
PHYSICAL REVIEW C 87, 014338 (2013)

Chiral Fermi liquid approach to neutron matter

J. W. Holt,1,2 N. Kaiser,1 and W. Weise1,3

1Physik Department, Technische Universität München, D-85747 Garching, Germany
2Physics Department, University of Washington, Seattle, Washington 98195, USA

3ECT ∗, Villa Tambosi, I-38123 Villazzano (TN), Italy
(Received 24 September 2012; revised manuscript received 19 December 2012; published 28 January 2013)

We present a microscopic calculation of the complete quasiparticle interaction, including central as well as
noncentral components, in neutron matter from high-precision two- and three-body forces derived within the
framework of chiral effective-field theory. The contributions from two-nucleon forces are computed in many-body
perturbation theory to first and second order (without any simplifying approximations). In addition we include
the leading-order one-loop diagrams from the next-to next-to leading order (N2LO) chiral three-nucleon force,
which contribute to all Fermi liquid parameters except those associated with the center-of-mass tensor interaction.
The relative-momentum dependence of the quasiparticle interaction is expanded in Legendre polynomials up
to L = 2. Second-order Pauli blocking and medium polarization effects act coherently in specific channels;
namely, for the Landau parameters f1, h0, and g0, which results in a dramatic increase in the quasiparticle
effective mass as well as a decrease in both the effective tensor force and the neutron matter spin susceptibility.
For densities greater than about half the nuclear matter saturation density ρ0, the contributions to the Fermi
liquid parameters from the leading-order chiral three-nucleon force scale in all cases approximately linearly with
the nucleon density. The largest effect of the three-nucleon force is to generate a strongly repulsive effective
interaction in the isotropic spin-independent channel. We show that the leading-order chiral three-nucleon force
leads to an increase in the spin susceptibility of neutron matter, but we observe no evidence for a ferromagnetic
spin instability in the vicinity of the saturation density ρ0. This work sets the foundation for future studies of
neutron matter response to weak and electromagnetic probes with applications to neutron star structure and
evolution.
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I. INTRODUCTION

In a series of recent articles [1,2], we revisited the Fermi
liquid description of infinite nuclear matter in the context of
modern two- and three-nucleon interactions derived within
the framework of chiral effective-field theory. In these studies
we limited our discussion to the central components of
the quasiparticle interaction in a medium of spin-saturated
symmetric nuclear matter characterized by the nucleon density
ρ = 2k3

f /(3π2). In the vicinity of the saturation density ρ0,
the central components of the quasiparticle interaction are
strongly constrained by the properties of bulk nuclear matter
and its low-energy excitations. In Refs. [1,2] it was found that
microscopic calculations of the quasiparticle interaction within
many-body perturbation theory yield an accurate description
of the nuclear matter compressibility, isospin asymmetry
energy, and spin-isospin response only with the inclusion of
leading-order medium effects, which arise at second order in a
perturbative calculation with two-body forces and at first order
in a calculation with three-nucleon forces.

In the present paper we extend these calculations to pure
neutron matter, which we treat as a normal (nonsuperfluid)
Fermi liquid (the generalization of Fermi liquid theory to
superfluid Fermi systems has been performed in Refs. [3–5]).
Such a quasiparticle description has been used in previous
works to understand neutrino emissivity in neutron stars [6–9]
as well as the spin response of neutron star matter to strong
magnetic fields [10–13]. In such calculations, the Landau
parameters that characterize the quasiparticle interaction have

been computed with microscopic two-body nuclear forces or
with phenomenological Skyrme and Gogny effective interac-
tions. Qualitative differences arise between the predictions
of microscopic and phenomenological forces, particularly
with respect to the possibility of bulk magnetization or
even the existence of a spontaneous ferromagnetic phase
transition of neutron matter at several times the nuclear matter
saturation density [12,14,15]. As discussed in Sec. V, three-
neutron forces give rise to Fermi liquid parameters that scale
approximately linearly with the neutron density (at leading
order), and one of the primary goals of the present work is
to better understand the role of three-neutron correlations in
describing the dynamical response of neutron matter to weak
or electromagnetic probes.

Both the magnetic susceptibility of dense neutron matter
as well as neutrino elastic scattering, absorption, and emission
rates are sensitive to the inclusion of noncentral components
of the quasiparticle interaction [8,9,11], which have been
introduced in Refs. [16,17]. Such interactions include (in
the long-wavelength approximation) the exchange tensor
interaction, proportional to S12(q̂) = 3�σ1 · q̂ �σ2 · q̂ − �σ1 · �σ2,
which appears already in the free-space nucleon-nucleon
potential where it is dominated by one-pion exchange, as
well as center-of-mass tensor and cross-vector interactions
proportional to S12(P̂ ) and (�σ1 × �σ2) · (q̂ × P̂ ), respectively.
In these spin-dependent operators, �q = �p1 − �p2 is the relative
momentum and �P = �p1 + �p2 the center-of-mass momentum
of the two quasiparticles on the Fermi surface (| �p1,2| = kf ).
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When including effects of the medium in the form of loop
integrals over the filled Fermi sea of neutrons, all noncentral
interactions can be generated. In fact, the second-order
contributions from two-body forces produce exchange tensor,
center-of-mass tensor, and cross-vector interactions. Note that
the spin-nonconserving cross-vector interaction can only be
generated through polarization (particle-hole) corrections to
the effective interaction and not by ladders [17]. To date there
has been no study of three-nucleon force contributions to either
the center-of-mass tensor or cross-vector interactions, while
in Ref. [18] loop diagrams involving intermediate �-isobar
excitations were analyzed and shown to generate an exchange
tensor interaction in symmetric nuclear matter.

The present work sets the foundation for a systematic study
of the role played by second-order corrections and three-
nucleon forces in determining the noncentral components of
the quasiparticle interaction. Their effect on neutron star struc-
ture and evolution will be studied in future work. We employ
many-body perturbation theory and compute all contributions
to the quasiparticle interaction for the case of two neutrons
on the Fermi surface interacting in a background medium of
pure neutron matter. We employ high-precision chiral two- and
three-nucleon interactions whose unresolved short-distance
components are encoded in a set of contact couplings propor-
tional to low-energy constants fit to elastic nucleon-nucleon
scattering phase shifts and properties of light nuclei [19–21].
To improve the convergence of the microscopic calculation of
the quasiparticle interaction in many-body perturbation theory,
we employ renormalization-group methods for integrating
out momenta beyond the scale of � � 2.0 fm−1, which
results in the nearly universal two-nucleon potential Vlow-k

[22,23]. The contributions to the quasiparticle interaction
from the leading-order chiral three-nucleon force (with scale-
dependent low-energy constants) is computed to one-loop
order.

The present paper is organized as follows: In Sec. II we
give a brief review of Landau’s theory of normal Fermi
liquids and discuss the microscopic approach for computing
the quasiparticle interaction. We then present a general method
that can be applied to any free-space nucleon-nucleon force
given in a partial-wave basis for extracting the scalar functions
that multiply the various spin-dependent operators (namely,
the central, spin-spin, exchange tensor, center-of-mass ten-
sor, and cross-vector terms) occurring in the quasiparticle
interaction. We then discuss the microscopic origin of the
spin-nonconserving cross-vector interaction, which at second-
order results exclusively from the interference of a two-
body spin-orbit force with (in principle) any non-spin-orbit
component in the free-space nucleon-nucleon interaction. In
Sec. III we test the intricate (numerical) calculations of the
second-order contributions to the quasiparticle interaction by
means of model interactions that can be solved partially
analytically. In Sec. IV we present analytical formulas for
the Landau parameters of the quasiparticle interaction arising
from the leading-order next-to next-to leading-order (N2LO)
chiral three-neutron force. The results of the corresponding
calculations with two- and three-neutron forces at several
resolution scales are presented and discussed in Sec. V. We
end with a summary and conclusions.

II. QUASIPARTICLE INTERACTION IN NEUTRON
MATTER

A. General structure of quasiparticle interaction and
spin-space decomposition

In Landau’s theory of normal Fermi liquids [24,25], the
quasiparticle interaction F( �p1s1t1; �p2s2t2) derives from the
change in the total energy density due to second-order
variations in the particle occupation densities δn �p,s,t :

δE =
∑
�pst

ε �p δn �pst

+ 1

2

∑
�p1s1t1
�p2s2t2

F( �p1s1t1; �p2s2t2)δn �p1s1t1 δn �p2s2t2 + · · · , (1)

where si and ti label the spin and isospin quantum numbers of
the ith quasiparticle. The most general form for the effective
interaction between two quasiparticles in pure neutron matter
in the long-wavelength limit is given in Ref. [17]

F( �p1, �p2) = f ( �p1, �p2) + g( �p1, �p2)�σ1 · �σ2

+h( �p1, �p2)S12(q̂) + k( �p1, �p2)S12(P̂ )

+ l( �p1, �p2)(�σ1 × �σ2) · (q̂ × P̂ ), (2)

where �q = �p1 − �p2 is the momentum transfer in the ex-
change channel, �P = �p1 + �p2 is the conserved center-of-mass
momentum, and the tensor operator S12(v̂) is defined by
S12(v̂) = 3�σ1 · v̂�σ2 · v̂ − �σ1 · �σ2. The interaction in Eq. (2) is
invariant under parity and time-reversal transformations as
well as under the interchange of the particle labels. However,
due to the presence of the medium, Galilean invariance is no
longer manifest, leading to new operator structures [namely,
S12(P̂ ) and A12(q̂, P̂ ) = (�σ1 × �σ2) · (q̂ × P̂ )] that depend ex-
plicitly on the center-of-mass momentum �P . Since the two
quasiparticle momenta lie on the Fermi surface | �p1| = | �p2| =
kf , the remaining angular dependence of the quasiparticle
interaction is conveniently expanded in Legendre polynomials
of cos θ = p̂1 · p̂2:

χ ( �p1, �p2) =
∞∑

L=0

χL(kf )PL(cos θ ), (3)

where χ represents f, g, h, k, or l, and the angle θ is related
to the relative momentum q = | �p1 − �p2| through the relation
q = 2kf sin(θ/2).

