 35.0 0.04 1440/7 40 × 36/7 7/36 35.0 0.0
5 41.8 0.25 520/3 40 × 13/3 3/13 41.5 0.3
6 52.8 0.02 1500/11 40 × 75/22 22/75 52.7 0.1
7 57.5 0.2 500/4 40 × 25/8 8/25 57.5 0.0
8 70.1 0.23 720/7 40 × 18/7 7/18 69.9 0.2
9 72.5 0.15 100/1 40 × 5/2 2/5 71.9 0.6

10 84.8 0.01 600/7 40 × 15/7 7/15 83.9 0.9
11 89.4 0.02 80/1 40 × 2/1 1/2 89.9 − 0.5
12 112.8 0.14 64/1 40 × 8/5 5/8 112.4 0.4
13 128.2 0.14 56/1 40 × 7/5 5/7 128.5 − 0.3
14 142.7 0.32 50/1 40 × 5/4 4/5 143.8 − 1.1
15 149.5 0.23 48/1 40 × 6/5 5/6 149.9 − 0.4
16 157.9 0.05 320/7 40 × 8/7 7/8 157.3 0.6
17 162.5 0.35 400/9 40 × 10/9 9/10 161.9 0.6
18 166.9 0.13 130/3 40 × 13/12 12/13 166.0 0.8
19 183.9 0.05 39/1 40 × 39/40 40/39 184.4 − 0.5
20 190.7 0.09 340/9 40 × 17/18 18/17 190.4 0.3
21 196.2 0.47 110/3 40 × 11/12 12/11 196.2 0.0
22 205.8 0.10 35/1 40 × 7/8 8/7 205.6 0.2
23 220.3 0.35 360/11 40 × 9/11 11/9 219.8 0.5
24 245.7 0.1 320/11 40 × 8/11 11/8 247.3 − 1.6
25 261.9 0.17 110/4 40 × 11/16 16/11 261.6 0.3
26 269.7 0.29 80/3 40 × 2/3 3/2 269.8 − 0.1
27 297.6 0.41 24/1 40 × 3/5 5/3 299.8 − 2.2
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TABLE VII. 208Pb + n s-wave resonances. Sn = 3937.3 keV = (8/70)G = (1/10 + 1/70)G, G = 34444 keV, Erec = Sn/8 = 492.1 keV.

j En (keV) �n (keV) Sn/En =Sn/En m/l 492(m/l) (keV) δ (keV)

1 503.5 53 8/1 8 × 1/1 1/1 492.1 11.4
2 883.9 5.5 40/9 8 × 5/9 9/5 885.8 − 1.9
3 992.9 3.9 4/1 8 × 1/2 2/1 984.1 8.8
4 1726.7 60 16/7 8 × 2/7 7/2 1722.2 4.5

Twenty seven s-wave resonances are observed below
300 keV shown in Table VI. For many resonances, the
factor 8 appears in Sn/En. The neutron separation energy
Sn = 7194.5 keV is regarded as

Sn = 7194.5 keV = 5

24
G = 40

192
G =

(
1

8
+ 1

12

)
G,

(3.18)
G = 34533 keV, 90Zr.

Considering the factor 8 in Sn/En, we use Erec =
(1/192)G = (1/40)Sn = 179.9 keV. Eleven s-wave reso-
nances of (l, m � 10) are seen where (m/l) are 2/5, 1/2, 5/8,
5/7, 4/5, 5/6, 7/8, 9/10, 8/7, 3/2, and 5/3 with deviations
δ � 1 keV except for the 4/5 and 5/3 cases. Ec

n can be
expressed as

Ec
n = 1

192

(
m

l

)
G = 1

40

(
m

l

)
Sn = 179.9

(
m

l

)
keV, 90Zr.

(3.19)

Parameters of the probability calculations are summarized
in Table II.

I. 208Pb s-wave resonances

Resonance parameters were measured by Horen et al. [23]
for 64 resonances of mixed Jπ below En < 1 MeV. For
large resonances, Fowler et al. [24] reported parameters up
to 1.87 MeV. As this nucleus is important (because it is
doubly magic) in nuclear physics, we analyze four s-wave
resonances below 1.8 MeV as shown in Table VII. In Sn/En,
the factor 8 appears for all resonances. The separation energy
Sn = 3937.3 keV is decomposed as

Sn = 3937.3 keV = 8

70
G =

(
1

10
+ 1

70

)
G,

(3.20)
G = 34451 keV, 208Pb,

with LCM = 70 and Erec = G/70 = Sn/8 = 492.1 keV. The
(m/l) of four s-wave resonances are 1/1, 9/5, 2/1, and 7/2

with deviations |δ| � 12 keV. Ec
n can be expressed as

Ec
n = 1

70

(
m

l

)
G = 1

8

(
m

l

)
Sn = 492.1

(
m

l

)
keV, 208Pb.

