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Effect of pairing on one- and two-nucleon transfer below the Coulomb barrier: A time-dependent
microscopic description
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The effect of pairing correlation on transfer reaction below the Coulomb barrier is investigated qualitatively
and quantitatively using a simplified version of the time-dependent Hartree-Fock + BCS approach. The effect
of particle-number symmetry breaking on the description of reaction and dedicated methods to extract one-
and two-nucleon transfer probabilities (P1n and P2n) in a particle-number symmetry breaking approach are
discussed. The influence of pairing is systematically investigated in the 40Ca + 40,42,44,46,48,50Ca reactions. A
strong enhancement of the two-particle transfer probabilities owing to initial pairing correlations is observed.
This enhancement induces an increase of the ratio of probabilities P2n/(P1n)2 compared to the case with no
pairing. It is shown that this ratio increases strongly as the center-of-mass energy decreases with a value that
could be larger than ten in the deep sub-barrier regime. An analysis of the pair transfer sensitivity to the type of
pairing interaction, namely surface, mixed, or volume, used in the theory is made. It is found that the pair transfer
is globally insensitive to the type of force and depends mainly on the pairing interaction strength.
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I. INTRODUCTION

The possibility to access a cross section much below
the Coulomb barrier has revealed new aspects, such as
the hindrance of fusion cross section (see, for instance,
Ref. [1]), whose origin is still debated [2,3]. Among possible
interpretations, other competing processes such as single- or
multinucleon transfer might eventually be enhanced and/or
modify the capture process [4,5]. New experimental obser-
vations [6–8] in the moderate and deep sub-barrier regime
might lead to important new insight, especially into the process
of pair transfer. The description of such pair transfer is
particularly complex because it requires to treat the quantum
tunneling of a composite, eventually correlated, system. In
particular, pairing correlations among last bound nucleons are
anticipated to play a crucial role. Following the pioneering
work of Refs. [9–12], an important effort is currently being
made to improve the description of pair transfer in superfluid
systems [13–23]. These approaches usually have in common
that transition probabilities from the initial to the final nucleus
are estimated using state-of-the-art Hartree-Fock Bogolyubov
(HFB) and quasiparticle random phase approximation (QRPA)
nuclear models while the reaction-dynamics part is treated in
completely separated steps using coupled-channels technique.

The present work is an attempt to treat nuclear structure
and nuclear reaction aspects in a common microscopic
framework that includes pairing. Recently, active research has
been devoted to include pairing correlations into the nuclear
dynamics using the time-dependent HFB (TDHFB) approach
[15,24,25]. While current applications can be performed in an
unrestricted space, owing to the required effort, applications
of TDHFB have been essentially made on processes involving
one nucleus, such as giant resonances. The use of TDHFB
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to nuclear reactions remains tedious. A simplified version
of TDHFB based on the BCS approximation is considered.
This theory was proposed some time ago [26] and recently
applied with some success to both collective motion in
nuclei [27] and reactions in 1D models [28]. First step
toward collisions was reported in Ref. [29]. The TDHF + BCS
approach has the advantage of being simpler than the original
TDHFB theory while keeping part of the physics of pairing.
Note that time-dependent microscopic theories have several
advantages compared to other techniques. Many effects, such
as possible dynamical deformation or core polarization during
the reaction, are automatically accounted for. In addition, other
competing phenomena such as emission to the continuum
and/or fusion are simultaneously treated. Because many
aspects of the theory applied here have been extensively
discussed in Refs. [27,28], only the main-aspect features are
recalled below.

II. NUCLEAR REACTIONS WITH PAIRING

Time-dependent Hartree-Fock (TDHF) has become a stan-
dard tool to describe nuclear reactions such as fusion or transfer
reactions (see Ref. [30] and references therein). In the present
work, the TDHF3D code of Ref. [31] is extended to include
pairing correlations. Below, specific aspects related to the
introduction of pairing are discussed.

A. Initial conditions

The reaction is simulated on a three-dimensional mesh.
Following the standard procedure [31], the two nuclei are
initiated separately and then positioned consistently with the
desired impact parameter b and center-of-mass energy Ec.m..
The initial wave function can be written as

|�(t0)〉 = |�1(t0)〉 ⊗ |�2(t0)〉, (1)
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where |�α(t0)〉 denotes the many-body wave function of
nucleus α = 1, 2. Usually, these wave functions correspond
to Slater determinants. It is assumed here to take the more
general form of a quasiparticle vacuum written as

|�α(t0)〉 =
∏
k>0

[
uα

k (t0) + vα
k (t0)a†

k(t0)a†
k̄
(t0)

]|−〉, (2)

where a
†
k(t0) stands for the creation operator associated with

the canonical single-particle states, denoted hereafter by
|ϕk(t0)〉, while [uk(t0), vk(t0)] are the standard upper and lower
components of the quasiparticle states. Note that owing to the
spatial separation of the two nuclei, a common single-particle
basis can be used. Accordingly, we can omit the α index and
directly write the total wave function as

|�(t0)〉 =
∏
k>0

[uk(t0) + vk(t0)a†
k(t0)a†

k̄
(t0)]|−〉. (3)