The Fermi liquid parameters of nuclear matter can be either
extracted from experiment (due to direct relations between
particular Landau parameters and nuclear observables [25,26])
or computed microscopically within many-body perturbation
theory [27]. Given a strongly interacting normal Fermi system
at low temperatures, it is not clear that a perturbative approach
is justified. However, in the case of nuclear and neutron
matter, there are strong indications that renormalization
group techniques [22,23,28] may render nuclear interactions
perturbative for a wide range of densities when evolved
down to a cutoff scale � � 2.1 fm−1. In the framework of
many-body perturbation theory, the quasiparticle interaction
is extracted by functionally differentiating the contributions
to the ground-state energy density twice with respect to the
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particle occupation numbers. Previous work [1,2] has shown
that a satisfactory description of bulk nuclear matter properties
around the saturation density can be obtained with chiral and
low-momentum nuclear interactions only with the inclusion
of the leading-order Pauli-blocking and medium-polarization
effects from two- and three-nucleon interactions. This requires
a second-order perturbative calculation in the case of two-
nucleon interactions together with the first-order perturbative
contribution from three-nucleon forces. These systematic
calculations suggest that a consistent microscopic description
of the quasiparticle interaction in neutron matter, for which
there is much less empirical information, can be achieved.

The relations between specific Fermi liquid parameters
and bulk properties of the medium are well known [25,26].
The compression modulus of neutron matter [at density ρ =
k3
f /(3π2)]

K = 3k2
F

M∗ (1 + F0) (4)

is related to the Fermi liquid parameter F0 = N0f0 (with N0 =
kf M∗/π2 being the density of states at the Fermi surface)
which represents the isotropic part of the spin-independent
quasiparticle interaction. Note that the compressibility K =
k2
f ∂2Ē/∂k2

f + 4kf ∂Ē/∂kf is determined by both the curva-
ture and slope of the energy per particle Ē. In Eq. (4) the
quasiparticle effective mass M∗ is given by

M∗

Mn

= 1 + F1

3
, (5)

with Mn = 939.6 MeV being the free neutron mass and
F1 = N0f1. Considering only the central components of the
quasiparticle interaction, the neutron matter spin susceptibility
is given by

χ = μ2
n

N0

1 + G0
, (6)

where μn = −1.913 is the free-space neutron magnetic mo-
ment (in units of the nuclear magneton) and G0 = N0g0.
The presence of noncentral components in the quasiparticle
interaction that couple quasiparticle spins to their momenta
results in effective charges (magnetic moments) that are not
scalars under rotations of the quasiparticle momentum. The
resulting expression for the spin susceptibility then involves
both longitudinal and transverse components of the magnetic
moment [10,11].

A calculation to extract all components of the quasiparticle
interaction given in Eq. (2) for an arbitrary two-neutron force
was performed in Ref. [17]. In the following we present
a general method to project out the various momentum-
dependent scalar functions f, g, h, k, and l of the quasi-
particle interaction in Eq. (2). This is achieved by taking
specific linear combinations of the spin-space matrix elements
of the quasiparticle interaction. The form of this matrix will
of course depend on the choice of coordinate system. For
�q = �p1 − �p2 = q�ez and �P = �p1 + �p2 = P �ex , the spin-space
matrix elements 〈ms |F( �p1, �p2)|m′

s〉 in terms of the scalar
functions f, g, h, k, and l are given in Table I. The upper left
3 × 3 submatrix gives the nine triplet-triplet matrix elements,
while the fourth row and fourth column give the matrix

TABLE I. Spin-space matrix elements 〈ms |F( �p1, �p2)|m′
s〉 in

terms of scalar functions f, g, h, k, and l.

ms/m′
s 1 0 −1 0

1 f + g + 2h − k 0 3k
√

2l

0 0 f + g − 4h + 2k 0 0
−1 3k 0 f + g + 2h − k

√
2l

0
√

2l 0
√

2l f − 3g

elements that include the singlet state. In this coordinate frame,
the exchange tensor interaction h( �p1, �p2)S12(q̂) gives nonzero
contributions only for the diagonal triplet spin-space matrix
elements. The center-of-mass tensor force k( �p1, �p2)S12(P̂ )
contributes to the triplet diagonal matrix elements as well
as the matrix elements mixing ms = ±1 with m′

s = ∓1. The
cross-vector interaction l( �p1, �p2)A12(q̂, P̂ ) is nonvanishing
only in spin-nonconserving transitions with |ms − m′

s | = 1.
We note that it is not possible to separate the exchange tensor
from the center-of-mass tensor interaction when considering
only diagonal spin-space matrix elements, since they appear
in the same linear combination 2h − k. An alternative choice
of coordinate system in which �q = q�ex and �P = P �ez just
interchanges the contributions of the exchange tensor and
center-of-mass tensor operators (and l comes with opposite
sign).

From the above matrix, the scalar functions multiplying the
spin-dependent operators are extracted as the following linear
combinations of the spin-space matrix elements:

f = (
2F t

1,1 + F t
0,0 + F s

0,0

)/
4,

g = (
2F t

1,1 + F t
0,0 − 3F s

0,0

)/
12,

h = (F t
1,1 + F t

1,−1 − F t
0,0

)/
6, (7)

k = (F t
1,−1

)/
3,

l = (F ts
1,0

)/√
2,

where the superscripts s, t distinguish spin-singlet and spin-
triplet states of two quasiparticles, and the two subscripts
label ms and m′

s , respectively. Only the function l( �p1, �p2)
multiplying the cross-vector operator A12(q̂, P̂ ) depends on a
singlet-triplet mixing matrix element.

B. First-order contribution

With the relations given in Eq. (7) we need to compute only
the quasiparticle interaction in different total spin states. The
first-order perturbative contribution to the energy density is
given by

E (1)
2N = 1

2

∑
12

〈�k1s1; �k2s2|V̄ |�k1s1; �k2s2〉n1n2, (8)

where V̄ = (1 − P12)V denotes the antisymmetrized
two-body potential, nj = θ (kf − |�kj |) is the usual
zero-temperature Fermi distribution, and the summation
includes both spin and momenta. The corresponding
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contribution to the quasiparticle interaction reads

F (1)
2N ( �p1s1; �p2s2) = 〈 �p1s1; �p2s2|V̄ | �p1s1; �p2s2〉

≡ 〈12|V̄ |12〉. (9)

Setting the relative momentum �q = �p1 − �p2 along the
�ez direction and projecting onto Legendre polynomials
PL(p̂1 · p̂2), the Fermi liquid parameters are obtained from
Eq. (9) in terms of the matrix elements of V depending on
p = q/2 in a partial-wave representation:

FL(kf ; Smsm
′
s) = 2(2L + 1)

∑
ll′J

il−l′ [1 + (−1)l+S]
√

(2l + 1)(2l′ + 1)〈l0Sms |JM〉

× 〈l′0Sm′
s |JM〉

∫ kf

0
dp

p

k2
f

〈plSJM|V |pl′SJM〉PL

(
1 − 2p2/k2

f

)
, (10)

where we are following the normalization convention
in Ref. [1]. The leading-order contribution is simply a
kinematically restricted form of the free-space interaction,
which contains no center-of-mass–dependent components.
Therefore, the only nonzero contributions to the quasiparticle
interaction are f, g, and h. This is further reflected in the partial
wave decomposition through the obvious property M = ms =
m′

s implied by the Clebsch-Gordan coefficients in Eq. (10).

C. Second-order contributions

The contribution to the energy density from the two-neutron
force at second-order in many-body perturbation theory has the
form

E (2)
2N = 1

4

∑
1234

|〈12|V̄ |34〉|2n1n2(1 − n3)(1 − n4)

ε1 + ε2 − ε3 − ε4
, (11)

where in a plane-wave basis εj = �k2
j /(2M (∗)

n ) is the

single-particle energy associated with the momentum �kj .

Functionally differentiating twice with respect to the quasipar-
ticle distribution functions yields four different contributions
to the quasiparticle interaction:

F (2)
2N ( �p1s1t1; �p2s2t2) = 1

2

∑
34

|〈12|V̄ |34〉|2(1 − n3)(1 − n4)

ε1 + ε2 − ε3 − ε4

+ 1

2

∑
34

|〈12|V̄ |34〉|2n3n4

ε3 + ε4 − ε1 − ε2

−
∑

34

|〈13|V̄ |24〉|2n3(1 − n4)

ε1 + ε3 − ε2 − ε4

−
∑

34

|〈13|V̄ |24〉|2n4(1 − n3)

ε1 + ε4 − ε2 − ε3
.

(12)

A graphical representation of these terms is given in Fig. 1. The
first two terms in Eq. (12) are called the particle-particle (pp)
and hole-hole (hh) contributions, which have a very similar
structure. The particle-particle contribution is given by

Fpp( �p1 �p2; SmsS
′m′

s) = 1

2

∑
S̄m̄s

∫
d3k3

(2π )3

d3k4

(2π )3

〈 �p1 �p2Sms |V̄ |�k3�k4S̄m̄s〉〈�k3�k4S̄m̄s |V̄ | �p1 �p2S
′m′

s〉
εp1 + εp2 − εk3 − εk4

×(1 − n3)(1 − n4)(2π )3δ( �p1 + �p2 − �k3 − �k4), (13)

where we allow for the possibility that ms �= m′
s . The hole-hole contribution is easily obtained from Eq. (13) by changing the sign

of the energy denominator and replacing the two particle distribution functions (1 − n3)(1 − n4) with hole distribution functions
n3n4. In computing the pp and hh diagrams, we found it more convenient to align the total momentum �P along the �ez direction
and the relative momentum �q along the �ex direction. For this choice of coordinate system h and k are just interchanged in Table I.
In a partial-wave basis, the particle-particle contribution in Eq. (13) reads

Fpp
L (Smsm

′
s) = 2L + 1

4π2k2
F

∑
l1l2l3l4mm′
m̄m̄sJJ ′M

∫ kF

0
dpp

∫ ∞

p

dkk2N (l1ml2m̄l3m
′l4m̄)P m

l1
(0)P m′

l3
(0)

× Mn

p2 − k2
il2+l3−l1−l4CJM

l1mSms
CJM

l2m̄Sm̄s
CJ ′M

l3m′Sm′
s
CJ ′M

l4m̄Sm̄s

∫ min{x0,1}

max{−x0,−1}
dxP m̄

l2
(x)P m̄

l4
(x)

×〈pl1SJM|V̄ |kl2SJM〉〈kl4SJ ′M|V̄ |pl3SJ ′M〉PL

(
1 − 2p2/k2

F

)
, (14)
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FIG. 1. Diagrams contributing to the second-order quasiparticle
interaction (all interactions represented by wavy lines are anti-
symmetrized). Diagram (a) shows the particle-particle contribution,
(b) shows the hole-hole contribution, and (c) and (d) show the
particle-hole contributions.

where P m
l are the associated Legendre functions,

x = cos θk , �p = ( �p1 − �p2)/2, �k = (�k3 − �k4)/2,
x0 = (k2 − p2)/[2k(k2

F − p2)1/2] and N (l1ml2m̄l3m
′l4m̄) =

Nm
l1

Nm̄
l2

Nm′
l3

Nm̄
l4

with Nm
l = √

(2l + 1)(l − m)!/(l + m)!. For

ms = m′
s , this expression agrees with Eq. (21) in Ref. [1].

