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An improved quark mass density-dependent model is applied to study the ground-state properties of axially
deformed even-even nuclei using the deformed quark-meson coupling calculation. The present study is mainly
focused on the nuclei with the available experimental data ranging from Z = 14 to Z = 26. The ground-state
binding energies, two-neutron separation energies, two-proton separation energies, quadrupole deformations, and
root-mean-square (rms) charge radii are studied. The shell effect of the neutron magic number N = 20 can be
demonstrated by our model. It has been shown that the improved quark mass density-dependent model can give
a reasonable description of the axially deformed nuclei.
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I. INTRODUCTION

Relativistic calculations of finite nuclei and infinite nuclear
matter play important roles in theoretical nuclear physics. It is
known that quantum chromodynamics (QCD) is very difficult
to study in a nuclear system directly because of its nonper-
turbative nature, so phenomenological models reflecting the
characteristics of the strong interaction are widely used in
research of the properties of nuclear matter and finite nuclei.
The relativistic mean field (RMF) model based on baryon and
meson degrees of freedom gives a reasonable starting point for
the studies of nuclear matter as well as the physical properties
of finite nuclei [1–6]. Meanwhile, many effective models
based on quark and meson degrees of freedom have also been
proposed. They include the quark meson coupling (QMC)
model [7–9], the chiral SU(3) quark model [10–12], the quark
mean field model [13], and the improved quark mass density-
dependent (IQMDD) model [14]. Among these models, the
QMC and IQMDD models are hybrid quark-meson models
based on bag models of nucleons. The famous QMC model,
first suggested by Guichon [7] in 1988, describes nuclear
matter as a collection of nonoverlapping MIT bags, scalar
σ mesons and vector ω mesons [15]. Meanwhile, the IQMDD
model [14] constructs the Friedberg-Lee (FL) soliton bag in a
nuclear system after introducing the nonlinear interaction of
σ mesons and qqσ coupling, which replaces the permanent
confinement mechanism (MIT bag) in the QMC model with a
nonpermanent confinement mechanism (FL soliton bag [16]).
Both the QMC model and the IQMDD model can describe
many physical properties of nuclear matter and spherical nuclei
successfully.

There are lots of work about deformed relativistic mean-
field calculations based on baryon and meson degrees of
freedom [17–21], while the deformed calculation based on
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quark and meson degrees of freedom has not been studied yet.
The motivation of this paper is to extend the improved quark
mass density-dependent (IQMDD) model [14] to describe
the deformed nuclei. The IQMDD model, where mesons
couple only to the quarks, is derived from the quark mass
density-dependent(QMDD) model [22,23] by Wu and his
collaborators. The IQMDD model provides natural coupling
constants between mesons and quarks. Meanwhile, some
investigations indicate that the traditional hadronic physics
approach may have its limitations [8]. In Refs. [8,24,25],
it was concluded that when the naive dimensional analysis
(NDA) was applied to quantum hadrodynamics (QHD), the
relativistic Hartree approximation (RHA) in QHD leads to
unnaturally large coefficients due to the treatment of the
vacuum in terms of the excitation of NN pairs. On the
other hand, alternative approaches which include subhadronic
degrees of freedom may give some different insights into the
properties of finite nuclei and nuclear matter. Under the mean
field approximation, the effective nucleon mass in the IQMDD
model has a nonlinear relationship with the σ field rather than
RMF model (the result is also same for the QMC model).

According to the QMDD model, suggested by Fowler,
Raha, and Weiner, the masses of u, d quarks and strange quarks
(and the corresponding antiquarks) are given by

mq = B

3nB

(q = u, d, ū, d̄), (1)

ms,s̄ = ms0 + B

3nB

, (2)