In practice, initial states for each nucleus have been obtained
using the EV8 code [32] that solves the self-consistent BCS
equations in the energy density functional framework [33].
Single-particle states are written in r space and spin space,
denoted by σ =↑,↓ as

a
†
k =

∑
σ

∫
drϕk(r, σ )�†

σ (r), (4)

where �†
σ (r) are standard spinors creation operators. In EV8,

time-reversal symmetry is assumed and single-particle states
can be grouped by pairs of time-reversed states (k, k̄). Associ-
ated quasiparticle creation operators (β†

k , β
†
k̄
) are written using

the following convention for the Bogolyubov transformation:⎧⎪⎪⎨
⎪⎪⎩

β
†
k = ∑

r uk(r, t0)�†
↑(r) + vk(r, t0)�↓(r),

β
†
k̄

= ∑
r uk(r, t0)�†

↓(r) − vk(r, t0)�↑(r),
(5)

where, using time-reversal properties, we have

uk(r, t0) = ukϕk̄(r,↑) = ukϕk(r,↓), (6)

vk(r, t0) = vkϕ
∗
k (r,↓) = vkϕ

∗̄
k
(r,↑). (7)

The Skyrme Sly4d functional [31] is used in the mean-field
channel while for pairing, the following effective neutron-
neutron interaction is used:

Vτ (r, σ ; r′, σ ′) = V ττ
0

(
1 − η

ρ([r + r′]/2)

ρ0

)
δr,r′[1 − Pσσ ′],

where Pσσ ′ is the spin exchange operator and where ρ0 =
0.16 fm−3. Here τ = n, p stands for neutron or proton chan-
nel; only neutron-neutron and proton-proton interaction are
considered. Three different forces, standardly called volume
(η = 0), mixed (η = 0.5), and surface (η = 1), are used below.
In each case, the neutron pairing interaction strength V nn

0
was adjusted to properly reproduce the experimental gap for
the calcium isotopic chain deduced from masses using the
five-points formula [34]. Theoretical odd systems binding
energies have been computed using blocking techniques.
Values of the interaction parameters are reported in Table

TABLE I. Parameters of the neutron-neutron and proton-proton
pairing strength used in the present work.

Interaction η V nn
0 (MeV fm3) V

pp
0 (MeV fm3)

Volume 0 585 490
Mixed 0.5 798 755
Surface 1 1256 1462

I. The proton interaction strength is taken from Ref. [35]
but do not play any role owing to the proton closed shell.
Illustrations of the pairing gap obtained for the three results
of the fit are shown in Fig. 1 for the three types of pairing
interaction. A comparison of the neutron pairing gap �(5)

n

obtained using the different interactions is shown in Fig. 1.
The three interactions lead to gaps that are compatible with
each others and compatible with the experimental gaps along
the calcium isotopic chains especially in the midshell. In the
following, we consider systematically reactions between the
doubly magic 40Ca nucleus and other 4xCa isotopes. The
two reactions 40Ca + 40Ca and 40Ca + 48Ca correspond to
reactions between two normal systems, while in other cases,
one of the nuclei presents pairing.

B. Time-dependent equation of motion

Once the two nuclei have been initiated, the reaction is
simulated by performing the dynamical evolution of the many-
body wave packet given by Eq. (3). Here, the TDHF + BCS
approximation that may be derived from a variational principle
[26] or by an approximate reduction of the TDHFB equations
[27] is used. Because properties as well as numerical aspects
of the TDHF + BCS method are discussed in Refs. [27,28],
only the main ingredients of the theory are summarized here.
In this theory, the wave function remains at all times in
its canonical basis [Eq. (3)] and the single-particle states’
evolution identifies with the mean-field dynamics with

ih̄∂t |ϕk〉 = (h[ρ] − ηk)|ϕk〉, (8)

where ηk(t) = 〈ϕk(t)|h[ρ]|ϕk(t)〉 is a time-dependent phase
that is conveniently chosen to minimize the effect of the
U(1) symmetry breaking. h[ρ] corresponds here to the self-
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FIG. 1. (Color online) Experimental (red stars) and theoretical
neutron gaps for Z = 20 as a function of N . The volume, mixed,
and surface interactions are respectively shown by solid, dotted, and
dashed lines.
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consistent mean field derived from the Skyrme functional
including time-odd components.

Along the dynamical path, the information is contained
in the normal and anomalous densities, denoted by ρ and κ
written in r space as

ρσσ ′(r, r′) =
∑
k≷0

nkϕ
∗
k (r, σ )ϕk(r′, σ ′), (9)

κσσ ′(r, r′) =
∑
k>0

κk[ϕk(r, σ )ϕk̄(r′, σ ′)

−ϕk̄(r, σ )ϕk(r′, σ ′)]. (10)

(k, k̄) corresponds to pair of single-particle states that were
originally degenerated in the static calculation owing to time-
reversal symmetry. nk = v2

k denote the occupation numbers
while κk = u∗

kvk are the components of the anomalous density
in the canonical basis. Conjointly to the single-particle
evolution, the equation of motion of the components (uk, vk)
or equivalently of (nk, κk) should be specified. Following
Ref. [27], we have

ih̄
d

dt
nk(t) = κk(t)�∗

k(t) − κ∗
k (t)�k(t),

(11)

ih̄
d

dt
κk(t) = κk(t)[ηk(t) + ηk(t)] + �k(t)[2nk(t) − 1],

where �k(t) correspond to the pairing field components given
by

�k(t) = −
∑
l>0

vkkllκl(t)gl(t). (12)

gk corresponds to the cutoff function that selects the pairing
window. This cutoff should be taken consistently with the static
calculation [32]. Here, a slightly different prescription is used
compared to the original EV8 with

gk(t) = f [ηk(t) − λ]f [λ − ηk(t)]θ [−ηk(t)]. (13)

f here corresponds to a Fermi distribution with a cutoff at
5 MeV and a stiffness parameter equal to 0.5 MeV [32], while
θ (η) equals one for η > 0 and zero elsewhere. This additional
cutoff ensures that only states that are initially bound are
considered during the evolution.