(3.21)

It should be noted that Erec = 492.1 keV for 208Pb is almost
equal to that of E1

rec = 491.9 keV for 40Ca(I), which is caused
by the same LCM = 70 and hass almost the same G as shown
in Table VIII. Because of small sample size, the probability
calculation is not made.

J. Summary of family structures and probability calculations

1. Family structures

As described above, the observed resonance energies of
several e-e target nuclei can be written by simple arithmetic
statements, Erec(m/l), with small deviations and where Erec

can be derived by several methods described in Sec. III B.
Resonances are classified into several groups which seem
to coexist in the same energy region without repulsion or
attraction. Different values of G are possible for different
groups. In many cases, Sn/G are simple sums of inverse
integers which are proportional to the cycle times of the
oscillators exciting the CN. LCM and Erec are defined for
each group of resonances. Decompositions of Sn/G into the
sum of inverse integers are summarized in Table VIII.

2. Probability calculations

The probabilities of appearance of the family structures Ps

are estimated on the assumptions described in Sec. III A and
are summarized in Table II. The average Ps for seven cases
[excluding Cr-54(II)] is 1.3%. We have investigated neutron
resonances of about 40 light and magic nuclides. If we assume
random level dispositions for all 40 nuclides, the expectation
with Ps = 1.3% is less than 1 nuclide. The probability of

TABLE VIII. Decomposition of Sn/G into sum of inverse integers. Sn/G = ∑M
j=1 1/nj . n1, n2, n3, LCM, Erec, and G are shown.

Z Target nucleus Group Sn (keV) Sn/G n1 n2 n3 LCM Erec (keV) G (keV)

20 Ca-40 (I) 8362.7 17/70 7 10 70 491.9 34434
(II) 39/162 6 18 54 162 214.4 34737

24 Cr-54 (I) 6246.3 16/88 8 22 88 88 390.4 34354
(II) 9/50 10 25 25 50 694.0 34701

28 Ni-64 6098.0 8/45 9 15 45 762.2 34301
40 Zr-90 7194.5 5/24 8 12 192 179.9 34533
82 Pb-208 3936.5 8/70 10 70 70 492.1 34444

014608-11



MAKIO OHKUBO PHYSICAL REVIEW C 87, 014608 (2013)

appearance, U, in 4 nuclides out of 40 is calculated by using a
binomial distribution assuming Ps = 0.013 as

U =40 C4(0.013)4(0.987)36 = 2.0 × 10−3. (3.22)

The occurrence of a phenomenon with a very small probability
fails to support the hypothesis of random ensembles of the
resonance levels and asserts regular family structures based on
the breathing model. Though the random ensembles are the
substitution of RMT ensembles, this conclusion will not be
changed for RMT ensembles.

IV. DISCUSSION

Though rough and unsophisticated, the breathing model of
a CN predicts possible resonance energies by simple arithmetic
relations. The breathing model is diametrically different from
the prevailing compound nuclear models which predict only
statistical properties of the fine structure resonances.

There are many open issues for further investigations; some
are described below.

A. Chaosity or regularity

As described in the introduction, it is stressed that the
knowledge extracted from the observed data strongly depend
on the methods of analysis, as is seen in every field of science.
On neutron resonances, the discussions on the chaosity or
regularity will be reduced to the different methods of analysis
used. By using ordinary methods much of observed neutron
resonance data seem to agree well with the predictions of
RMT and support the basic assumptions of RMT: randomness
or ignorance of the CN.

On the other hand, by using Dij distributions, Fourier-like
analyses, and family structures, nonrandom regular structures
hidden in neutron resonances are detected from which detailed
properties of the compound nuclear system may be read out
relating to the breathing model.

