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E2 strengths and transition radii difference of one-phonon 2+ states of 92Zr from electron scattering
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Background: Mixed-symmetry 2+ states in vibrational nuclei are characterized by a sign change between
dominant proton and neutron valence-shell components with respect to the fully symmetric 2+ state. The sign can
be measured by a decomposition of proton and neutron transition radii with a combination of inelastic electron
and hadron scattering [C. Walz et al., Phys. Rev. Lett. 106, 062501 (2011)]. For the case of 92Zr, a difference
could be experimentally established for the neutron components, while about equal proton transition radii were
indicated by the data.
Purpose: Determination of the ground-state (g.s.) transition strength of the mixed-symmetry 2+

2 state and
verification of the expected vanishing of the proton transition radii difference between the one-phonon 2+ states
in 92Zr.
Method: Differential cross sections for the excitation of one-phonon 2+ and 3− states in 92Zr have been measured
with the (e, e′) reaction at the S-DALINAC in a momentum transfer range q � 0.3–0.6 fm−1.
Results: Transition strengths B(E2; 2+

1 → 0+
1 ) = 6.18(23), B(E2; 2+

2 → 0+
1 ) = 3.31(10), and B(E3; 3−

1 →
0+

1 ) = 18.4(1.1) Weisskopf units are determined from a comparison of the experimental cross sections to
quasiparticle-phonon model (QPM) calculations. It is shown that a model-independent plane wave Born
approximation (PWBA) analysis can fix the ratio of B(E2) transition strengths to the 2+

1,2 states with a precision
of about 1%. The method furthermore allows to extract their proton transition radii difference. With the present
data �R = −0.12(51) fm is obtained.
Conclusions: Electron scattering at low momentum transfers can provide information on transition radii
differences of one-phonon 2+ states even in heavy nuclei. Proton transition radii for the 2+

1,2 states in 92Zr
are found to be identical within uncertainties. The g.s. transition probability for the mixed-symmetry state can be
determined with high precision limited only by the available experimental information on the B(E2; 2+

1 → 0+
1 )

value.
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I. INTRODUCTION

Collectivity, isospin symmetry, and shell structure are
generic features of the nuclear many-body quantum system.
Collective nuclear valence-shell excitations are a key to
understand how these features coexist, interplay, and compete.
In vibrational nuclei, the development of predominantly
proton-neutron symmetric collective nuclear structures at
low excitation energies is governed by the strong residual
proton-neutron interaction. Their existence implies—due to
quantum-mechanical orthogonality—the formation of collec-
tive states with, at least partial antisymmetry with respect to the
contribution of proton and neutron valence-space components
to their wave functions. Such excited states are said to have
mixed symmetry [1]. The investigation of mixed-symmetry
states (MSS) is an important source of information on the
effective proton-neutron interaction in the valence shell of
heavy atomic nuclei [2].

MSS have been defined in the framework of the proton-
neutron interacting boson model (IBM-2) [3]. In analogy to the
isospin symmetry of nucleons, the symmetry of a multiboson
wave function formed by Nπ proton bosons and Nν neutron
bosons is quantified by the so-called F spin. States with F <
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Fmax = (Nπ + Nν)/2 have wave functions that contain at least
one pair of proton and neutron bosons antisymmetric under
the exchange of proton and neutron labels. The signatures of
2+ MSS are (i) strong M1 transitions to fully symmetric states
(FSS) with matrix elements of about 1μ2

N and (ii) weakly
collective E2 transitions to FSS.

The prediction of the IBM-2 with respect to a multiphonon
structure of MSS in vibrational nuclei was confirmed about ten
years ago by the observation of large M1 transition strengths
between low-energy states of 94Mo [4–6]. The 2+ states
were also investigated with electron scattering experiments
at the superconducting electron accelerator S-DALINAC and
with proton scattering at iThemba LABS [7]. The combined
analysis supported a one-phonon structure of the 2+

1,3 states
of 94Mo.