As discussed in Ref. [28], the reduction of the TDHFB
to TDHF + BCS leads to some inconsistencies, especially
regarding the one-body continuity equation, making the
interpretation of the dynamics difficult. To avoid this problem,
we used here the frozen occupation approximation (FOA). In
the FOA, it is assumed that the main effect of pairing originates
from the initial correlations that induce partial occupations of
the orbitals and nonzero components of the two-body corre-
lation matrix, denoted by C12. Possible reorganization in time
of occupation numbers and components of C12 are neglected.
Said differently, occupation numbers nk and components κk are
kept fixed in time and equal to their initial values. Note that
similar ideas have been used recently to describe two-particle
break-up reaction using the time-dependent density-matrix
approach [36]. This simplification is motivated by the fact
that (i) it solves the problem of the continuity equation [28];
(ii) in the simple one-dimensional model considered in the
same reference, it gives rather good description of the emission

of particles and is sometimes more predictive than the full
TDHFB theory; and (iii) the FOA approximation applied to
collective motion in nuclei [37] gives results that are very
close to the full TDHF + BCS dynamics reported in Ref. [27].

C. Illustration of reactions

In the present work, we are interested in reactions below
the Fusion barrier such as the one presented in Ref. [7], where
the probabilities to transfer x neutrons, denoted by Pxn can be
extracted as a function of the minimal distance of approach
D during the collision. Assuming a Coulomb trajectory, D is
related to the center-of-mass energy Ec.m. through

D = ZP ZT e2

2Ec.m.

[
1 + 1

sin(θc.m./2)

]
, (14)

where ZP and ZT are the target and projectile proton number,
while θc.m. is the center-of-mass scattering angle. Following
Ref. [38], only central collisions are considered here and
different distances D are simulated by varying the center-
of-mass energy. Initial conditions are obtained on a lattice of
2Lx × 2Ly × 2Lz = 22.4 × 22.4 × 22.4 fm3 noting that the
EV8 code uses symmetries to reduce the calculation in one
octant of this space. The dynamical evolutions are performed
in the center-of-mass frame using a Runge-Kutta 4 algorithm
on a spatial grid of Lx × Ly × 2Lz = 60.8 × 22.4 × 22.4 fm3

with a lattice spacing �x = 0.8 fm. The time step is �t =
0.015 × 10−22 s. Note that nonequilibrium particle emission
is negligible owing to the small center-of-mass energy in the
entrance channel.

As an illustration, the neutron density profiles of the
reaction 46Ca + 40Ca are shown at different stages of the
reaction in Fig. 2. During the reaction, the two nuclei approach
each other, stick together during a certain time, and then
reseparate. During the contact time that strongly depends on
the initial center-of-mass energy, they eventually exchange
particles.

D. Particle transfer probability in normal systems

In practice, the system can be cut into two pieces at the neck
position to calculate the expectation value of the number of
exchanged nucleons from one side to the other. By convention,
we denote by B the subspace where the lightest nucleus is
initially (to the right of the neck position in Fig. 2) and by
B̄ the rest of the total space. In a mean-field approach, the
simplest way to obtain the number of exchanged particles is to
estimate the operator N̂B defined through [39]

N̂B =
∑

σ

∫
dr�†

σ (r)�σ (r)�(r), (15)

with the time-dependent wave function (3). Here �(r) is zero
on the left side of the neck and 1 elsewhere.

An illustration of the mean number of transferred particles,
denoted by Ntr ≡ 〈N̂B〉 − 20, from 46Ca to 40Ca at center-of-
mass energy Ec.m. = 49 MeV is shown in Fig. 3 (solid line). As
discussed in Ref. [38], a deeper understanding of the transfer
process can be achieved by introducing projection onto good
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FIG. 2. (Color online) Evolution of the neutron density projected
onto the reaction plane z = 0, for the reaction 46Ca + 40Ca at impact
parameter b = 0 fm and center-of-mass energy Ec.m. = 49 MeV at
initial time (a), t = 20 × 10−22 s (b), and t = 37 × 10−22 s (c). The
neck position is indicated by the dashed vertical line.

particle numbers in the subspace B (or equivalently B̄). The
projection operator on a given number of particles N inside
the subspace B can be written as (see Ref. [38])

P̂B(N ) = 1

2π

∫ 2π

0
dϕeiϕ(N̂B−N), (16)

where ϕ is the standard gauge angle. Then the probability to
find N particles in the subspace B is

PB(N ) = 〈�(t)|P̂B(N )|�(t)〉

= 1

2π

∫ 2π

0
dϕe−iϕN 〈�(t)|�B(ϕ, t)〉, (17)

where |�B(ϕ, t)〉 = eiϕN̂B |�(t)〉 is a new quasiparticle vacuum
obtained from the original one by making a rotation ϕ in the
gauge space from the original state.