where nB is the baryon number density, ms0 is the current
mass of the strange quark, and B is the bag constant. In the
IQMDD model where the σ , ω, and ρ mesons are added,
the quark masses are still density dependent. The interactions
between quarks and mesons are extended to the whole system.
The IQMDD model can successfully describe the quark
deconfinement phase transition [26,27] and carry out nuclear
many-body calculations beyond the mean field approximation
(MFA) in principle [28].
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Seven isotopic chains near Z = 20 are investigated in this
paper. Additionally, we also calculate these nuclei with the
RMF parameter sets NL3 [2] and FSU [3] for comparison.
Usually, the MFA is thought to be reliable for describing
ground-state properties of nuclei with mass number A around
and larger than 40. Our studied nuclei are just in the lower limit
of validity for such an approach and there are many experimen-
tal deformed isotopes in this region, so it is interesting to use
deformed calculations based on quark and meson degrees of
freedom to investigate these nuclei and test their validity and
reliability for describing the properties of deformed nuclei.
After writing down the Lagrangian density for finite nuclei
at the hadronic level, the Dirac equation for nucleons and the
Klein-Gordon equations for meson fields and the photon field
can be obtained. For the deformed calculation, we expand the
Dirac spinors as well as the meson fields in terms of oscillator
wave functions in cylindrical coordinates. The set of coupled
partial differential equations can be solved self-consistently.
Then we calculate the ground-state properties of even-even
nuclei from Z = 14 to 26. In this region, there are plenty
of experimental data available. We emphasize that we are
the first to apply deformed relativistic mean-field calculations
based on quark and meson degrees of freedom to investigate
these isotopic chains. Our model can well describe the studied
properties of these finite nuclei.

The organization of this paper is as follows. In Sec. II, the
theoretical framework for finite nuclei in the IQMDD model
is given. The model parameters and the calculated results are
presented and discussed in Sec. III. Finally, a summary is
given in Sec. IV.

II. FORMULAS OF THE IQMDD MODEL
FOR FINITE NUCLEI

In the IQMDD model, the effective Lagrangian density is
written as

L = ϕ̄

[
γ μ

(
i∂μ − gq

ωωμ − g
q
ρ

2
τρμ

)
− mq + gq

σ σ

]
ϕ

+ 1

2
∂μσ∂μσ − U (σ ) − 1

4
FμνFμν + 1

2
m2

ωωμωμ

− 1

4
GμνGμν + 1

2
m2

ρρ
μρμ. (3)

The strength tensors of the vector mesons are defined as
Fμν = ∂μων − ∂νωμ, Gμν = ∂μρν − ∂νρμ, the quark mass mq

is given by Eqs. (1) and (2), and g
q
σ , gq

ω, and g
q
ρ are the coupling

constants between the quark-σ meson, quark-ω meson, and
quark-ρ meson, respectively. U (σ ) is the self-interaction
potential for the σ field, which has the form

U (σ ) = 1
2m2

σ σ 2 + 1
3bσ 3 + 1

4cσ 4 + B. (4)

The bag constant B is introduced so that

U (συ) = 0, U (0) = B, (5)

thus

−B = 1

2
m2

σ σ 2
υ + 1

3
bσ 3

υ + 1

4
cσ 4

υ ,
(6)

συ = −b

2c

(
1 +

√
1 − 4m2

σ c/b2
)
,

where συ is the σ field value when U (σ ) has the absolute
minimum. The equation of motion for the quark field under
the MFA in the whole space is[
iγ μ∂μ − (

mq − gq
σσ

) − gq
ωγ 0ω0 − g

q
ρ

2
γ 0τ3ρ0

]
ϕ = 0. (7)

The effective quark mass m∗
q is given by

m∗
q = mq − gq

σσ. (8)

In nuclear matter, three quarks constitute a FL soliton bag, and
the effective nucleon mass is obtained from the bag energy and
reads

M∗
N =

∑
q

Eq

=
∑

q

4

3
πR3 �q

(2π )3

∫ K
q
F

0

√
m∗

q
2 + k2

(
dNq

dk

)
dk, (9)

where �q is the quark degeneracy, K
q
F is the Fermi energy of

quarks, and
∑

q denotes the summation for quarks. dNq/dk
is the density of states for various quarks in a spherical cavity.
The expressions of dNq/dk and K

q
F adopted in this paper can

be found in Ref. [29]. Using the equilibrium condition for the
nucleon bag, the bag radius R can be determined by

δM∗
N

δR
= 0. (10)

We note that the expression of the effective nucleon mass for
IQMDD is different from that of the RMF model (FSU, NL3).
Let us consider the self-consistency condition and ( ∂M∗

N

∂σ
)
R

further. Using the same argument as that of Ref. [15], the
( ∂M∗

N

∂σ
)
R

can be expressed as(
∂M∗

N

∂σ

)
R

= −gσ ×
(

1
c(σ )