In the neighboring even-even isotone 92Zr with two neu-
trons outside the N = 50 closed shell and with the Z = 40 sub-
shell closure, a stronger configurational isospin polarization of
the one-phonon states than in 94Mo is expected [8,9]. Recent
work showed that the collectivity of the low-lying symmetric
and mixed-symmetric quadrupole excitation in vibrational
nuclei originates from the coupling of the giant quadrupole
resonance to the dominant valence-space configurations [10].
Experimental evidence in 92Zr and 94Mo stems from the
observation of a difference of the respective matter-transition
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FIG. 1. Electron scattering spectra of the 92Zr(e, e′) reaction at
incident electron energy E0 = 63 MeV and electron scattering angles
� = 81◦, 93◦, and 117◦.

radii (deduced from proton scattering) while charge-transition
radii (deduced from electron scattering) were found to be
about equal. The difference results from a sign change of the
dominant valence neutron amplitude in MSS with respect to
the FSS.

The present work provides an in-depth study of the electron
scattering results on 92Zr. In particular, we discuss a new
method for a model-independent determination of the ratio
of the E2 transition strengths of fully symmetric and mixed-
symmetric one-phonon excitations in heavy vibrational nuclei,
which at the same time provides an estimate of the sensitivity
to the transition-radius difference between these two states.
The results are furthermore interpreted in the framework of
the QPM (for an introduction to the model see [11]).

II. EXPERIMENT

The experiment has been carried out at the Darmstadt
superconducting electron linear accelerator S-DALINAC. The
LINTOTT spectrometer was used with a focal-plane detector
system based on four single-sided silicon detectors, each
providing 96 strips with thickness of 500 μm and a pitch
of 650 μm [12]. Electrons with an incident beam energy
E0 = 63 MeV and beam currents ranging from 0.5 to 1 μA
impinged on a 92Zr target with an isotopic enrichment of
94.57% and an areal thickness of 9.75 mg/cm2. Data were
taken at five different scattering angles � = 69◦, 81◦, 93◦,
117◦, and 165◦ covering roughly the first maximum of an E2
form factor.

Examples of electron-scattering spectra are shown in Fig. 1.
The energy resolution was about 55 keV (full-width at half-

TABLE I. Cross sections of electroexcitation of the 2+
1,2 and 3−

1

states in 92Zr normalized to the Mott cross section in units 10−4 and
the ratio RF of the 2+

1,2 kinematical functions defined in Eq. (6). Only
statistical errors are given.

q (fm−1) 2+
1 2+

2 3−
1 RF

0.36 3.98(11) 2.02(7) 1.95(30) 1.0148
0.41 5.19(4) 2.67(3) 3.30(13) 1.0146
0.46 5.39(10) 2.95(8) 4.32(10) 1.0146
0.55 7.94(21) 4.23(17) 10.5(5) 1.0143
0.64 5.2(5) 4.4(4) – 1.0143

maximum, FWHM). The observed peaks correspond to the
elastic line, the collective one-phonon 2+

1 (Ex = 0.934 MeV)
and 3−

1 (Ex = 2.339 MeV) states, and the one-phonon MSS
(2+

2 , Ex = 1.847 MeV).
Peak areas A of the transitions were obtained from a

spectrum decomposition using the line shape described in
Ref. [13]. Absolute differential cross sections were deter-
mined from normalization to the elastic scattering peak.
Theoretical elastic scattering cross sections were obtained
from calculations with the code PHASHI [14] using charge
density distributions from Ref. [15]. The resulting inelastic
cross sections with statistical uncertainties are given in
Table I normalized to the Mott cross section. The overall
systematic uncertainties of the normalization due to the model
description of the charge density and experimental kinematic
parameters (electron energy, scattering angle) were estimated
to 5%, which were added in quadrature.