B. Regular systems

Neutron resonances of the above nuclei are shown to be
regular systems, not chaotic systems. Resonance energies obey
simple arithmetic rules, and the hypothesis of the random level
ensemble is rejected at a significance level of ∼10−3. This
result will be approximately true for the RMT level ensemble.
It is also suggested that arithmetic expressions for resonance
energies is a facet of general regularities in neutron resonance
reactions. The regular family structures described above are the
most simple ones, and there will be more and more complex
structures in general for which we presently have no methods
to detect. We think that similar regularity will survive in low-
energy resonances down to the eV region.

C. Meaning of G ≈ 34.5 MeV

As described above, G ≈ 34.5 MeV plays an essential role
in the energy scale which enables construction of simple

dynamic structures in resonance reactions. It is very interesting
that G here is near the Fermi energy EF , the maximum energy
of a nucleon trapped in the potential of Fermi-gas model:

EF = (P 2
F )/(2m) ≈ 33 MeV, (4.1)

where m is the nucleon mass and PF is the Fermi momentum
of (9π/8)1/3(h̄/R0) ≈ 250 MeV/c, and where R0 = 1.20 ×
10−15 m is a nuclear radius parameter. EF is independent of
mass number. Though small numerical disagreements exist,
we think that G is the same physical quantity as EF , and an
oscillator of energy G/n in Sec. II means a wave which is
excited in an ensemble of nucleons near the Fermi energy. By
using G ∼ 34.5 MeV, we can reconcile separation energies
as sums of inverse integers, suggesting excitation of multiple
oscillators with recurrence structures. That the G value devi-
ates slightly (within ∼1%) for each case may be caused by the
particular situation of the participating oscillators perturbed by
several interactions in nuclear potentials. It is suggested that
not only neutron resonances but general excitation energies
will be written as Ex = (A/B)G with dynamic structures
where Aand B are integers.

D. Response time

τ0 ≈ 1.20 × 10−22s (=36fm/c) defined as 2πh̄/G is unit
time in the CN. The cycle times of the oscillators excited in
the CN are quantized by τ0 with energies G/n. Also, τ0 is the
minimum time to receive a response from interacting neigh-
bors for (quasi)stable states in the nuclear potential. Through
several time exchanges of the response with neighbors, the
identity (energies, Jπ ) will be fixed. In contrast, in high-energy
collisions where the collision time is shorter than τ0 and with
no response from interacting neighbors, nuclear chaos will
ensue and will show continuous cross sections. This situation
corresponds to the region above the “Fermi energy.”

E. Coalescent phases

The most interesting and difficult problem will be deter-
mining the structures of the coalescent phase. At neutron
incidence, many oscillators are excited simultaneously in a
short time ∼�g in the beginning, then several ensembles
of oscillators are selectively excited by the periodic passing
of the wave crest on the CN with a period τw. Resonance
reactions take place when the resonance condition of Eq. (2.9)
is fulfilled. Neutron separation energy is the energy required to
excite oscillators, G

∑q
j=1(1/nj ). Several oscillator ensemble

groups [(I), (II),. . .] can be excited. An ensemble of q
oscillators recurs after recurrence time LCM(n1, . . . , nq)τ0,
where all phases of the oscillators revert to the original ones
and interfere with the pass-by component. The time evolution
of the CN at resonance is illustrated in Fig. 4.

Crest-crest nonlinear overlap of several waves of penetrat-
ing components produce time-periodic scattering centers for
the pass-by component of a few τ0 duration with buildup
of a neutron cloud or flare-up on the CN surface that is
synchronized with the incident neutron wave at resonances.
The spatial and temporal dependence of the coalescent phases
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FIG. 4. Time evolution of compound nucleus at resonances. Top:
Penetrating component flare-up on the CN surface. Bottom: Pass-by
components. Three cases En/Erec = (m/l) = 1/1, 2/1, and 3/2 are
shown.

will be essentially important for nuclear dynamics under strong
interactions. Nonlinearity of waves will be enhanced at the
nuclear surface due to abrupt changes of potential where higher
and lower harmonics and mixing of several frequencies are
produced.

The detailed mechanism of breathing of the CN or forming
scattering centers on the time axis will be the most interesting
problem to be investigated.

F. Recurrence energy Erec

The recurrence energy of observed resonances can be
deduced by the methods described in Sec. III B. The de-
compositions of Sn/G into the sum of inverse integers are
summarized in Table VI.