The probabilities extracted by projection are linked to the
mean number of particles through the sum rule:

〈N̂B〉 =
∑
N

NPB(N ). (18)

Usually, experimental data are presented in terms of
probabilities to exchange 1, 2, . . . , x neutrons (resp. pro-
tons), denoted respectively by P1n, P2n, . . . , Pxn (respectively,
P1p, P2p, . . . , Pxp). In the present reaction, these probabilities
are defined through Pxn = PB(20 + x), while the above sum
rule reads Ntr = ∑

x xPxn.
In the present work, probabilities have been evaluated using

the Pfaffian technique of Ref. [40] and explicit formulas for the
wave packet are given in the Appendix . An illustration of P1n

and P2n probabilities obtained using the projection method
is shown in panel (a) of Fig. 3 for 46Ca. As already noted
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FIG. 3. (Color online) Evolution of the mean number of particles
transferred from 46Ca to 40Ca as a function of time during the reaction
illustrated in Fig. 2. The probability P1n (dashed line) and P2n (dotted
line) to exchange 1 and 2 particles obtained by making projection on
the side B are also presented as well as the quantity P1n + 2P2n (open
circles). (a) Mean number of particles and probabilities obtained
without projecting on good particle number in the total space.
(b) Same with an additional projection on neutron number N = 46
in the total space.

in Ref. [38], the 1n and 2n channels are often dominating
over other multinucleon transfer channels leading to Ntr 

P1n + 2P2n, which is perfectly fulfilled in Fig. 3 after the two
nuclei reseparate.

E. Particle transfer probability in superfluid systems

Strictly speaking, the above method to extract transfer
probabilities is valid only for normal systems, i.e., when the
wave function (3) identifies with a Slater determinant that is an
eigenstate of particle number. For nuclei that present pairing,
the initial wave function explicitly breaks the particle number
symmetry and the BCS states are obtained by imposing the
particle number only on average. This is, for instance, the
case for the 46Ca discussed above. Said differently, the ground
state that is used for 46Ca not only presents a component with
N = 26 neutrons but also with the surrounding number of
neutrons. These components lead to spurious contributions
in the probabilities extracted in previous section. A possible
way to remove this contamination is to first select the relevant
component with N0 = 20 + 26 particles in the full space and
then consider the projection onto different particle numbers
in the subspace B. In the following, we denote by P̂ (N0) the
projector on N0 particles in the full space,

P̂ (N0) = 1

2π

∫ 2π

0
dϕeiϕ(N̂−N0), (19)

where N̂ is now the complete particle-number operator. More
generally, to estimate the possible effect of contribution from
components N �= N0, one can compute the probability P (N )
that the initial state belongs to the Hilbert space of N particles.
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FIG. 4. (Color online) Illustration of the distribution of probabil-
ities to have N particles initially for the 40Ca + 46Ca reaction in the
TDHF + BCS case (a) and TDHF with initial filling approximation
(b). Note that because 40Ca has a good particle number, N is defined
here as the number of particles in the wave function describing the
46Ca and is centered around N = 26.

This probability is defined through

P (N ) = 〈�(t0)|P̂ (N )|�(t0)〉 (20)

and is shown in Fig. 4(a). Because 40Ca has a well-defined
number of particles, by convention, N in the x axis of Fig. 4
is taken here as the number of particles of its collision partner.
Only even components are nonzero owing to the specific form
of the state [Eq. (3)]. While the distribution is properly centered
around the imposed mean number of particles, non-negligible
contributions coexist, especially for N = N0 ± 2 in the initial
state.

To remove possible influence of these spurious components,
it is possible to define at all times a state with a good number
of neutrons,

|N0(t)〉 ≡ 1√
〈�(t)|P̂ (N0)|�(t)〉

P̂ (N0)|�(t)〉. (21)

Then, the mean number of transferred particle as well as
probabilities Pxn can be computed using the same technique as
in Sec. II D. Note that the double-projection approach proposed
here can be regarded as a first step towards the projection
after variation (PAV) approach standardly applied in nuclear
structures, generalized here to binary reactions. An illustration
of the result is given in panel (b) of Fig. 3. The comparison
of the projected (b) and unprojected (a) panels show that Ntr

and P1n are only slightly affected by the removal of spurious
components. This is a quite general feature we observed in
applications presented in the article. However, the difference
between P2n with and without projection can be as large as
several orders of magnitude. This conclusion also holds for a
larger number of particles transferred.

A second difficulty arises, which could already be seen in
Fig. 3, when pairing is nonzero. While Ntr after collisions con-
verges to a well-defined asymptotic value, small oscillations
of P1n and P2n around their asymptotic values remain. These
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FIG. 5. (Color online) Comparison of asymptotic probabilities
P1n (solid line) and P2n (dotted line) obtained with the three
pairing interactions for the 40Ca + 46Ca at various center-of-mass
energies below the fusion barrier: volume (open circles), mixed (open
triangles), and surface (stars) interactions. Note that error bars owing
to final time oscillations are also presented but are very small.

oscillations are also present if the expectation value 〈N̂2
B〉 is

computed as a function of time with or without projection onto
good particle number in the total space. This problem points
out a difficulty in theories such as TDHF + BCS. In a previous
article [28], we showed that the one-body continuity equation
is always respected in TDHFB, while in TDHF + BCS, it is
respected only if single-particle occupations are frozen, which
is the case in the present work. However, these theories provide
only approximate treatment of the two-body density matrix
and, in particular, do not respect the two-body continuity
equation. This difficulty is not specific to the TDHF + BCS
theory but is also present in TDHFB. Indeed, we have checked
in the 1D model developed in Ref. [28], adapted to treat
transfer, that similar oscillations occur even if the full TDHFB
is solved. In the following, results obtained for nuclei with
nonvanishing pairing are presented with error bars with height
equal to oscillation amplitudes. In most cases displayed below,
error bars are too small to be seen.