III. DWBA ANALYSIS

Figure 2 presents the results of Table I in comparison with
QPM calculations as a function of momentum transfer

q = 1

h̄c

√
2E0 (E0 − Ex) (1 − cos θ ) + E2

x . (1)

In the present application (details are given in Ref. [10]),
excited states in 92Zr are described by wave functions including
one-, two-, and three-phonon configurations. Note that the
results are very similar to an earlier QPM study of the 2+
MSS in 92Zr [16]. Theoretical (e, e′) cross sections have
been calculated within the distorted wave Born approximation
(DWBA) to account for Coulomb distortion effects. They
provide a satisfactory description of the q dependence. In order
to extract the reduced transition probabilities, the calculations
have been scaled to the data and extrapolated to the photon
point, q ≡ k = Ex/h̄c. The results are given in Table II
labeled “DWBA”. The quoted errors are those of the least-
square fit to the data. Possible systematic uncertainties due
to the extrapolation to the photon point are expected to be
negligible. The absolute B(E2; 2+

1 → 0+
1 ) and B(E2; 2+

2 →
0+

1 ) strengths agree well within error bars with a previous
experiment [17]. This is also true for the B(E3; 3−

1 → 0+
1 )

transition strength but the present value is significantly more
precise. Previous measurements based on low-energy proton
scattering show a large spread of results (14.7, 16.2, 18.9, 21.3,
23.6 W.u.) [18], most likely due to the model dependence of
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FIG. 2. Momentum-transfer dependence of the excitation of the
one-phonon fully symmetric 2+

1 state (top), mixed-symmetric 2+
2

(middle), and 3−
1 state (bottom) of 92Zr from electron scattering.

The data (full squares) are compared to the QPM calculations (solid
lines).

the extraction of an electromagnetic transition matrix element
from hadronic scattering data.

IV. PWBA ANALYSIS

The transition strengths derived from the (e, e′) data depend
of course on the applied nuclear structure model. In light nuclei
it has been shown that transition strengths can be extracted in
a nearly model-independent plane-wave Born approximation
(PWBA) analysis [19]. It assumes that Coulomb distortions of
the electron wave function can be approximated by an overall
correction factor determined from the g.s. charge distribution
of the nucleus. For kinematics where transverse contributions

TABLE II. Reduced B(Eλ) transition strengths of low-energy
collective transitions in 92Zr deduced from the present (e, e′) data
in comparison with literature values from Ref. [17] for B(E2) and
Ref. [18] for B(E3). The strengths are given in Weisskopf units
(W.u.).

Present work Literature

DWBA PWBA

B(E2; 2+
1 → 0+

1 ) 6.18(23) 6.4(5)
B(E2; 2+

2 → 0+
1 ) 3.31(10) 3.32(27) 3.4(4)

B(E3; 3−
1 → 0+

1 ) 18.4(11) 19(6)

can be neglected, the differential cross sections for electric
transitions are then given by(

dσ

d	

)
Eλ

= fc

(
dσ

d	

)
Eλ,PWBA

= fc

α2aλq
2λ

k2
0R

λ

λ + 1
VL(θ )B(Cλ, q), (2)

where aλ = πλ−1 (λ + 1) [(2λ + 1)!!]−2, k0 = E0/h̄c, and
R = 1 + h̄c(k0/Mc2)(1 − cos θ ). The symbol α denotes the
fine structure constant, λ is the transition multipolarity, and
VL(θ ) is a kinematic function given, e.g., in Ref. [19]. The
quantities B(Cλ) and the reduced transition probabilities
B(Eλ) from real-photon experiments can be related by
Siegert’s theorem [20]

B(Cλ, q) = q2/k2B(Eλ, k).

The Coulomb correction factor

fc(q,E0, Ex) =
[

(dσ/d	)DWBA

(dσ/d	)PWBA

]
theo

is determined from the ratio of DWBA and PWBA calculations
employing the QPM transition densities.