From the underlying parity invariance of the two-neutron
interaction, which preserves the total spin S, the pp and
hh contributions cannot give rise to the spin-nonconserving
cross-vector interaction. However, spin-orbit and tensor terms
in the free-space neutron-neutron interaction do not conserve
ms and therefore can, at second-order in the pp and hh
diagrams, give rise to a center-of-mass tensor interaction.
This mechanism is exemplified in Sec. III with spin-orbit and
tensor two-body model interactions.

We split the second-order particle-hole (ph) contribution
into two pieces F (c)

ph + F (d)
ph (see Fig. 1). The first term arises

from a coupling of the incoming or outgoing quasiparticle
1 to a hole state, while for the second term quasiparticle 1
couples to a particle state. The explicit expression reads

F (c)
ph( �p1 �p2; s1s2s

′
1s

′
2) =

∑
s3s4

∫
d3k3

(2π )3

d3k4

(2π )3

〈 �p1�k3s1s3|V̄ | �p2�k4s2s4〉〈 �p2�k4s
′
2s4|V̄ | �p1�k3s

′
1s3〉

εp2 + εk4 − εp1 − εk3

× n3(1 − n4)(2π )3δ( �p1 + �k3 − �p2 − �k4), (15)

where we allow for the possibility that the spin states of an incoming and outgoing quasiparticle can be different. In contrast to
the treatment of the ph contribution to the central components of the quasiparticle interaction described in Ref. [1], here we have
found it convenient to set �p1 − �p2 = q�ez and �p1 + �p2 = P �ex . In this case we write

Fph(c)
L (s1s2s

′
1s

′
2)

= 2L + 1

32π3

∫ 1

−1
d cos θPL(cos θ )

∫ 2π

0
dφ3

∫ kf

max{0,y0}
dk3k

2
3

∫ 1

max{−1,z0}
d cos θ3

∑
l1l2l3l4s3s4
m1m2m3m4

〈p′l1m1s1s3|V̄ |k′l2m2s2s4〉

× 〈k′l4m4s
′
2s4|V̄ |p′l3m3s

′
1s3〉 cos[(m3 − m1 + m2 − m4)φp′]P m1

l1
(cos θp′ )P m2

l2
(cos θk′)P m3

l3
(cos θp′ )P m4

l4
(cos θk′)

× il2+l3−l1−l4N (l1m1l2m2l3m3l4m4)
Mn

kf k3 cos θ3 sin 1
2θ + k2

f sin2 1
2θ

, (16)

where �p′ = ( �p1 − �k3)/2, �k′ = ( �p2 − �k4)/2, y0 = kf (1 −
2 sin 1

2θ ), and z0 = (k2
f − k2

3 − 4k2
f sin2 1

2θ )/(4kf k3 sin 1
2θ ).

The product of exponentials coming from the spherical
harmonics has been simplified to a cosine by noting that the
imaginary part vanishes and that φp′ = φk′ . The expression in
Eq. (16) can be further written out in terms of partial-wave
matrix elements by first coupling to total spin S and then
total angular momentum J . The extraction of the scalar
functions f, g, h, k, and l is achieved by taking appropriate
linear combinations of the sixteen spin-space matrix elements
FL(s1s2s

′
1s

′
2); namely,

〈Sms |Fph
L |S ′m′

s〉 =
∑

s1s
′
1s2s

′
2

CSms
1
2 s1

1
2 s ′

2
CS ′m′

s
1
2 s ′

1
1
2 s2
Fph

L (s1s2s
′
1s

′
2). (17)

It is a good check of the calculation that the resulting spin-
space matrix on the left-hand side of Eq. (17) is of the form
introduced in Sec. II A.

The particle-hole polarization contribution can give rise
to all noncentral interactions, as pointed out in Ref. [17].
However, the microscopic origin of the spin-nonconserving
cross-vector interaction should be clarified. In fact, neither

tensor forces nor spin-orbit forces alone, when iterated in the
particle-hole channel, generate the cross-vector interaction.
This can be seen from the spin structure of Eq. (15). In order to
produce a nonvanishing singlet-triplet mixing matrix element,
we can consider without loss of generality the spin-flip
transition

〈↑↓|F (c)
ph( �p1 �p2)|↑↑〉 ∼

∑
s3s4

〈 �p1�k3↑s3|V̄ | �p2�k4↑s4〉

× 〈 �p2�k4↓s4|V̄ | �p1�k3↑s3〉. (18)

It is easily shown with momentum conservation ( �p1 + �k3 =
�p2 + �k4) that �p′ − �k′ = �p1 − �p2 = q�ez. In this case, the free-
space tensor force ∼(3σ z

1 σ z
2 − �σ1 · �σ2) vanishes for |�ms | =

1, and therefore one of the two matrix elements in Eq. (18) will
vanish for any values of s3 and s4. Similarly, for a free-space
spin-orbit interaction of the form iVso(�σ1 + �σ2) · ( �p′ × �k′),
the vector �p′ × �k′ lies in the x-y plane and in this case the
spin-orbit operator (�σ1 + �σ2) · ( �p′ × �k′) has very restricted
matrix elements which are nonvanishing only in spin-triplet
states with |�ms | = 1. Again, one of the matrix elements in
Eq. (18) will vanish for any possible values of s3 and s4. These
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arguments indicate that at second order only the interference of
a spin-orbit interaction with any other (non-spin-orbit) compo-
nent can produce the cross-vector interaction. In the following
section, we will demonstrate that in fact central, spin-spin, and
tensor components all give nonvanishing interference terms.
Finally, we point out that although individually F (c)

ph and F (d)
ph

can have forbidden matrix elements for |�ms | = 1 in the
triplet states, when summed together such terms cancel exactly.
All other spin-space matrix elements of F (c)

ph and F (d)
ph are

identical. These features serve as a good check of the involved
calculation of the quasiparticle interaction at second order.

D. Contribution from chiral three-neutron forces

Finally we consider the leading-order contribution
from the N2LO chiral three-nucleon force [20] in pure
neutron matter. Only the components of the two-pion
exchange three-nucleon force proportional to the low-energy
constants c1 and c3 remain for neutrons:

V
(2π)

3n =
∑

i �=j �=l

g2
A

4f 4
π

�σi · �qi �σj · �qj( �qi
2 + m2

π

)( �qj
2 + m2

π

)
× (−2c1m

2
π + c3 �qi · �qj

)
, (19)

with parameters gA = 1.29, fπ = 92.4 MeV and mπ =
138 MeV (average pion mass). The quantity �qi is the difference
between the final and initial momenta of neutron i. In the
following we employ two different choices for the low-
energy constants c1 and c3 in Eq. (19). When combined
with the bare chiral next-to next-to next-to leading order
(N3LO) nucleon-nucleon potential [19] we choose the values
c1 = −0.81 GeV−1 and c3 = −3.2 GeV−1, whereas with
the low-momentum nucleon-nucleon potential Vlow-k we use
c1 = −0.76 GeV−1 and c3 = −4.78 GeV−1 [29,30]. This
variation in the low-energy constants (as well as the resolution
scale �) provides a means for assessing theoretical uncertainty
at a given order in many-body perturbation theory.

The first-order contribution to the energy density of neutron
matter has the form

E (1)
3n = 1

6
Trσi ,σj ,σl

∫
d3ki

(2π )3

d3kj

(2π )3

d3kl

(2π )3
ninjnl〈ij l|V̄3N |ij l〉,

(20)

where V̄3n = V3n(1 − P12 − P23 − P13 + P12P23 + P13P23) is
the fully antisymmetrized three-neutron interaction and nj =
θ (kf − |�kj |) + (2π )3δ3(�kj − �pj )δn �pj σj

. Functionally differ-
entiating twice with respect to the two quasiparticle

distribution functions yields

F (1)
3n ( �p1, �p2) = 1

2
Trσi

∫
d3ki

(2π )3
ni〈i12|V̄3n|i12〉. (21)

As we will see in Sec. IV, the form of the N2LO chiral
three-neutron force is sufficiently simple that in most cases
analytical formulas for the Landau parameters are possible.
We note that this leading-order contribution to the quasiparticle
interaction from the N2LO chiral three-neutron force is nearly
equivalent to the effective interaction calculated previously in
Refs. [31–33], although the quasiparticle interaction represents
a restricted kinematical configuration for which the two
interacting particles lie on the Fermi surface | �p1,2| = kf .

III. BENCHMARK CALCULATIONS WITH MODEL
INTERACTIONS

In order to verify the spin-decomposition techniques and the
accuracy of the intricate numerical calculations involved in the
second-order calculation of the quasiparticle interaction, it is
useful to examine simple model interactions that are amenable
to (partial) analytical solutions. Intermediate-state momentum
integrations and spin traces are carried out explicitly without
decomposing the interaction into partial waves. For details
on this approach to computing Fermi liquid parameters, see
Ref. [18]. The diagrammatic contributions are shown in Fig. 2,
where the double dash on a fermion line represents a “medium
insertion.” It is defined as the difference between the free-space
propagator and the in-medium propagator:

i

(
θ (| �p | − kf )

p0 − �p 2/(2Mn) + iε
+ θ (kf − | �p |)

p0 − �p 2/(2Mn) − iε

)

= i

p0 − �p 2/(2Mn) + iε
− 2πδ(p0 − �p 2/(2Mn))θ (kf −| �p |).

(22)

Comparing with the expression given in Eq. (12), the sum
of diagrams (a)–(d) corresponds to F (2)

pp + F (2)
hh . Expanding

(1 − n3)(1 − n4) = 1 − n3 − n4 + n3n4 in the pp diagram,
we see that the term proportional to n3n4 cancels the hole-hole
contribution. Hence, the sum of the particle-particle and
hole-hole diagrams gives just a free-space contribution and
two terms with one medium insertion. The remaining diagrams
(e)–(g) in Fig. 2 correspond to the particle-hole contribution
in Eq. (12). In the following we consider only the Fermi
liquid parameters hL(kf ), kL(kf ), and lL(kf ) associated with
the noncentral components of the quasiparticle interaction.