F. Sensitivity to the pairing residual interaction

Three different pairing interactions, presented in Sec. II A,
have been used to initialize the collision partners. These
interactions lead to different spatial properties of the pairing
field but have been adjusted to reproduce the experimental
gaps (see Fig. 1). In Fig. 5, asymptotic values of one- and
two-nucleon transfer probabilities are reported as a function
of center-of-mass energy for the 40Ca + 46Ca for the three
pairing interactions below the Fusion barrier. As seen in the
figure, the extracted transfer probabilities are insensitive to the
type of interaction used. It turns out that whatever is the form
of the pairing effective zero-range vertex, if the interaction
is carefully adjusted to reproduce the same experimental gap
(Fig. 1), the final transfer rate is also the same. Note that the
present finding is not in contradiction with Ref. [22], where
different types of interactions (mixed and surface) were shown
to give different two-particle transfer from ground state to
ground state. The two forces used in Ref. [22] have been
adjusted to reproduce the same two neutron separation energies
but lead to different pairing gaps. In the present work, we do not
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see any evidence of a dependence of the pair transfer process
on the shape of the pairing force that is used.

Because all types of force lead to the same probabilities,
below only results of one of the interaction (mixed) are shown.

G. The no-pairing limit

Here, we are interested in the enhancement of pair transfer
probabilities as the pairing is introduced in the transport
theory. To quantify this enhancement, it is necessary to also
perform calculation without pairing interaction, i.e., TDHF. An
additional difficulty arises in the comparison between systems
with and without pairing. Quite often, especially when a given
j shell is partially occupied, nuclei initialized with EV8 in the
Hartree-Fock limit are deformed. The introduction of pairing
stabilizes the spherical shape. Therefore, a direct comparison
of the case with and without pairing not only probes the effect
of pairing but also the effect of deformation that is (i) not
correct for calcium isotopes (ii) not the objective of the present
work.

To avoid, possible effects of deformation, we used the filling
approximation for the last occupied shell; i.e., we assume
that the last shell has partial occupations nk such that all
angular momentum projections m are occupied in the same
way. This ensures the convergence of the mean-field theory
towards nondeformed systems. This approach implies that the
initial system is not anymore described by a wave packet like
in Eq. (3), which would identify with a Slater determinant in
the usual TDHF, but by a many-body density matrix of the
form

D̂(t) = 1

Z
exp

[
−

∑
k

λka
†
k(t)ak(t)

]
, (22)

where Z = Tr{exp[−∑
k λka

†
k(t)ak(t)]}. The trace here is

taken on the complete Fock space, while a
†
k(t) corresponds

to creation operator of the canonical states ϕk(t). In the
filling approximation, the density operator corresponds to
a statistical density and the information on the system
reduces to the knowledge of the one-body density matrix
ρ = ∑

k |ϕk(t)〉nk〈ϕk(t)|, where the occupation numbers are
related to the coefficients through nk = 1/(1 + eλk ). The
evolution of D̂(t) is performed by generalizing the TDHF
approach where the single-particle states evolve according
to the standard self-consistent equation of motion [Eq. (8)]
while the occupation numbers are kept fixed in time. As far
as we know, this is the only way to avoid possible mixing of
deformation and pairing effects and this procedure is taken
below as the no-pairing reference.

Similar to the pairing case, for non-doubly magic nuclei,
the density D̂(t) mixes systems with different particle numbers
and similar treatment based on double projections is necessary
to extract transfer probabilities. In the Appendix, some helpful
formulas to perform projection on statistical densities of the
form [Eq. (22)] are given. An illustration of the decomposition
of the initial state with a mean neutron number 〈N〉 = 26
corresponding to the 46Ca is given in panel (b) of Fig. 4. This
figure illustrates that the width of the distribution is comparable
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FIG. 6. (Color online) Ratio of probabilities Pxn(BCS)/Pxn(MF)
as a function of the pairing strength interaction V nn

0 for the reaction
40Ca + 46Ca at Ec.m. = 43.7 MeV. P1n(BCS)/P1n(MF) (solid circles)
and P2n(BCS)/P2n(MF) calculated by neglecting (open squares) or
not (open triangles) the anomalous density components are shown.

to the BCS case (a) with the difference that odd components are
also present in the filling approximation. Probabilities obtained
with the filling approximation are labeled by Pxn(MF) while
those with pairing are labeled by Pxn(BCS).

As a first illustration of the enhancement of pair transfer
probabilities when pairing is introduced, we have extracted
systematically the ratios between probabilities with and with-
out pairing as the pairing interaction strength V nn

0 is varied in
the mixed interaction for the reaction 40Ca + 46Ca at Ec.m. =
43.7 MeV. These ratios are shown in Fig. 6 as a function of V nn

0 .
When pairing is accounted for, the two nucleons probabilities
have been computed using either nonzero components of
the anomalous density (open triangles) or neglecting them
(open squares). While the former case corresponds to the
appropriate treatment of pairing effects, the latter case can be
regarded as a reference calculation where only the sequential
transfer of the two neutrons is treated while taking properly the
occupation number dispersion of single-particle states around
the Fermi energy. The pairing correlations strongly enhanced
the two-particle transfer, by an order of magnitude around
the physical value of the pairing strength (see Table I). Note
that the enhancement depends on the energy of the collision
(see below). A smaller but nonzero effect is also seen in
the one-particle transfer channel. The small increase in P1n

stems from the increase of occupation number fragmentation
as V nn

0 increases. The strong enhancement observed when the
anomalous density is not neglected compared to the case where
it is set to zero clearly shows that the increase is interpreted as
the contribution from direct simultaneous processes.