)
for

(
NL3, FSU
IQMDD

)
, (11)

where c(σ ) is the scalar density factor. More detailed discus-
sion about it can be found in Ref. [14]. For investigating the
finite nuclei, one can construct a relativistic Lagrangian density
at the hadronic level under the MFA in the following form:

LRMF = ψ̄

[
iγ μ∂μ − M∗

N (σ ) − gωγ 0ω0(r) − gρ

2
γ 0τ3ρ0(r)

− e

2
γ 0(1 + τ3)A0(r)

]
ψ − 1

2
[∇σ (r)]2 − U (σ )

+ 1

2

{
[∇ω0(r)]2 + m2

ωω0(r)2
}

+ 1

2

{
[∇ρ0(r)]2 + m2

ρρ0(r)2
} + 1

2
[∇A0(r)]2, (12)

where ψ’s are the Dirac spinors for the nucleons and A0

denotes the electromagnetic field. The coupling constants
between nucleon and ω meson, ρ meson are chosen as gω =
3g

q
ω and gρ = g

q
ρ [15]. Using the Euler-Lagrange equation we

obtain the Dirac equation for nucleons as follows:[
iγ μ∂μ − M∗

N − gωγ 0ω0(r) − gρ

2
γ 0τ3ρ0(r)

− e

2
γ 0(1 + τ3)A0(r)

]
ψ = 0. (13)
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The Klein-Gordon equations for the mesons and photon can
be written as
( − � + m2

σ

)
σ (r) = −∂M∗

N

∂σ
ρs(r) − bσ 2(r) − cσ 3(r), (14)

( − � + m2
ω

)
ω0(r) = gωρv(r), (15)

( − � + m2
ρ

)
ρ0(r) = gρ

2
ρ3(r), (16)

−�A0(r) = eρp(r), (17)

where ρs , ρv , ρ3, and ρp are the densities of scalar, baryon,
third component of isovector, and proton, respectively. These
source densities can be expressed as

ρs(r) =
A∑

i=1

ψ̄i(r)ψi(r), (18)

ρv(r) =
A∑

i=1

ψ+
i (r)ψi(r), (19)

ρ3(r) =
Z∑

p=1

ψ+
p (r)ψp(r) −

N∑
n=1

ψ+
n (r)ψn(r), (20)

ρp(r) =
Z∑

p=1

ψ+
p (r)ψp(r). (21)

The above coupled equations (13)–(17) can be self-
consistently solved with the effective mass of nucleon obtained
by Eq. (9). In this work, we calculate the ground-state
properties of even-even nuclei near Z = 20 and use the BCS
method to deal with the pairing interactions.

III. NUMERICAL RESULTS AND DISCUSSION

First, let us discuss the parameters in the IQMDD model.
As those of Refs. [14], the masses of ω meson, ρ meson,
and σ meson are fixed as mω = 783 MeV, mρ = 770 MeV,
and mσ = 509 MeV. We get the bag constant B = 174 MeV
fm−3 to fit the nucleon mass as MN = 939 MeV. In order
to get the compression constant K(ρ0) = 210 MeV and the
binding energy per particle E/A = −15.0 MeV at the nuclear
saturation density ρ0 = 0.15 fm−3, we fix g

q
ω = 2.44, g

q
σ =

4.67, and b = −1460 MeV, and the coupling constant c can
be deduced from Eq. (6). In addition, we fix g

q
ρ = 9.07 to get

a modest symmetry energy coefficient as about 33.2 MeV.
There have been some investigations on the even-even

nuclei near Z = 20 [17]. In Ref. [17], Lalazissis et al. studied
the properties of these nuclei with NL3 [2]. Their calculations
show that the RMF model is valid and reliable for describing
the properties of the nuclei in this region. In the present work,
we apply the IQMDD model to study these nuclei.