The reduced transition probabilities can thus be related to
the experimental differential cross section by

B(Cλ, qx)

= k2
0R

α2aλq2λ
x

[
VL(θ )

λ

λ + 1
fc (qx, E0, Ex)

]−1 (
dσ

d	

)
Eλ

≡ [fkinfc (qx, E0, Ex)]−1

(
dσ

d	

)
Eλ

. (3)

For low momentum transfers, B(Cλ, q) can be expanded
in a power series of the momentum transfer

√
B(Cλ, q) =

√
B(Cλ, 0)

(
1 − q2R2

tr

2(2λ + 3)

+ q4R4
tr

8(2λ + 3)(2λ + 5)
− · · ·

)
. (4)

Here, Rn
tr is defined by

Rn
tr = 〈rλ+n〉tr

〈rλ〉tr
=

∫
ρλ

trr
λ+nd3r∫

ρλ
trr

λd3r

(5)

with ρλ
tr(r) describing the transition density of multipolarity λ.

In general, the PWBA approximation is not valid for a heavy
nucleus like 92Zr. However, it may hold for the ratio of cross
sections populating the 2+ FSS and MSS for the following
reasons: (i) the kinematics for both transitions are almost
identical and (ii) transition densities of collective transitions of
a given multipolarity are similar (see, e.g., Fig. 2 in Ref. [10]
for the cases studied here). Figure 3 shows the Coulomb-
correction factors calculated with the QPM for the transitions
to 2+

1 (middle) and 2+
2 (top) states in 92Zr together with their

ratio (bottom) as a function of q. The ratio is unity to better
than 1% over the range of the momentum transfer included
in our experiments. Consequently, the effects from Coulomb
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FIG. 3. Momentum-transfer dependence of the Coulomb correc-
tions for the transition to the 2+

1,2 states in 92Zr for an incident electron
energy E0 = 63 MeV.

distortion can be neglected in a relative analysis, and the
extraction of the B(E2) ratio can be achieved with improved
accuracy, since systematic errors in the determination of
absolute cross sections cancel.

Employing Eqs. (3) and (4) and defining the transition
radius Rtr =

√
R2

tr, the ratio of reduced transition strengths
can be approximated by√

B(C2, q2)

B(C2, q1)

= RF(q)

√
A2

A1
≈

√
B(E2, k2)

B(E2, k1)

×
(

1 − q2
2

14 (Rtr,1 + �R)2 + q4
2

504 (Rtr,1 + �R)4

1 − q2
1

14 (Rtr,1)2 + q4
1

504 (Rtr,1)4

)
, (6)

where the indices 1, 2 indicate the transitions to the 2+
1 and 2+

2
state, respectively. RF denotes the ratio of kinematic functions√

fkin,2/fkin,1, given in Table I, and �R = Rtr,2 − Rtr,1 the
difference of the corresponding charge-transition radii. The
experimental ratio depends on the square root of the ratio of
the peak areas

√
A2/A1 only.

For the approximation on the right-hand side of Eq. (6)
use is made of Siegert’s theorem and of the Tassie model [21]
which provides a good description of the surface behavior of
transition densities for collective states. We have checked that
the approximation R4

tr = (Rtr)4 employed in Eq. (6) within this
model, yields very accurate results, and thus it is used in our
analysis below. This approximation may be questionable for
the results at the highest q in Table I which also have poor
statistics. The data point is thus omitted in the further analysis.

Figure 4 shows a plot of RF
√

A2/A1 as a function of the
squared elastic momentum transfer. A fit of Eq. (6) to the
data has three parameters, viz. the ratio of B(E2) strengths,

0.65

0.70

0.71

FIG. 4. Ratio of the reduced transition probabilities of the 2+

MSS and FSS (solid squares) of 92Zr as a function of the squared
elastic momentum transfer q0. An additional data point (full circle)
at q2

0 = k2 stems from the ratio of B(E2) strengths obtained from
γ -decay lifetime measurements [17]. The solid line is a fit of Eq. (6)
with 1σ error bars given by the dashed lines.