III. RESULTS AND DISCUSSION

In the present work, we have systematically investigated
the effect of initial pairing correlations on the single- and
multinucleon transfer by comparing the TDHF + BCS with
frozen correlations to the mean-field dynamics with the filling
approximation for collision between a 40Ca and different
calcium isotopes below the Fusion barrier. In Table II, the
fusion threshold energy B0 deduced from the mean-field
transport theories using the technique described in Ref. [41] is
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TABLE II. Fusion barrier B0 (in MeV) for the reaction 40Ca +
4xCa. Experimental barriers are taken from [42]; theoretical barriers
are computed with a precision of 0.005 MeV.

System B0 (Exp.) B0 (Filling) (MeV) B0 (BCS) (MeV)

40Ca + 40Ca 53.6 53.090 53.090
40Ca + 42Ca 52.735 52.735
40Ca + 44Ca 51.8 52.343 52.332
40Ca + 46Ca 52.069 52.049
40Ca + 48Ca 51.8 51.935 51.935
40Ca + 50Ca 51.200 51.247

systematically reported for the different reactions considered
here. When available, experimental fusion barriers are also
shown. It is clear from the table that the introduction of pairing
has a very weak influence on the barrier height.

A. Systematic study of two-particle transfer versus
one-particle transfer

In Fig. 7, one- and two-particle transfer probabilities
obtained for the collision between calcium isotopes are
displayed as a function of center-of-mass energy for the
TDHF + BCS case and no-pairing case. In all cases, when
one of the collision partners presents pairing, the two-particle
transfer probabilities are significantly enhanced. Conjointly,
the one-particle transfer is also increased but to a lesser extent.
This implies that the mean number of particles exchanged

(c) (d)

(a) (b)
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FIG. 7. (Color online) One- (solid line) and two-particle (dashed
line) transfer probabilities as a function of center-of-mass energy for
the reactions (a) 40Ca + 42Ca, (b) 40Ca + 44Ca, (c) 40Ca + 46Ca, and
(d) 40Ca + 48Ca. The TDHF + BCS results obtained by neglecting
(crosses) or not (open circles) the anomalous density contribution are
systematically compared with the mean-field case (open triangles).
Note that for panel (d), both nuclei are closed-shell nuclei and pairing
correlations vanish. Accordingly, only the mean-field result is shown.

is also influenced by the pairing correlations owing to the
sum rule [Eq. (18)]. Comparing the TDHF results where
the effect of κ is included (direct + sequential process) to
those of case where it is neglected (sequential only), several
conclusions can be drawn. First, the one-particle probability
is almost unchanged. Therefore, the enhancement in P1n

observed in BCS theory compared to the pure mean-field
case is a direct consequence of the specific fragmentation
of occupation numbers owing to pairing that reduces Pauli
blocking effect during the transfer process and is unaffected by
the simultaneous component. A second important conclusion
is that the main source of enhancement observed in P2n is
coming from the initial two-body correlations themselves that
lead to direct processes during the collision. This confirms the
observation made in Fig. 6.

B. Correlations between two-particle transfer and pairing gap

To further quantify the influence of pairing correla-
tions on the enhancement of two-particle transfer and
possible dependence with center-of-mass energy, the ratio
P2n(BCS)/P2n(MF) is displayed as a function of the mass
of the heaviest nucleus participating to the collision and for
two different fixed center-of-mass energies below the Coulomb
barrier. For comparison, the neutron mean gap,

�BCS =
∑

k>0 κk�k∑
k>0 κk

, (23)

obtained for this nucleus is also shown in panel (a).
Similar to the pairing gap, this ratio has a typical bell

shape that drops down to one in magic nuclei (see Fig. 8).
This confirms that the enhancement of pair transfer is directly
proportional to the initial pairing correlations (see, for instance,
the discussion in Ref. [43]).
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FIG. 8. (Color online) (a) Mean neutron pairing gap obtained
with BCS theory for the mixed interaction as a function of mass along
the isotopic chain. (b) Ratio of the two-particle transfer probability
obtained with and without pairing at fixed center-of-mass energy
below the Coulomb barrier reported in Table II. Open squares and
open triangles correspond to 4 and 6 MeV below the Coulomb barrier,
respectively.
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FIG. 9. (Color online) Ratio P2n/(P1n)2 as a function of beam
energies. The different panels correspond to different reactions: (a)
40Ca + 42Ca, (b) 40Ca + 44Ca, (c) 40Ca + 46Ca, and (d) 40Ca + 48Ca.
The TDHF + BCS results obtained by neglecting (crosses) or not
(open circles) the anomalous density contribution are systematically
compared with the mean-field case (open triangles).