We follow the same method of oscillator base expansion
as described in Ref. [30]. The number of oscillator shells in
our calculation is chosen as Nf = Nb = 12. With the BCS
approximations, the pairing correlation is taken into account
for these even-even nuclei. The constant pairing gaps are taken
with the following forms [31,32]:

�n = 4.8

N1/3
MeV, �p = 4.8

Z1/3
MeV, (22)

where N and Z are the neutron and the proton numbers,
respectively. These effective-interaction pairing gaps were
determined by least-squares minimization comparing to the
calculated paring gaps for experimental odd-even mass differ-
ences, and the root-mean-square (rms) deviation of the result
with these pairing gaps are lower than that of the conventional
form const/

√
A [31]. An axial deformation is assumed

initially for the iteration in the calculation. It stressed that the
different selections of the deformation parameter β0 lead to
different iteration numbers of the self-consistent calculation
and different computational time. Physical quantities such
as the binding energy and the deformation do not change
much. The whole calculation is performed with the range of
the deformation β0 from −0.5 to 0.5, with the steps of 0.1.
This can guarantee the reliability of the numerical results in
deformed IQMDD calculations. The charge radius is taken
as Rc = √

R2
p + 0.64 fm, where Rp is the rms radius of the

proton distribution.
The calculated binding energy per nucleon E/A,

quadrupole deformations β2, and various rms radii are listed in
Table I. Hexadecupole moments H are also listed there since
they are important in transitional nuclei [33]. For comparison,
the experimental values for the binding energy per nucleon
and quadrupole deformation taken from Ref. [34,35] are also
included. For a better understanding of the agreement between
theory and experiment, we discuss our calculated results in
detail.

We plot the binding energy as functions of the mass
numbers for S, Ar, Ca, and Cr in Fig. 1. The results calculated
with the RMF model (NL3, FSU) are also included for
comparison. The squares, diamonds, stars, and open circles
are respectively the experimental data taken from Ref. [34]
and the calculated results with FSU, NL3, and IQMDD. It
can be seen from Fig. 1 that calculated binding energies per
particle with IQMDD are smaller in absolute value than the
results with FSU, NL3, and experimental values. However,
they have the same change trend with the mass number
increasing. Besides, as we see in Fig. 1, the calculated
binding energies for 36S, 38Ar, and 52Cr have the largest
values in their respective isotopic chains, which correspond
to the neutron magic number N = 20, 28. Meanwhile, in our
calculation, the rms deviation of the total binding energies
in IQMDD with respect to the experimental data for the
nuclei presented in Table I is about 12 MeV, while the rms
deviation of the total binding energies for these nuclei in NL3
is about 3 MeV, and the result for FSU is slightly larger than
NL3. In the IQMDD model, we fit the binding energy per
particle E/A = −15.00 MeV at the nuclear saturation density
ρ0 = 0.150 fm−3, while E/A = −16.30 MeV at the nuclear
saturation density ρ0 = 0.148 fm−3 for NL3 [2] and for FSU
[3], which is one of the main reasons why the IQMDD model
gives smaller binding energies than the experimental data.

The quadrupole deformation parameter β2, which is an
important quantity for describing the nuclear shape, can be
obtained by solving the deformed IQMDD equations. While
the experimental values of quadrupole deformation parameter
β in Ref. [35] are given as

β = (
4π/3ZR2

0

)
[B(E2) ↑ /e2]1/2, (23)
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TABLE I. Binding energy per baryon, E/A (in MeV), rms radii of the neutron (Rn) and proton (Rp), rms charge radius (Rc) (in fm), and
quadrupole deformation and total hexadecupole moment of even-even nuclei near Z = 20 with IQMDD. The available experimental data in
the last two columns are taken from the nuclear mass table [34] and Ref. [35].