Rtr,1 and �R. In a first step, Rtr,1 = 5.6 fm is fixed using the
QPM results. A χ2 minimization of Eq. (6) to the data then
determines √

B(E2; 2+
2 )

B(E2; 2+
1 )

= 0.720(8).

With the B(E2; 2+
1 ) value from Table II, we obtain

B(E2; 2+
2 ) = 3.32(27) W.u., in agreement with Ref. [17] and

with the value obtained above from the DWBA analysis. While
the ratio can be determined precisely with an uncertainty of
about 1%, the accuracy of the absolute value is presently
limited by the error of the B(E2; 2+

1 ) value in the literature.
The second parameter �R in Eq. (6) provides information

about the change of the proton transition radii between both
2+ states. This is particular interesting in view of the recent
results of Walz et al. [10] providing evidence for a significant
difference of the neutron transition radii for these two states,
while their proton transition radii are expected to be very
close based on QPM calculations. This may serve as a new
experimental signature of MSS in vibrational nuclei with a
specific shell structure. An experimental confirmation of this
conjecture is of considerable interest. The fit of Eq. (6) leads to
�R = −0.18(65) fm, where the uncertainty is dominated by
the limited number of data points with small enough error bars
at sufficiently low momentum transfers. One way to improve
the fit is the inclusion of the results of Ref. [17] providing an
additional data point at q0 = k. The resulting fit (solid curve)
with 1σ error bars (dashed curves) shown in Fig. 4 corresponds
to �R = −0.12(51) fm consistent with equal proton transition
radii to about half a fm.

Finally, we briefly comment on a possible dependence of the
result on a variation of the absolute size of the charge transition
radius Rtr,1. We have repeated the analysis for nine different
values of Rtr,1 between 4 and 7 fm, thereby overexhausting the
range of possible values expected from model calculations and
from the phenomenological finding that the transition radii of
collective excitations differ not too much from the radius of
the nuclear ground state [19]. As demonstrated in Fig. 5, the
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FIG. 5. Evolution of the charge-transition radii difference be-
tween the 2+

1 and 2+
2 states in 92Zr obtained from Eq. (6) as a function

of the transition radius Rtr,1. The arrow indicates the prediction of the
QPM calculation.

deduced difference of the charge transition radii is independent
of the choice of Rtr,1.

V. SUMMARY

To summarize, an investigation of the nature of one-
phonon symmetric and mixed-symmetric 2+ states in 92Zr
has been performed using inelastic electron scattering at low
momentum transfers. A comparison of the measured form
factors with QPM calculations confirms the dominant one-
phonon structure of the transitions to the 2+

1 and 2+
2 states. It is

shown that a PWBA analysis of the form factors, which usually

fails for heavy nuclei, can nevertheless be applied to extract
the ratio of the g.s. B(E2) transition strengths in a relative
analysis. This is a new promising approach to determine the
g.s. transition strength of the 2+ MSS in vibrational nuclei
with a precision limited only by the experimental information
about the B(E2; 2+

1 → 0+
1 ) strength. The PWBA approach

furthermore provides information about differences of the
proton transition radii of the respective states, containing
independent information about the mixed-symmetry character
of 2+ states and the sign change of leading valence shell
components between FSS and MSS [10]. For 92Zr, the proton
transition radii agree within about 0.5 fm, consistent with
predictions that the sign change arises in this case from the
neutron component.

Further analysis of the data indicates that an improved pre-
cision for the proton transition radii difference can be achieved
by additional data, in particular in momentum transfer ranges
presently not covered well (e.g., q2 = 0 − 0.1 fm−2). Elemen-
tary to the present approach is an approximate cancellation
of Coulomb corrections of the FSS and MSS. This may be
questioned when moving away from shell closures, where the
collectivity of the MSS ground-state decay decreases. Sys-
tematic investigations are necessary to establish the range of
applicability of this new promising method. Work along these
lines (e.g., studies of 94,96Zr and Mo isotopes) is underway.
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