C. Relationship between P2n and P2
1n

Experimentally, the no-pairing limit that would be a
reference for a given reaction cannot be measured. It is
therefore important to compare quantities that could be mea-
sured simultaneously. Usually, the two-particle transfer P2n is
compared to (P1n)2, where the latter quantity is considered as
the probability for a completely sequential transfer [7,8,44].
Such a comparison has the advantage that both quantities
contain all possible effects that might influence the transfer
of particles as well as possible pollution from coming from
experimental setups. In Fig. 9, this ratio is presented for
different theories considered here.

This figure gives interesting insight in the two-particle
transfer. First, both mean-field and TDHF + BCS where only
the fragmentation of single-particle state is accounted for while
C12 = 0, lead to almost identical ratios. This aspect was not
clear from Fig. 7, where different fragmentations obtained with
the filling approximation and from BCS with C12 = 0 lead to
differences for both P1n and P2n. The mean-field theory or
equivalently the BCS where initial correlations are neglected
could be considered as a way to mimic independent transfer
of the two particles.

It turns out that simple combinatorial arguments can be used
to understand analytically the sequential limit. Let us denote
by p the average probability to transfer one particle from the
4xCa to the 40Ca. Here “average” means that we disregard
the fact the the probability depends on the initial and final
single-particle states. It turns out that the total probability to
transfer 1, 2, . . . , k nucleons during the reaction 4xCa + 40Ca

0.2

0.25

0.3

0.35

0.4

P
2n

/P
2 1n

36 38 40 42 44 46 48 50
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FIG. 10. (Color online) Ratio P2n/(P1n)2 as a function of center-
of-mass energy for the reaction 42Ca + 40Ca (open circles), 44Ca +
40Ca (open triangles), 46Ca + 40Ca (cross), and 48Ca + 40Ca (open
squares). The horizontal lines correspond in each case to the value of
the left side of Eq. (25), where Nf = 8, while Nv = x for 4xCa + 40Ca
reactions.

for x > 2 in the MF approximation is consistent with

P1n = �1np(1 − p)Nv−1,

P2n = �2np
2(1 − p)Nv−2,

(24)
. . . ,

Pkn = �knp
k(1 − p)Nv−k,

where Nv = x is the number of valence nucleons (with the
constraint k < Nv) in the emitter with respect to the inert
core of 40Ca, while �kn is a purely combinatorial factor that
depends on the number of nucleons in the valence shell and on
the number of available single-particle states in the f 7/2 empty
shell of the receiver nucleus (Nf = 8). �kn simply counts the
number of possibilities to select k particles among Nv times
the number of ways to put them in the f 7/2 shell, i.e.,

�kn = Nv!

k!(Nv − k)!
× Nf (Nf − 1) · · · (Nf − k + 1).

Accordingly, one can anticipate that

P2n

(P1n)2
= 1

2

(Nv − 1)

Nv

(Nf − 1)

Nf

× 1

(1 − p)Nv


 1

2

(Nv − 1)

Nv

(Nf − 1)

Nf

, (25)

where the last approximation holds if p � 1.
This simple approximation turns out to work very well in

the mean-field case (or equivalently in the pairing case when κ
is neglected). In Fig. 10, the quantity P2n/(P1n)2 is compared
to the left side of Eq. (25) for the different reactions considered
here. We see that for a wide range of center-of-mass energy,
mean-field results perfectly match the relation (25). The fact
that such a simple description is adequate in mean-field theory
is not trivial. Indeed, in this theory, nucleons are quantal
objects interacting first with two cores (the emitter and the
receiver nucleus) that are not fully inert and second with each
other through the self-consistent mean field. Last, the two
transferred nuclei are fermions and are subject to the Pauli
exclusion principle. This induces automatically correlations
during the transfer. If a particle is already transferred to
a certain single-particle level, this automatically forbids the
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other particles to be transferred to the same level. The latter
effect is automatically included in the present theory and
partially described through the factor �kn in Eq. (24).

Focusing now on the results accounting for initial cor-
relations (open circles in Fig. 9), a strong, center-of-mass
energy-dependent enhancement of the ratio is seen. The ratio
increases significantly as the energy decreases from a value
lower than 1 up to 20 in some cases. The present enhancement
is at variance with the recent experimental observation in
40Ca + 96Zr where P2n 
 3(P1n)2 has been observed almost
independently of the center-of-mass energy [7]. It is worth
mentioning, however, that the one- and two-particle transfer is
anticipated to depend significantly on the structure properties,
single-particle energies, and spectroscopic factors of the two
collision partners.

In addition, here we are focusing on pairing correlation
effect and pay particular attention to not mixing effects coming
from static deformation in nuclei. Last, mean field alone cannot
grasp the physics of the quantum fluctuations in collective
space. The inclusion of pairing partially cures this problem
by increasing fluctuations of two-body observables. However,
pairing alone does not contain all physical effects to treat this
problem. This is clearly illustrated close to magicity where
pairing vanishes. In that case, TDHF dynamics is known to
fail to reproduce transfer cross section. Recently, a stochastic
mean-field approach was shown to properly describe quantal
collective fluctuations, especially in magic nuclei [45–48] and
leads to realistic description of the nucleon exchange process.
It would be interesting, in the near future, to explore the
possibility to combine stochastic methods with the present
BCS approach.