For a given Sn, several oscillator ensembles can be excited.
Among them, ensembles of the smallest LCM are candidates to
be excited because of the minimum recurrence time, analogous
to Fermat’s principle in optics or Hamilton’s principle in
mechanics. For the resonances in the keV to eV region, the
number of oscillators, q, will be increased and also the number
of possible ensembles will be increased. LCM(n1, . . . , nq) will
increase to 103–108.

G. Equidistant level series

In the breathing model, En = 0 is the special point where
the energy scale starts. The angular frequency of the neutron
wave, En/h̄, is coherent (synchronized) with the recurrence
frequency (Poincaré cycle) of the CN at resonances. For
incident neutrons off resonance energy, the target nucleus does
not respond (stays quiet) and only the potential scattering
cross section is observed. By varying the incident neutron
energy, the oscillator ensemble will be excited as resonance
reactions if the ensemble fulfills Eq. (2.9). In the (m/l)
term, equidistant level series appear when m = 1, 2, 3, . . .
or for integer multiples with the same l value. There will

be multiple integer relations among resonance energies and
spacings D12 = Erec(m1/l1 − m2/l2) for the same family.

H. Fermi resonance and stroboscope analogy

The family structures described above are a kind of “Fermi
resonance” where several frequencies ωj and integers aj fulfill
the relation ∑

j

ajωj = 0, (4.2)

which is caused by nonlinearity of the system. Integer ratios
in En and Erec in Eq. (2.9b) is the same type,

mErec − lEn = 0. (4.3)

As described in Sec. II E, the stroboscope analogy is also
plausible for the physical interpretation of the (m/l) factor.
The wave crests of the incident neutron flash up the CN with
a time period τw. The CN can be imagined as a wheel rotating
with a period τrec. If the ratio between τw and τrec is a simple
integer ratio (m/l), the wheel seems to be stopped under the
strobe light. The stop condition of the wheel is equivalent to
the possible neutron resonance reactions.

I. Low-energy resonances in the eV region

The number of oscillators (normal modes = degrees of
freedom), M, excited in a CN can be estimated by the
recurrence time of the classic oscillator ensemble, by assuming
a tolerable phase angle error of 1 rad [13] as

M = 1 + ln(Ex/D)

ln(2π )
, (4.4)

where Ex is the excitation energy and D is the average level
spacing. The values of M deduced from observed resonance
data are in good agreement with the exciton number nex of
the Fermi gas. For example, when Ex = 8 MeV and D =
10eV, the number of excited oscillators will be M ≈ 8.4. The
average energies of these oscillators are Ex/M ∼ 1 MeV for
medium and heavy nuclei with very long recurrence times of
∼(106–108)τ0. By adding one oscillator, the recurrence time of
the CN increases by a factor of ∼2π . Integer ratios in Erec/En

will occur for resonances down to the eV region. However, the
methods for searching for Erec described in Sec. III B fail in
the eV region, and new methods are needed.

J. Argument against the multistep reaction model

The prevailing reaction mechanism of the CN is the
multistep reaction model, in which the initial one-particle
zero-hole state (1p-0h) progresses to (2p-1h),. . ., (np-mh)
final compound states, leading to internal mixing as a one-
way street. The model will be appropriate only for high-
energy reactions leading to chaos with continuous energy
dependence. Compound nuclei made by multistep reactions
are diametrically different from those of the breathing model
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for resonance reactions, which are regular systems as described
in this article.

V. CONCLUSIONS

Contrary to the premise of quantum chaos, regular struc-
tures are found in neutron resonance energies, forming families
obeying simple arithmetic relations. For resonances of 40Ca,
54Cr. 64Ni, 90Zr, and 208Pb, family structures are derived where
recurrence energies Erec are deduced from Sn/En or Sn/G or
Sn/LCE. Statistical probability tests strongly support regular
family structures for these nuclei. The breathing model of the
compound nucleus is developed with the classical analogy
of resonance phenomena, from which family structures with
arithmetic relations are discerned.

Furthermore, new methods of analysis must be developed to
clarify the nonrandom structure of highly excited states of the

nucleus. Sophisticated models of nuclear resonance reactions
are needed to predict resonance strengths and Jπ by drastic
refinements of the breathing model. Besides, high-resolution
remeasurements and analyses on neutron resonances are
required for many nuclei in a wide mass region. Fine structure
analyses relating dynamic nuclear models will be an interesting
and fruitful area in nuclear physics in the 21st century.
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