(a) (b) (g)(c) (d) (e) (f)

FIG. 2. Diagrammatic contributions to the second-order quasiparticle interaction in neutron matter. Diagrams (a)–(d) correspond to the sum
of particle-particle and hole-hole contributions, while (e)–(g) together comprise the particle-hole contribution. Medium insertions are denoted
by the short double lines, and the labels (b) and (d) refer to the crossed terms of (a) and (c). Reflected diagrams are not shown.
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Detailed calculations for the central components have been
presented in Ref. [1]. We provide explicit formulas for
the relevant Landau parameters up to L = 1 obtained by
first decomposing the effective interaction into the relevant
operators and then projecting the expansion coefficients onto
Legendre polynomials PL(p̂1 · p̂2).

A. Pseudoscalar boson exchange to second order

We begin by considering pseudoscalar boson exchange with
a “form factor” modification:

V (�q ) = − g2

(m2 + q2)2
�σ1 · �q �σ2 · �q, (23)

where g is a dimensionless coupling constant and m is the
mass parameter chosen to be sufficiently large to achieve good
convergence in momentum integrals and partial-wave sum-
mations. The momentum transfer is denoted by �q, and the
squared denominator in Eq. (23) insures that all loop integrals
converge. As discussed previously, the leading-order (free-
space) contribution to the quasiparticle interaction contains
only the exchange tensor interaction (in addition to the central
components). Its L = 0, 1 projections are given by

h0(kf )(1) = g2

3m2

{
1

4u2
ln(1 + 4u2) − 1

1 + 4u2

}
, (24)

h1(kf )(1) = g2

m2

{
1 + u2

4u4
ln(1 + 4u2) − 1

u2
+ 1

1 + 4u2

}
,

(25)

with the dimensionless parameter u = kf /m. At second order,
the direct contributions F (2a) and F (2c) have no noncentral
components. The crossed term (b) of the iterated pseudoscalar-
exchange diagram gives a contribution to the exchange tensor
interaction:

h0(kf )(2b) = g4Mn

48πm3

{
1

2u2
ln

1 + 2u2

1 + u2
− 1

1 + 2u2

+
∫ u

0
dx

1 + 4x2 + 8x4

u2(1 + 2x2)3
(arctan 2x − arctan x)

}
,

(26)

h1(kf )(2b) = g4Mn

16πm3

{
1

1 + 2u2
− 1

u2
+ 2 + u2

2u4
ln

1 + 2u2

1 + u2

+
∫ u

0
dx

u2 − 2x2

u4(1 + 2x2)3
(1 + 4x2 + 8x4)

× (arctan 2x − arctan x)

}
. (27)

Iterated pseudoscalar exchange does not include medium mod-
ifications and therefore cannot generate an effective interaction
that depends explicitly on the center-of-mass momentum
�P . In contrast, the crossed term (d) from the planar box

diagram with Pauli blocking gives rise to an exchange tensor
force and center-of-mass tensor force (as noted in Sec. II,
the particle-particle and hole-hole diagrams cannot generate
the cross-vector interaction). The associated L = 0, 1 ex-
change tensor Fermi liquid parameters are

h0(kf )(2d) = g4Mn

12π2k3
f

∫ 1

0
dx

∫ 1

−1
dy

∫ 1

−1
dz

x2

[u−2 + A]2[u−2 + B]2

{
yz − x(x + y + z) − 4x2|y + z|

A + B − 4

+ (1 − x2)2 (A + B)ηθ (W )

(A + B − 4)
√

W

}
, (28)

h1(kf )(2d) = g4Mn

4π2k3
f

∫ 1

0
dx

∫ 1

−1
dy

∫ 1

−1
dz

x2

[u−2 + A]2[u−2 + B]2

{
x4 − x2yz + x(y + z)(2 − yz) + 1

2
(3y2z2 − y2 − z2 − 1)

+ 4x2|y + z|
A + B − 4

+ x(1 − x2)2(y + z − x)
(A + B)ηθ (W )

(A + B − 4)
√

W

}
, (29)

while the center-of-mass tensor Fermi liquid parameters are given by

k0(kf )(2d) = g4Mn

12π2k3
f

∫ 1

0
dx

∫ 1

−1
dy

∫ 1

−1
dz

x2

[u−2 + A]2[u−2 + B]2

{
yz − x(3x + y + z) − 8x2|y + z|

A + B − 4

+
[

2x2(2yz − 1) + 3 + 3x4 − 2x(1 + x2)(y + z) + 8(1 − x2)2

A + B − 4

]
ηθ (W )√

W

}
, (30)

k1(kf )(2d) = g4Mn

4π2k3
f

∫ 1

0
dx

∫ 1

−1
dy

∫ 1

−1
dz

x2

[u−2 + A]2[u−2 + B]2

{
3x4 + x2(2 + yz) + x(y + z)(2 − 2x2 − yz)

+ 1

2
(3y2z2 − y2 − z2 − 1) + 8x2|y + z|

A + B − 4
+

[
x(y + z)(3 + 4x2yz + 5x4) − 4 − 3x6 − 2x4(1 + y2 + 4yz + z2)

+ x2(5 − 2y2 − 4yz − 2z2) − 8(1 − x2)2

A + B − 4

]
ηθ (W )√

W

}
, (31)
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with abbreviations: A = 1 + x2 − 2xy, B = 1 + x2 − 2xz,
W = (x − y)2(x − z)2 − (1 − y2)(1 − z2), and the sign
η = sgn[(x − y)(x − z)]. In fact, only the Pauli-blocked planar
box diagram (d) gives rise to a center-of-mass tensor interac-
tion from second-order pseudoscalar exchange.

Of the three diagrams (e)–(g) in Fig. 2 that encode the
effects of medium polarization, (e) and (g) contribute to
the quasiparticle interaction in the crossed channel and (f)
contributes in the direct channel, regardless of the form of two-
body interaction. In the case of pseudoscalar exchange only, (e)
and (g) are nonvanishing for noncentral components. Diagram
(e), representing the coupling of the boson to nucleon-hole
states, yields for the exchange tensor interaction

h0(kf )(2e) = 8g4Mn

3π2m3u2

∫ u

0
dx

x4

(1 + 4x2)4

×
[

2ux + (u2 − x2) ln
u + x

u − x

]
, (32)

h1(kf )(2e) = 8g4Mn

π2m3u4

∫ u

0
dx

x4(u2 − 2x2)

(1 + 4x2)4

×
[

2ux + (u2 − x2) ln
u + x

u − x

]
. (33)

The density-dependent vertex correction (g) can be split into
a factorizable part

h0(kf )(2g) = g4Mn

24π2m3u3

[
4u2

1 + 4u2
− ln(1 + 4u2)

]

×
[

1 + 2u2

4u2
ln(1 + 4u2) − 1

]
, (34)

h1(kf )(2g) = g4Mn

8π2m3u5

[
1 − 1 + 2u2

4u2
ln(1 + 4u2)

]

×
[

(1 + u2) ln(1 + 4u2) − 3u2 − u2

1 + 4u2

]
,

(35)

and a nonfactorizable part

h0(kf )(2g′) = g4Mn

6π2m3u2

∫ u

0
dx

[
ln(1 + 4x2) − 4x2

1 + 4x2

]

×
{

2ux(1 + 4u2)−1

1 + 4u2 − 4x2
+ u2 − x2

(1 + 4u2 − 4x2)3/2

× ln
(u

√
1 + 4u2 − 4x2 + x)2

(1 + 4u2)(u2 − x2)

}
, (36)

h1(kf )(2g′) = g4Mn

8π2m3u4

∫ u

0
dx

[
ln(1 + 4x2) − 4x2

1 + 4x2

]

×
{

4ux(1 + 2u2)

(1 + 4u2)(1 + 4u2 − 4x2)
− ln

u + x

u − x

+ 1 + (u2 − x2)(6 + 4u2)

(1 + 4u2 − 4x2)3/2

× ln
(u

√
1 + 4u2 − 4x2 + x)2

(1 + 4u2)(u2 − x2)

}
. (37)

We note that diagrams (e)–(g), representing the particle-hole
contribution, do not give rise to a cross-vector interaction in

TABLE II. The L = 0, 1 noncentral Fermi liquid parameters from
the pseudoscalar exchange interaction in Eq. (23) at second order.
We compare the sum of the particle-particle, hole-hole, and particle-
hole diagrams computed numerically to the semi-analytical results of
Eqs. (26)–(37).

Modified pseudoscalar boson exchange (kf = 1.7 fm−1)

h0 [fm2] k0 [fm2] h1 [fm2] k1 [fm2]

2nd (pp) 0.119 −0.147 −0.143 0.057
2nd (hh) 0.027 −0.062 −0.057 0.074
2nd (ph) 1.394 −0.001 0.913 −0.001
Total 1.540 −0.210 0.713 0.129
Analytical 1.552 −0.209 0.719 0.126

agreement with the general argument presented in Sec. II. We
now evaluate the expressions given in Eqs. (26)–(37) choosing
g = 5, m = 300 MeV, and kf = 1.7 fm−1. In Table II we
compare these semi-analytical results to those obtained from
a numerical evaluation of the second-order contributions as
given in Sec. II through a partial-wave decomposition. The
agreement is generally on the order of 2% or better.

B. Spin-orbit interaction to second order

We consider as well the case of a pure spin-orbit interaction
of the form

Vso = 2g2
s(

m2
s + q2

)2 i(�σ1 + �σ2) · (�q × �p ), (38)

where �q is the momentum transfer, �p is half the incoming
relative momentum, and ms is the mass of the exchanged
boson to be fixed later. We consider only the isotropic (L = 0)
contributions to the noncentral interactions. The first-order
contribution from Vso to the quasiparticle interaction vanishes
trivially since �q × �p = 0. The direct term (a) of the planar box
diagram gives the contribution

h0(kf )(2a) = g4
s Mn

288πm3
s

{
5 + 12u2

1 + 4u2
− 5

4u2
ln(1 + 4u2)

}
, (39)

with u = kf /ms , while the crossed-term (b) contribution reads

h0(kf )(2b) = g4
s Mn

24πm3
s

{
1

2u2
ln

1 + 2u2

1 + u2
− 1

1 + 2u2

+
∫ u

0
dx

1 + 4x2 + 8x4

u2(1 + 2x2)3
(arctan 2x − arctan x)

}
.