IV. CONCLUSION

The TDHF + BCS theory with frozen correlations is used
here to investigate the effect of pairing on one- and two-
nucleon transfer below the Coulomb barrier. A method based
on projection onto particle number is developed to properly
extract transfer probabilities from theories that break the U(1)
symmetry. In addition, particular attention is paid to compare
with a no-pairing limit free from possible effects of defor-
mation. With this technique, the enhancement of two-particle
transfer owing to pairing correlations is studied qualitatively
and quantitatively for reactions involving different calcium
isotopes. It is shown that when one of the collision partners
has nonzero pairing, a strong enhancement of pair transfer is
observed. This increase is directly proportional to the initial
pairing correlations in the superfluid nucleus and turns out to
depend strongly on the center-of-mass energy.
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APPENDIX: FORMULAS FOR PROJECTION

In the present appendix, formulas useful for the numerical
estimate of particle number projection are given for many-body
quasiparticle states and density operators respectively given by
Eqs. (3) and (22).

1. Particle number projection of density operators

Starting from the density (22), the probability to have N
particles in the subspace B can be written as

PB(N ) = 1

2π

∫ 2π

0
dϕe−iϕN Tr(eiϕN̂B D̂). (A1)

The estimate of the trace can be made by writing the operator
N̂B in the canonical basis {ϕi} associated with the density.
Using the expression of N̂B and the fact that the canonical
basis forms a complete basis of the total single-particle space,
it could be easily shown that

PB(N ) = 1

2π

∫ 2π

0
dϕe−iϕN Tr(eiϕ

∑
ij OB

ij a
†
i aj D̂), (A2)

where

OB
ij ≡

∑
σ

∫
drϕi

∗(r, σ )ϕj (r, σ )�(r) = 〈i|j 〉B. (A3)

Then, using formula (A.16) of Ref. [49] leads to

Tr(eiϕN̂B D̂) = 1

z
exp[Tr ln(1 + e−iϕOB

e−M )]

= 1

z
det(1 + e−iϕOB

e−M ), (A4)

where (
e−iϕOB )

ij
= Fij (ϕ) = δij + 〈i|j 〉B(eiϕ − 1), (A5)

while from formula (8.11) of Ref. [49] we have

(e−M )ij = δij

ni

1 − ni

(A6)

and z = ∏
i(1 + ni

1−ni
). Altogether, we obtain

PB(N ) = 1

2π

∫ 2π

0
dϕe−iϕN det[(1 − nj )δij + Fij (ϕ)nj ].

Note that in the case where the statistical density identifies
with a Slater determinant (ni = 0, 1), the formula given in Ref.
[38] is properly recovered. Formulas for the double-projection
technique can be derived using a similar technique.

2. Projection with quasiparticle states

To perform projection of quasiparticle vacuum onto good
particle number, we used the recently proposed Pfaffian
method [40,50,51]. Because the Pfaffian technique has been
largely discussed recently, here only specific formulas useful
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in the present article are given. Again, we first consider the
projection on the B subspace as an illustration. We need to
perform the overlap between the quasiparticle state (3) and its
gauge angle rotated counterpart:

|�〉 =
∏
k>0

(uk + vka
†
ka

†
k
)|−〉,

|�B(ϕ)〉 =
∏
k>0

(uk + vkb
†
k(ϕ)b†

k
(ϕ))|−〉,

where

b
†
i (ϕ) =

∑
σ

∫
dreiϕ�(r)ϕi(r, σ )�†

σ (r), (A7)

=
∑

j

Fij (ϕ)a†
j . (A8)

The matrix F plays the role of the matrix R in Ref. [40]
and the overlap between the nonrotated and rotated state are
given by Eq. (5) of this reference. In the present case, we
obtain

〈�0|�B(ϕ)〉 = (−1)n∏n
α v2

α

pf

[ K M(ϕ)
−Mt (ϕ) −K∗

]
,

where K and M are matrix of size 2n × 2n where n is the
number of single-particle states with i > 0. These matrices
can be decomposed in 2 × 2 matrix blocks as

K =
[

0 [κiīδij ]

−[κiīδij ] 0

]

and

M(ϕ) =
[

[vivjF
∗
ij (ϕ)] [vivj̄F

∗
ij̄

(ϕ)]

[vīvjF
∗̄
ij

(ϕ)] [vīvj̄F
∗̄
ij̄

(ϕ)]

]
,

where matrix elements are directly indicated in each n × n
block.

For the double projection, the probability to find N ′ particles
in the space B for a system of N particles in the total space is
given by

PB(N,N ′) = 〈N |P̂B(N ′)|N〉
〈N |N〉 = 〈�|P̂B (N ′)P̂ (N )|�〉

〈�|P̂ (N )|�〉 .

(A9)

Therefore, we need to integrate with respect to two gauge
angles,

〈�|P̂B(N ′)P̂ (N )|�〉

= 1

4π2

∫ 2π

0
dϕ

∫ 2π

0
dϕ′e−iϕN−ϕ′N ′ 〈�|�B(ϕ, ϕ′)〉,

where 〈�|�B(ϕ, ϕ′)〉 can be calculated using formula (A9)
except that Fij (ϕ) is now replaced by Fij (ϕ, ϕ′) = eiϕFij (ϕ′).

Numerically, the gauge integrals are discretized using the
Fomenko method [52] with 20 points. Note that during the
time evolution, owing to accumulated numerical errors, a small
violation of orthonormalization between single-particle states
can occur; this might lead to large errors in the extracted
transfer probabilities. To avoid this problem, a Gram-Schmidt
orthonormalization algorithm is used prior to applying the
Pfaffian formula.
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