(40)

For the Pauli-blocked planar box diagram, we find that the
direct term (c) gives rise to both exchange tensor as well as
center-of-mass tensor contributions of the form

h0(kf )(2c) = g4
s Mn

6π2k3
f

∫ 1

0
dx

∫ 1

−1
dy

∫ 1

−1
dz

x2

[u−2 + A]4

×
{
−x(x + y) − 4x2|y + z|

A + B − 4

+ (1 − x2)2 (A + B)ηθ (W )

(A + B − 4)
√

W

}
, (41)
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k0(kf )(2c) = g4
s Mn

6π2k3
f

∫ 1

0
dx

∫ 1

−1
dy

∫ 1

−1
dz

x2

[u−2 + A]4

×
{

− x(3x + y) − 8x2|y + z|
A + B − 4

+
[

3 + 3x4 + 2x2(2yz − 1) − 2x(1 + x2)

× (y + z) + 8(1 − x2)2

A + B − 4

]
ηθ (W )√

W

}
, (42)

with abbreviations: A = 1 + x2 − 2xy, B = 1 + x2 − 2xz,
W = (x − y)2(x − z)2 − (1 − y2)(1 − z2) and η = sgn[(x −
y)(x − z)]. Likewise, the crossed term (d) of the Pauli-blocked
planar box diagram yields

h0(kf )(2d) = g4
s Mn

6π2k3
f

∫ 1

0
dx

∫ 1

−1
dy

∫ 1

−1
dz

× x2

[u−2 + A]2[u−2 + B]2

{
yz − x(x + y + z)

− 4x2|y + z|
A + B − 4

+ (1 − x2)2 (A + B)ηθ (W )

(A + B − 4)
√

W

}
,

(43)

k0(kf )(2d) = g4
s Mn

6π2k3
f

∫ 1

0
dx

∫ 1

−1
dy

∫ 1

−1
dz

× x2

[u−2 + A]2[u−2 + B]2

×
{
yz − x(3x + y + z) − 8x2|y + z|

A + B − 4

+
[

2x2(2yz − 1) + 3 + 3x4 − 2x(1 + x2)

× (y + z) + 8(1 − x2)2

A + B − 4

]
ηθ (W )√

W

}
. (44)

The coupling to intermediate particle-hole states (e) in the
crossed channel generates both exchange and center-of-mass
tensor interactions:

h0(kf )(2e) = g4
s Mn

(3πu)2m3
s

∫ u

0
dx

x2

(1 + 4x2)4

[
ux(15x2 − 17u2)

− 15

2
(u2 − x2)2 ln

u + x

u − x

]
, (45)

k0(kf )(2e) = 2g4
s Mn

3π2u2m3
s

∫ u

0
dx

x2(x2 − u2)

(1 + 4x2)4

×
[

2ux + (u2 − x2) ln
u + x

u − x

]
, (46)

and for the Pauli-blocked crossed box diagram (f), the direct
term produces the contributions

h0(kf )(2f ) = 8g4
s Mn

(3πu)2m3
s

∫ u

0
dx

x3

(1 + 4x2)4

[
u(u2 − x2)

+ 2u3 ln
u2 − x2

4u2
− 6ux2 ln

u2 − x2

4x2

− 4x3 ln
u + x

u − x

]
, (47)

k0(kf )(2f ) = 8g4
s Mn

3π2u2m3
s

∫ u

0
dx

x3

(1 + 4x2)4

[
u(u2 − x2)

− 4ux2 ln
u2 − x2

4x2
− 2x(u2 + x2) ln

u + x

u − x

]
.

(48)

Finally, the crossed term of the vertex correction diagram (g)
reads

h0(kf )(2g) = 64g4
s Mn

3π2k3
f

∫ u

0
dx

∫ u

0
dy

x3y2

(1 + 4x2)2(1 + 4y2)2

×
{
u Re ln

x +
√

x2 + y2 − u2

u + y
+ y

u2
(u2 − x2)

+ x

u2 − y2
[u Re

√
x2 + y2 − u2 − xy]

}
, (49)

k0(kf )(2g) = 64g4
s Mn

3π2k3
f

∫ u

0
dx

∫ u

0
dy

x3y2

(1 + 4x2)2(1 + 4y2)2

×
{

y

u2
(u2 − x2) + 2x

u2 − y2

× [u Re
√

x2 + y2 − u2 − xy]

}
, (50)

where Re stands for real part. Again, we find that the spin-orbit
interaction iterated to second order does not give rise to a cross-
vector interaction. We choose the parameters gs = 10, ms =
700 MeV, and kf = 1.7 fm−1. In Table III we compare the sum
of the particle-particle and hole-hole diagrams to the sum of
diagrams (a)–(d) in Fig. 2. Likewise, we compare the particle-
hole contribution to the sum of diagrams (e)–(g) in Fig. 2. The
results of both calculations are again in very good numerical
agreement with one another. We note that the similarity among
several Fermi liquid parameters; namely, h

pp+hh
0 � −h

ph
0 �

−k
pp+hh+ph
0 , is merely a coincidence resulting from our choice

of scalar particle mass.

TABLE III. The L = 0 noncentral Fermi liquid parameters for
the spin-orbit interaction at second order. The numerical results for
h0 and k0 based on the partial-wave decomposition are compared with
values from the semi-analytical formulas in Eqs. (39)–(50).

Spin-orbit interaction (kf = 1.7 fm−1)

h0 [fm2] k0 [fm2]

2nd (pp + hh) 0.761 −0.311
2nd (ph) −0.758 −0.444
Total 0.003 −0.756
Analytical (pp + hh) 0.772 −0.312
Analytical (ph) −0.761 −0.448
Total 0.011 −0.760
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C. Spin-nonconserving cross-vector interaction

As mentioned in Sec. II C, the origin of the spin-
nonconserving quasiparticle interaction [proportional to the
cross-vector operator (σ1 × σ2) · (q̂ × P̂ )] is the interference
of the spin-orbit component of the two-body potential with
its other (central, spin-spin, and tensor) components. In order
to exemplify this mechanism through a solvable model, we
consider a simple contact interaction with couplings in all
relevant channels:

Vct = �c + �s �σ1 · �σ2 + �t �σ1 · �q �σ2 · �q
+ i�so (�σ1 + �σ2) · (�q × �p) . (51)

At second order the interference terms arising from the
particle-hole diagrams (e)–(g) in Fig. 2 can be worked out
analytically. One finds for the first three Landau parameters of
the cross-vector interaction

l0 = Mnk
3
f

5π
(�c − 3�s)�so, l1 = 3Mnk

3
f

70π
(�c − 3�s)�so,

(52)

l2 = 11Mnk
3
f

84π
(3�s − �c)�so,

l0 = −8Mnk
5
f

21π
�t�so, l1 = −4Mnk

5
f

21π
�t�so,

(53)

l2 = 50Mnk
5
f

231π
�t�so.

Due to their different structure we have listed separately
the interference terms with central and spin-spin interactions
and the “tensor-type” interaction �t �σ1 · �q �σ2 · �q. Our second-
order calculation based on a decomposition of the two-body
potential into partial-wave matrix elements reproduced these
analytical results with good numerical accuracy. In the absence
of the tensor term, the condition �c = 3�s (giving lL = 0)
is equivalent to a vanishing interaction in the spin-singlet
state.

IV. LANDAU PARAMETERS FROM CHIRAL 3N
INTERACTION

In this section we consider the N2LO chiral three-nucleon
force in neutron matter and derive expressions for all L = 0, 1
Landau parameters arising from the leading-order (one-loop)
contribution to the quasiparticle interaction. In most cases it is
possible to obtain analytical expressions for arbitrary values

(1) (2) (3)

FIG. 3. Diagrammatic contributions to the quasiparticle interac-
tion in neutron matter generated from the two-pion exchange three-
neutron interaction. The short double-line symbolizes summation
over the filled Fermi sea of neutrons. Reflected diagrams of (2) and
(3) are not shown.

of L, but for brevity we show only the formulas for the isotropic
(L = 0) and p-wave (L = 1) parameters. As mentioned in
Sec. II D, we keep only the two-pion exchange three-neutron
force proportional to c1 and c3. There are three one-loop
diagrams contributing to the effective interaction, shown in
Fig. 3, which we label as V

med,i
NN for i = 1, 2, 3. Both the pion

self-energy correction V
med,1
NN and the vertex correction V

med,2
NN

produce an effective interaction similar to that of one-pion
exchange. Both terms vanish in the direct channel but give
contributions to f, g, and h in the exchange channel. For the
pion self-energy correction we find

F0(kf )(med,1)f = [3 − �σ1 · �σ2 + 2S12(q̂)]
g2

Am3
π

(6π )2f 4
π

×
{

(2c1 − c3)u3

1 + 4u2
− c3u

3

+ (c3 − c1)
u

2
ln(1 + 4u2)

}
, (54)

F1(kf )(med,1) = [3 − �σ1 · �σ2 + 2S12(q̂)]
g2

Am3
π

48π2f 4
π

×
{

(2c1 − c3)u

1 + 4u2
+ (6c1 − 5c3)u

+
[

2(c3 − c1)u + 3c3 − 4c1

2u

]

× ln(1 + 4u2)

}
, (55)

with u = kf /mπ . As seen from the above formulas, the
expressions for the Fermi liquid parameters of the central,
spin-spin, and tensor quasiparticle interaction are identical
up to integer factors characteristic of a one-pion exchange
nucleon-nucleon potential. The contribution from the crossed
term of the pion exchange vertex correction V

med,2
NN reads

F0(kf )(med,2) = [3 − �σ1 · �σ2 + 2S12(q̂)]
g2

Am3
π

(24π )2f 4
π

{
3c1

4u5
[8u4 + 4u2 − (1 + 4u2) ln(1 + 4u2)][4u2 − ln(1 + 4u2)]

+ c3

[
4

u2
(4u2 − ln(1 + 4u2)) arctan 2u + 48u4 + 16u2 + 3

32u7
ln2(1 + 4u2) + 40u3

3
− 22u + 2

u
+ 3

2u3

+ 12u4 − 16u6 − 30u2 − 9

12u5
ln(1 + 4u2)

]}
, (56)
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F1(kf )(med,2) = [3 − �σ1 · �σ2 + 2S12(q̂)]
g2

Am3
π

(16π )2f 4
π

{
c1

2u7
[4u2 − (1 + 2u2) ln(1 + 4u2)][8u4 + 4u2 − (1 + 4u2) ln(1 + 4u2)]

+ c3

3u4

[
8(4u2 − (1 + 2u2) ln(1 + 4u2)) arctan 2u + 96u6 + 80u4 + 22u2 + 3

16u5
ln2(1 + 4u2)

+ 56u6 − 32u8 − 60u4 − 48u2 − 9

6u3
ln(1 + 4u2) + 8u5

3
(7 − 4u2) − 28u3 + 10u + 3

u

]}
. (57)

Lastly, we compute the L = 0, 1 Landau parameters
associated with the Pauli-blocked two-pion exchange diagram
V

med,3
NN , which has a more complicated spin structure than

V
med,1
NN and V

med,2
NN . Both the direct and exchange terms

contribute, and the central components of the quasiparticle
interaction read

F0(kf )(med,3) = g2
Am3

π

16π2f 4
π

{
8(c3 − c1)u − 8c3u

3

3

+ 3c3 − 4c1

u
ln(1 + 4u2)

+ (12c1 − 10c3) arctan 2u + (1 + �σ1 · �σ2)

×
∫ u

0
dx

[
2c1Z

2 + c3

3
(X2 + 2Y 2)

]}
, (58)

F1(kf )(med,3) = (1 + �σ1 · �σ2)
g2

Am3
π

16π2f 4
π

∫ u

0
dx

{
2c1

(
Z2

a + 2Z2
b

)
+ c3

(
X2

a + 2X2
b + 4

3
X2

c

) }
. (59)

The auxiliary functions X, Y, Z; Xa, Xb, Xc; and Za, Zb are
defined in Sec. 2.2 of Ref. [2]. Concerning the noncentral

quasiparticle interaction, V
med,3
NN produces no tensor forces

in pure neutron matter. However, one expects V
med,3
NN to

generate an exchange tensor force in symmetric nuclear matter
[32] since in this case the three-nucleon force proportional
to c4 does not vanish. As a special feature, the crossed
term of the Pauli-blocked 2π exchange diagram gives rise
to a cross-vector interaction. With its usual representation
given by

Fcross = (�σ1 × �σ2) · (q̂ × P̂ )
∞∑

L=0

lL(kf )PL(p̂1 · p̂2), (60)

a complete analytical solution for the Landau parameters
lL(kf ) could not be obtained. When choosing the alternative
form of the cross-vector interaction

Fcross = (�σ1 × �σ2) · ( �p1 × �p2)

| �p1 + �p2|2
∞∑

L=0

l̃L(kf )PL(p̂1 · p̂2), (61)

all occurring integrals can be solved analytically in the present
case. The results for the Landau parameters read

l̃0(kf )(med,3) = g2
Am3

π

(8π )2f 4
π

{
c1

u3
[16u4 − (1 + 4u2) ln2(1 + 4u2)]

+ c3

[
4u3 − 8u − 1

u
+ 1 + 4u2

2u3
ln(1 + 4u2) +

(
1

u
− 1

16u5

)
ln2(1 + 4u2)

]}
, (62)

l̃1(kf )(med,3) = g2
Am3

π

(8π )2f 4
π

{
3c1

[
8u − 8

u
− 2

u3
+ 8u4 + 6u2 + 1

u5
ln(1 + 4u2) − 32u6 + 24u4 + 8u2 + 1

8u7
ln2(1 + 4u2)

]

+ c3

[
20u3

3
− 16u − 2

u
− 3

u3
− 3

4u5
+ 16u6 + 28u4 + 18u2 + 3

8u7

× ln(1 + 4u2) + 3

64u9
(64u8 − 20u4 − 8u2 − 1) ln2(1 + 4u2)

]}
. (63)

The exact relation between these two representations of the
cross-vector interaction is given by

lL =
∞∑

L′=0

aLL′ l̃L′, (64)

with coefficients aLL′ = 1
4 (2L + 1)

∫ 1
−1 dz

√
(1 − z)/(1 + z)

PL(z)PL′(z), which are all nonvanishing rational multiples of
π . However, since infinitely many terms are involved, this
(exact) relation is of limited practical use. The numerical

results assuming the standard form in Eq. (60) of the cross-
vector interaction will be shown in the following section.

V. RESULTS

A. Neutron matter equation of state

The Fermi liquid parameters in neutron matter, unlike
those in symmetric nuclear matter close to the saturation
density, are largely unconstrained by empirical data. Given
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that our perturbative treatment of the quasiparticle interaction
includes only the leading-order medium corrections from two-
and three-body forces, it is useful to compare the associated
zero-temperature equation of state of neutron matter (at
the same order in perturbation theory) with those obtained
using nonperturbative methods. As a benchmark we consider
variational calculations [34] of neutron matter employing
the high-precision Argonne v18 two-nucleon potential [35]
together with the Urbana UIX three-body potential [36], which
provide a realistic description of light nuclei and nuclear
matter.

In the partial-wave representation of the two-body inter-
action, the first-order contribution to the energy per particle
Ē = E/A reads

Ē
(1)
2n (kf ) = 1

2π2k3
f

∑
lSJ

(2J + 1)
∫ kf

0
dpp2(kf − p)2

× (2kf + p)〈plSJ |V̄ |plSJ 〉, (65)

and the more intricate second-order contribution takes the
form

Ē
(2)
2n (kf ) = 6

(4π )4k3
f

∑
l1l2l3l4

Smsm
′
sJ J ′M

∫ 2kf

0
dp′p′2

∫ √
k2
f −p′2/4

0
dpp2

∫ ∞
√

k2
f −p′2/4

dqq2N (l1ml2m
′l3ml4m

′)

× il2+l3−l1−l4
Mn

p2 − q2
CJM

l1mSms
CJM

l2m′Sm′
s
CJ ′M

l3mSms
CJ ′M

l4m′Sm′
s
〈pl1SJ |V̄ |ql2SJ 〉〈ql4SJ ′|V̄ |pl3SJ ′〉

×
∫ xp

−xp

d cos θpP m
l1

(cos θp)P m
l3

(cos θp)
∫ xq

−xq

d cos θqP
m′
l2

(cos θq)P m′
l4

(cos θq), (66)

where xp = min{1, (k2
f − p2 − p′2/4)/(pp′)} and xq = min{1, (q2 − k2

f + p′2/4)/(qp′)}. In Appendix A we provide the
analytical expressions for the second-order contributions to the energy per particle associated with the two model interactions
introduced in Sec. III. Finally, the leading-order chiral three-neutron interaction leads to Hartree and Fock contributions to the
energy per particle of neutron matter of the combined form

Ē
(1)
3n (kf ) = g2

Am6
π

(2πfπ )4

{
(6c1 − 5c3)

u3

3
arctan 2u − 2c3

9
u6 + (c3 − c1)u4 + (3c1 − 2c3)

u2

6
+

[
c3

12
− c1

8
+ u2

4
(3c3 − 4c1)

]

× ln(1 + 4u2) + 1

32u3

∫ u

0
dx

[
6c1H

2 + c3
(
G2

S + 2G2
T

)] }
, (67)

with u = kf /mπ . The auxiliary functions H , GS , and GT

are defined in Eqs. (24)–(26) of Ref. [37]. These interaction
contributions are added to the relativistically improved kinetic
energy per particle Ēkin(kf ) = 3k2

f /(10Mn) − 3k4
f /(56M3

n).
In Fig. 4 we plot the resulting equation of state of

neutron matter for densities up to ρ � 1.5ρ0. For both chiral
and low-momentum interactions one finds good agreement
with the results of the variational calculation of Ref. [34],
labeled “APR” in the figure. The difference between the two
perturbative calculations arises primarily from the different
values of low-energy constants c1 and c3. Note that the recent
neutron matter calculation [38] including the subleading chiral
three- and four-neutron interactions gives very similar results.
For comparison, we have included in Fig. 4 the result for
the neutron matter equation of state obtained in a recent
quantum Monte Carlo (QMC) simulation [39] employing
phenomenological density-dependent two-body potentials.
The data points for the lowest two densities are taken from
a different quantum Monte Carlo calculation in Ref. [40].
For later comparison, we compute the compressibility of
neutron matter directly from the energy per particle. We find
that at ρ = 0.166 fm−1, K = 560 and 650 MeV for the un-
evolved chiral interaction and low-momentum potential Vlow-k,
respectively.

B. Neutron matter quasiparticle interaction

In this section we present and discuss the calculations
of the L = 0, 1, 2 Landau parameters for the quasiparticle
interaction in neutron matter from chiral and low-momentum
two- and three-nucleon forces. We begin by considering
the leading-order (free-space) contribution from both the
bare chiral N3LO NN interaction [19] as well as the low-
momentum NN potential Vlow-k [22,23] obtained by integrating
out momenta beyond the cutoff scale of 2.1 fm−1. We use
the general formula in Eq. (9) for computing the first-order
perturbative contribution to the quasiparticle interaction as
well as the projection formulas in Eq. (7) for extracting the
scalar functions f, g, and h. In Table IV we show the results
for neutron matter with a Fermi momentum of kf = 1.7 fm−1

corresponding to a density of ρ0 = 0.166 fm−3. In both cases
the Fermi liquid parameters decrease rapidly in magnitude with
L for all channels. For larger values of L the difference between
bare and evolved two-neutron interactions is strongly reduced,
and at L = 3 it is almost negligible. Short-distance repulsion
in the bare chiral NN interaction is integrated out through
the renormalization-group evolution, leading to a significant
reduction in f0. For both potentials, the compressibility K of
neutron matter at ρ0 would be unphysically small. This feature
is shared by many leading-order perturbative calculations
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FIG. 4. (Color online) Energy per particle of neutron matter
from chiral and low-momentum two- and three-body interactions.
The cutoff scale associated with the bare chiral nuclear potential
is � = 2.5 fm−1, while that of the low-momentum interaction is
� = 2.1 fm−1. The curve labeled “APR” is taken from the variational
calculations of Akmal et al. [34], and the curve labeled “QMC” is
taken from the quantum Monte Carlo calculations in Refs. [39,40].

of the quasiparticle interaction in both nuclear and neutron
matter [1,41–43]. Recent auxiliary diffusion Monte Carlo
calculations with realistic two- and three-nucleon forces find
that the compressibility of neutron matter at the density
ρ = 0.16 fm−3 is K � 520 MeV, approximately 50% larger
than that of the noninteracting Fermi gas [14]. The isotropic
component g0 of the spin-spin interaction is enhanced by
∼15% at the resolution scale of 2.1 fm−1, while the isotropic
component h0 of the exchange tensor interaction is reduced
by a slightly smaller factor. The p-wave component f1 of
the spin-independent quasiparticle interaction increases as the
resolution scale decreases. The corresponding values of the
quasiparticle effective mass are M∗/Mn = 0.78 and 0.84 for
the chiral and low-momentum interactions, respectively. In
general our results from the low-momentum NN interaction
agree qualitatively with those of Ref. [17], shown there (in di-
mensionless units) in the first three columns of Table I. We note
that the different choice of low-momentum resolution scale in
Ref. [17] accounts for some of the quantitative differences.

Next we compute the second-order particle-particle, hole-
hole, and particle-hole diagrams, shown in Fig. 1, with
two-neutron interactions. These provide the leading-order
Pauli-blocking and polarization effects and give rise to

components of the quasiparticle interaction depending ex-
plicitly on the center-of-mass momentum �P = �p1 + �p2. In
Table V we display the Fermi liquid parameters associated
with the second-order contributions (pp, hh and ph) for both
the chiral N3LO nucleon-nucleon interaction and the low-
momentum interaction Vlow-k in neutron matter at a density ρ0.
Again we find in all cases good qualitative agreement between
our results from the low-momentum NN interaction and the
results of Table I in Ref. [17]. For the isotropic components,
it is generally true that the particle-particle diagram gives
contributions that are significantly larger than the hole-hole
diagram. However, for higher values of L this is not the
case, and the hole-hole diagram is in general comparable
in magnitude to the particle-particle contribution. Coherent
effects among the three diagrams are observed especially for
the Landau parameters f1, g0, h0, and k0. Despite these large
effects entering at second order, perturbative calculations of the
equation of state of nuclear and neutron matter [44,45] show
that third-order contributions should be significantly smaller.
Second-order effects thus tend to dramatically increase the
quasiparticle effective mass M∗, decrease the spin susceptibil-
ity of neutron matter and reduce the isotropic exchange tensor
strength h0. Although individually large, the contributions
to f0 nearly cancel at second order for the bare chiral NN
interaction. With the low-momentum interaction the sum gives
f0 = 0.379 fm2, which approximately cancels the reduction
in f0 from the renormalization group evolution at first order.
The strong repulsion in the spin-independent channel from the
particle-hole diagram is qualitatively similar to what has been
found in previous Brueckner calculations of symmetric nuclear
matter using hard-core interactions [41,42], where it was found
that an infinite sum of polarization diagrams summed via
the Babu-Brown–induced interaction [46,47] could stabilize
nuclear matter against density fluctuations. In general, the
particle-particle contributions decrease significantly in mag-
nitude as the resolution scale is lowered. This effect is due
primarily to the reduction in phase space in the particle-particle
channel as the momentum cutoff is lowered. The results
compiled in Table V were obtained with free-particle energies
in the denominators of Eq. (12). In all subsequent tables, we
include as well the one-loop corrections to the single-particle
energies in the second-order diagrams (for details see Ref. [1]).

Finally, we calculate the contributions to the Fermi liquid
parameters from the leading-order chiral three-neutron force.
We evaluate the analytical formulas in Eqs. (54)–(59) for
the central and exchange tensor contributions and perform
numerical calculations of the cross-vector Fermi liquid
parameters lL(kf ) in the standard representation given in

TABLE IV. The L = 0, 1, 2, 3 Fermi liquid parameters of the bare N3LO chiral NN potential of Ref. [19] as well as the low-momentum
NN potential Vlow-k at a resolution scale of 2.1 fm−1 at first order in many-body perturbation theory.

kf = 1.7 fm−1 Chiral N3LO V
(2.1)

low-k

L 0 1 2 3 0 1 2 3

f [fm2] −0.700 −1.025 −0.230 −0.112 −1.188 −0.679 −0.298 −0.110
g [fm2] 1.053 0.613 0.337 0.197 1.212 0.654 0.346 0.195
h [fm2] 0.270 0.060 −0.040 −0.080 0.239 0.102 −0.051 −0.079
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TABLE V. Second-order contributions to the L = 0, 1, 2 Fermi liquid parameters in neutron matter characterized by the Fermi momentum
kf = 1.7 fm−1. We have separately listed the particle-particle (pp), hole-hole (hh), and particle-hole (ph) contributions for both the bare N3LO
chiral NN interaction as well as the low-momentum NN potential Vlow-k with �low-k = 2.1 fm−1.

kf = 1.7 fm−1 Chiral N3LO V 2.1
low-k

L 0 1 2 0 1 2

f [fm2] pp −0.773 0.547 −0.290 −0.225 0.042 −0.124
f [fm2] hh −0.151 0.168 −0.121 −0.161 0.133 −0.063
f [fm2] ph 0.993 0.482 −0.089 0.765 0.795 0.255

Total 0.069 1.197 −0.500 0.379 0.970 0.068

g [fm2] pp 0.225 0.086 0.072 0.030 0.127 0.062
g [fm2] hh 0.006 0.089 −0.057 0.045 0.062 −0.059
g [fm2] ph 0.061 −0.016 −0.103 0.020 −0.011 −0.044

Total 0.293 0.159 −0.089 0.094 0.178 −0.040

h [fm2] pp −0.101 0.112 −0.028 −0.047 0.042 −0.004
h [fm2] hh −0.049 0.084 −0.049 −0.037 0.062 −0.032
h [fm2] ph −0.062 −0.090 −0.066 −0.108 −0.116 −0.044

Total −0.212 0.106 −0.143 −0.192 −0.012 −0.080

k [fm2] pp −0.085 0.064 0.014 −0.057 0.037 0.010
k [fm2] hh −0.036 0.052 −0.017 −0.028 0.039 −0.008
k [fm2] ph −0.058 −0.017 0.075 −0.034 −0.019 0.042

Total −0.178 0.098 0.072 −0.119 0.056 0.043

l [fm2] ph 0.135 −0.031 −0.279 −0.062 −0.147 −0.161

Eq. (60). In Fig. 5 we plot the density-dependent Fermi liquid
parameters for the chiral three-neutron force with low-energy
constants c1 = −0.81 GeV−1 and c3 = −3.2 GeV−1. For
densities larger than ρ � 0.5ρ0 the Landau parameters scale
approximately linearly with the density. The largest effect is a
strong additional repulsion in the isotropic spin-independent
parameter f0. In fact, at nuclear matter saturation density ρ0,
the strength of the three-body correction in this channel is
larger than the two-neutron force contributions at 1st and 2nd
order together. The quasiparticle effective mass M∗, governed
by the parameter f1, is reduced by less than 5% at saturation

density ρ0 with the inclusion of the two-pion exchange three-
neutron force. Similar observations have been made in Ref. [2]
for the case of symmetric nuclear matter where additional
three-nucleon forces proportional to the low-energy constants
c4, cD , and cE are present. The qualitative similarities between
the quasiparticle interaction in neutron matter and symmetric
nuclear matter from three-body forces are due to the dominant
role played by contributions proportional to the low-energy
constant c3 [2]. From the Landau parameters f0 and f1 we
obtain for the compression modulus of neutron matter at kf =
1.7 fm−1 the values K = 550 and 660 MeV for the chiral and
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FIG. 5. (Color online) Density-
dependent Fermi liquid parameters from
the N2LO chiral three-nucleon force for
the quasiparticle interaction in neutron
matter. The low-energy constants have
the values c1 = −0.81 GeV−1 and c3 =
−3.2 GeV−1.

014338-14



CHIRAL FERMI LIQUID APPROACH TO NEUTRON MATTER PHYSICAL REVIEW C 87, 014338 (2013)

-1.0

-0.5

0.0

0.5

(fm
2
)

L = 0
L = 1
L = 2

0.4

0.8

1.2

1.6

(fm
2
)

-0.2

0.0

0.2

0.4

(fm
2
)

0.2 0.4 0.6 0.8 1
ρ/ρ0

-0.1

0.0

0.1

(fm
2
)

0.2 0.4 0.6 0.8 1
ρ/ρ0

-0.2

-0.1

0.0

(fm
2
)

f

g

h
k

l

FIG. 6. (Color online) Density-
dependent Fermi liquid parameters in-
cluding first- and second-order contri-
butions from the chiral N3LO nucleon-
nucleon potential of Ref. [19] as well as
the N2LO chiral three-nucleon force to
leading order.

low-momentum potentials. These values compare well with
those extracted numerically from the equation of state in Fig. 4.
Neglecting effects from noncentral Fermi liquid parameters,
the chiral three-neutron force at leading order tends to enhance
the spin susceptibility χ of neutron matter [see Eq. (6)] by
lowering g0 by about 25% at ρ0 from the value obtained
with two-nucleon forces only. The three-body correction
to the exchange tensor interaction is smaller in magnitude
than the central force contributions. For the exchange tensor
interaction the pion-self energy correction V

med,1
NN and vertex

correction V
med,2
NN enter. As seen already in Ref. [2,32] both

of these terms have the structure of one-pion exchange and
are individually large with opposite sign. The cross-vector
interaction from chiral three-nucleon forces is relatively small
compared with the central quasiparticle interactions. However,
at saturation density ρ0 the magnitudes of the cross-vector
Fermi liquid parameters l0, l1, and l2 are comparable in
magnitude to those from two-body potential at second order.

In Fig. 6 we combine the results for the first- and second-
order two-body contributions with the leading-order three-
body corrections at a resolution scale of � = 2.5 fm−1. All
Fermi liquid parameters up to L = 2 are plotted as a function
of the neutron density ρ. The same quantities are compiled in
Table VI at a Fermi momentum of kf = 1.7 fm−1 together with
the corresponding values from the low-momentum interaction
Vlow-k at the scale � = 2.1 fm−1. From Fig. 6 one observes that
all of the Fermi liquid parameters considered here for the spin-
independent part of the quasiparticle interaction vary strongly
with the density up to ρ � ρ0. In particular, the parameter f0

has a nearly linear dependence on the density and gives rise to
a compression modulus of neutron matter that grows strongly
with increasing density. The Landau parameter f1 decreases
rapidly at small densities but flattens out close to nuclear matter
saturation density, where it nearly vanishes thereby yielding an
effective mass M∗/Mn � 1 according to Eq. (5). The L = 2
component of the spin-independent quasiparticle interaction

exhibits a nearly linear decrease with the neutron density, and
owing to coherent effects from all contributions it attains a
large negative value at and beyond saturation density. From
Table VI we see that this is a scale-independent prediction
that to our knowledge has not been previously observed in
the literature. In fact, such a large negative value could help
in fulfilling the forward scattering Pauli principle sum rule,
which in the absence of noncentral interactions takes the
form

∞∑
L=0

[
FL

1 + FL/(2L + 1)
+ GL

1 + GL/(2L + 1)

]
= 0. (68)

The presence of noncentral interactions modifies this sum rule
[48], but the effect of center-of-mass tensor and cross-vector
interactions has not yet been explored.1 The isotropic com-
ponent g0 of the spin-spin quasiparticle interaction decreases
with neutron density. For densities larger than ρ0, the density
dependence of g0 is governed mainly by the three-neutron
force contributions, which decrease g0 and consequently
increase the neutron matter spin susceptibility χ . Considering
only central interactions we find no evidence for a phase
transition to a ferromagnetic state (characterized by G0 =
N0g0 � −1) close to nuclear matter saturation density. The
additional noncentral interactions considered in the present
work are expected to modify the general stability conditions
for Fermi liquids [49], but to date the effects of neither
the center-of-mass tensor nor cross-vector interactions have
been included. The isotropic component h0 of the exchange
tensor interaction is nearly independent of the density, since
the medium corrections from two- and three-body forces
approximately cancel. The Fermi liquid parameters of the

1Furthermore, a vanishing forward scattering amplitude in odd
partial waves may require a large number of Fermi liquid parameters,
as we discuss in Appendix B.
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TABLE VI. Fermi liquid parameters for the quasiparticle interaction in neutron matter at a density corresponding to a Fermi momentum of
kf = 1.7 fm−1. The low-energy constants of the N2LO chiral three-nucleon force are chosen to be c1 = −0.81 GeV−1 and c3 = −3.2 GeV−1

when employed together with the bare chiral NN interaction and c1 = −0.76 GeV−1 and c3 = −4.78 GeV−1 with the low-momentum interaction
Vlow-k.

kf = 1.7 fm−1 Chiral N3LO V 2.1
low-k

L 0 1 2 0 1 2

f [fm2] 0.679 −0.018 −0.959 1.072 0.135 −0.686
g [fm2] 1.025 0.388 0.302 0.880 0.298 0.380
h [fm2] 0.160 0.316 −0.252 0.175 0.317 −0.263
k [fm2] −0.156 0.085 0.063 −0.108 0.051 0.039
l [fm2] −0.050 −0.161 −0.160 −0.295 −0.330 −0.029

novel center-of-mass tensor and cross-vector interactions are
relatively small in magnitude, but k0, l0, and l2 have a strong
density dependence. From Table VI we see that there remains
a moderate dependence on the resolution scale and choice of
low-energy constants. These variations lead to differences on
the order of 10%–30% for most of the L = 0, 1, 2 Fermi
liquid parameters.

VI. CONCLUSIONS AND OUTLOOK

In the present work we have computed the L = 0, 1, 2
Fermi liquid parameters for the quasiparticle interaction in
neutron matter employing realistic two- and three-nucleon
interactions derived within chiral effective-field theory. In
addition to the free-space contribution from the two-body
interaction, we have calculated without any simplifying ap-
proximations the second-order two-body correction as well
as the leading three-body correction. A general method for
extracting all components of the quasiparticle interaction,
both central and noncentral parts, for two-body interactions
given in a partial-wave representation has been developed
and tested with simple model interactions that can be treated
semi-analytically. Employing realistic two- and three-neutron
forces, we find that medium-dependent loop corrections play
an important role in increasing the compression modulus of
neutron matter from an unphysically small value to about
K = 600 MeV at nuclear matter saturation density ρ0. Second-
order effects from two-body forces strongly enhance the
quasiparticle effective mass M∗, while three-neutron forces
play only a minor role for this quantity. The first- and
second-order contributions to g0 from two-body forces are
positive for the densities considered in the present work,
although they decrease in magnitude for increasing density.

When combined with the medium-dependent loop corrections
from the leading-order chiral three-neutron forces, the Landau
parameter g0 decreases with density, which in the absence
of noncentral interactions would lead to an increasing spin
susceptibility χ of neutron matter. The noncentral components
of the quasiparticle interaction hL, kL, and lL have been
computed as a function of the neutron density ρ. The extent to
which they affect the spin susceptibility of neutron matter as
well as the response functions for electroweak probes will be
studied in future work.
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APPENDIX A: ENERGY PER PARTICLE FROM MODEL
INTERACTIONS AT SECOND ORDER

Organizing the second-order calculation of the energy
density ρĒ in the number of medium insertions [see Eq. (22)],
one must evaluate (two-ring) Hartree and (one-ring) Fock
diagrams each with two or three medium insertions. We give
first the pertinent analytical expressions for the pseudoscalar
interaction in Eq. (23) at second order.

Hartree diagram with two medium insertions:

Ē(kf )(H2) = g4Mn

(8π )3

{
21

2u
− 15u + 32 arctan 2u

− 7

8u3
(3 + 20u2) ln(1 + 4u2)

}
. (A1)

Fock diagram with two medium insertions:

Ē(kf )(F2) = g4Mn

(4πu)3

{
2u2 − 7u3 arctan u + 6

√
2u3 arctan(

√
2u) +

(
1 + 9u2

2

)
ln(1 + u2) − 3

(
1

2
+ 2u2

)
ln(1 + 2u2)

+ 4
∫ u

0
dxx(u − x)2(2u + x)

1 + 4x2 + 8x4

(1 + 2x2)3
(arctan x − arctan 2x)

}
. (A2)

Hartree diagram with three medium insertions:

Ē(kf )(H3) = g4Mn

32π4u3

∫ u

0
dxx2

∫ 1

−1
dy

[
2uxy + (u2 − x2y2) ln

u + xy

u − xy

]
s6

(1 + s2)3
. (A3)
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Fock diagram with three medium insertions:

Ē(kf )(F3) = 3g4Mn

64π4u3

∫ u

0
dx

{
−2

[
u − 1 + u2 + x2

4x
ln

1 + (u + x)2

1 + (u − x)2

]2

+ x2
∫ 1

−1
dy

∫ 1

−1
dz

yzθ (y2 + z2 − 1)

|yz|
√

y2 + z2 − 1

[
ln(1 + s2) − s2

1 + s2

] [
ln(1 + t2) − t2

1 + t2

] }
,

(A4)

with abbreviations u = kf /m, s = xy +
√

u2 − x2 + x2y2, and t = xz + √
u2 − x2 + x2z2.

For the spin-orbit interaction [Eq. (38)] at second order the analogous expressions read

Ē(kf )(H2) = g4
s Mn

(4π )3

{
5u

2
− 2u3

3
− 3

4u
− 4 arctan 2u + 3 + 28u2

16u3
ln(1 + 4u2)

}
, (A5)

Ē(kf )(F2) = g4
s Mn

(2πu)3

{
u2

2
− 4u3 arctan u + 3

√
2u3 arctan(

√
2u) + (1 + 3u2) ln(1 + u2) − 3

(
1

4
+ u2

)
ln(1 + 2u2)

+ 2
∫ u

0
dxx(u − x)2(2u + x)

1 + 4x2 + 8x4

(1 + 2x2)3
(arctan x − arctan 2x)

}
, (A6)

Ē(kf )(H3) = g4
s Mn

64π4u3

∫ u

0
dxx2

∫ 1

−1
dy

×
[

2uxy

(
5u2

3
+ 2x2 − 3x2y2

)
+ (u2 − x2y2)(u2 + 2x2 − 3x2y2)

× ln
u + xy

u − xy

]
s4(3 + s2)

(1 + s2)3
, (A7)

Ē(kf )(F3) = 3g4
s Mn

16π4u3

∫ u

0
dx

×
{

−
[
u − 1 + u2 + x2

4x
ln

1 + (u + x)2

1 + (u − x)2

]2

+ x2
∫ 1

−1
dy

∫ 1

−1
dz

yzθ (y2 + z2 − 1)

|yz|
√

y2 + z2 − 1

×
[

ln(1 + s2) − s2

1 + s2

]

×
[

ln(1 + t2) − t2

1 + t2

]}
, (A8)

where u = kf /ms . An interesting feature of the second-order
spin-orbit interaction is that for large mass ms the Hartree
and Fock contributions become equal with the same sign. It is
worth noting that the agreement between these semi-analytic
results and those based on the partial-wave decomposition (66)
agree on the per mille level.

APPENDIX B: FORWARD SCATTERING AMPLITUDES
FOR MODEL INTERACTIONS AND CHIRAL

THREE-NUCLEON FORCE

The forward scattering amplitude for two quasiparticles
on the Fermi surface receives the following contribution
from pseudoscalar boson exchange (23) at second order in

many-body perturbation theory:

F( �p1, �p1) = (1 − �σ1 · �σ2)
g4Mn

64π2m3

×
{

arctan 2u − π

2
− 2u(3 + 20u2)

3(1 + 4u2)2

}
, (B1)

with u = kf /m, while one gets from a scalar boson exchange,
VC(q) = −g2/(m2 + q2), at second order:

F( �p1, �p1) = (1 − �σ1 · �σ2)
g4Mn

16π2m3
(2 arctan 2u − π ). (B2)

The spin-orbit interaction (38) at second order leads in fact
to a vanishing contribution to F( �p1, �p1). Furthermore, the
N2LO chiral three-neutron interaction treated at first order
gives rise to a quasiparticle forward scattering amplitude of the
form

F( �p1, �p1) = (1 − �σ1 · �σ2)
g2

Am3
π

16π2f 4
π

{
4u(c3 − c1) − 4c3u

3

3

+ (6c1 − 5c3) arctan 2u + 3c3 − 4c1

2u

× ln(1 + 4u2)

}
, (B3)

TABLE VII. Values of Sn (divided by S0)
at u = 2.48 for various increasing n.

n Sn/S0

5 0.23
10 0.04
15 0.006
20 0.0001
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with u = kf /mπ . We note that in all of these cases only the
central components of the quasiparticle scattering amplitude
remain in the forward limit �p2 → �p1. The important
feature about these forward scattering amplitudes is their
proportionality to the operator (1 − �σ1 · �σ2). It makes them
vanish identically in the spin-triplet state as required by the
Pauli principle.

Next, we investigate the convergence of the Legen-
dre polynomial expansion of the quasiparticle interac-
tion in the simple case of one-pion exchange. The obvi-
ous vanishing of one-pion exchange in forward direction
(�q = 0) implies that the following sequence converges to

zero:

Sn =
n∑

L=0

(2L + 1)
∫ 1

−1
dzPL(z)

u2(1 − z)

1 + 2u2(1 − z)
, (B4)

with u = kf /mπ and the prefactor from coupling constants
has been omitted. Choosing kf = 1.7 fm−1, we list in
Table VII the values of Sn (divided by S0) at u = 2.48 for
various increasing n.

One observes from this example that in practice satisfying
the Pauli principle zero sum rule with good accuracy will be
delicate and requires knowledge of a large number of Landau
parameters.
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