Nucleus IQMDD Expt

E/A Rn Rp Rc β2 H (b2) E/A β

24Si −6.95 2.93 3.27 3.37 0.490 0.011 −7.17
26Si −7.60 3.07 3.24 3.34 0.569 0.011 −7.92 0.446
28Si −8.02 3.19 3.23 3.33 0.580 0.005 −8.45 0.407
30Si −8.08 3.25 3.19 3.29 0.447 0.001 −8.52 0.315
32Si −8.16 3.29 3.15 3.25 −0.275 0.006 −8.48 0.217
34Si −8.15 3.34 3.12 3.22 −0.005 0.000 −8.34 0.179
36Si −7.91 3.48 3.17 3.27 0.216 0.016 −8.11 0.259
38Si −7.72 3.62 3.24 3.34 0.401 0.040 −7.89 0.249
40Si −7.53 3.74 3.30 3.39 0.489 0.043 −7.66
42Si −7.29 3.84 3.33 3.43 0.498 0.027 −7.37
28S −7.15 3.06 3.35 3.44 0.451 0.007 −7.48
30S −7.70 3.15 3.29 3.39 0.456 0.019 −8.12 0.338
32S −8.05 3.21 3.26 3.35 0.315 0.011 −8.49 0.312
34S −8.30 3.27 3.23 3.33 −0.248 0.000 −8.58 0.252
36S −8.39 3.32 3.20 3.30 −0.004 0.000 −8.58 0.168
38S −8.22 3.45 3.23 3.33 0.110 0.007 −8.45 0.246
40S −8.08 3.57 3.28 3.38 0.298 0.029 −8.33 0.284
42S −7.93 3.68 3.33 3.43 0.386 0.034 −8.19 0.300
44S −7.75 3.77 3.37 3.46 0.407 0.021 −7.99 0.254
46S −7.56 3.86 3.39 3.49 0.393 −0.005 −7.78
32Ar −7.39 3.13 3.36 3.46 −0.286 0.006 −7.70
34Ar −7.91 3.20 3.33 3.42 −0.252 0.001 −8.20 0.238
36Ar −8.30 3.26 3.31 3.41 −0.212 0.000 −8.52 0.256
38Ar −8.53 3.32 3.28 3.38 −0.007 0.000 −8.61 0.163
40Ar −8.45 3.43 3.29 3.39 −0.004 0.001 −8.60 0.251
42Ar −8.32 3.53 3.33 3.42 0.142 0.008 −8.56 0.275
44Ar −8.21 3.63 3.36 3.45 0.244 0.015 −8.49 0.240
46Ar −8.10 3.72 3.39 3.49 0.285 0.027 −8.41 0.175
48Ar −7.98 3.80 3.42 3.51 −0.273 0.027 −8.27
50Ar −7.85 3.88 3.45 3.54 −0.276 0.019 −8.08
36Ca −7.63 3.18 3.39 3.49 −0.004 0.000 −7.82
38Ca −8.15 3.25 3.37 3.47 −0.007 0.001 −8.24 0.125
40Ca −8.52 3.32 3.37 3.46 −0.005 0.001 −8.55 0.123
42Ca −8.53 3.42 3.37 3.47 −0.004 0.000 −8.62 0.247
44Ca −8.46 3.51 3.39 3.48 −0.005 0.000 −8.66 0.253
46Ca −8.40 3.59 3.40 3.50 −0.006 0.000 −8.67 0.153
48Ca −8.32 3.66 3.42 3.51 −0.011 0.000 −8.67 0.106
50Ca −8.23 3.74 3.45 3.54 −0.058 0.004 −8.55
52Ca −8.15 3.81 3.47 3.56 0.100 0.000 −8.40
54Ca −8.05 3.88 3.49 3.58 −0.070 0.000 −8.22
56Ca −7.95 3.94 3.51 3.60 0.000 0.000 −8.03
40Ti −7.72 3.27 3.51 3.60 −0.006 0.000 −7.86
42Ti −8.18 3.33 3.49 3.58 −0.005 0.000 −8.26 0.319
44Ti −8.28 3.43 3.49 3.58 −0.011 0.000 −8.53 0.268
46Ti −8.38 3.55 3.52 3.61 0.255 0.078 −8.66 0.317
48Ti −8.41 3.64 3.54 3.63 0.311 0.081 −8.72 0.269
50Ti −8.40 3.71 3.56 3.64 0.311 0.062 −8.76 0.166
52Ti −8.35 3.77 3.56 3.65 0.265 0.032 −8.69
54Ti −8.30 3.82 3.57 3.65 0.205 0.011 −8.60
56Ti −8.24 3.87 3.58 3.67 0.137 0.016 −8.46
58Ti −8.17 3.93 3.59 3.68 −0.091 0.000 −8.31
60Ti −8.09 3.99 3.60 3.69 0.002 0.000 −8.15
42Cr −7.26 3.30 3.63 3.72 0.159 0.011 −7.48
44Cr −7.77 3.35 3.59 3.68 −0.004 0.002 −7.95
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TABLE I. (Continued.)

Nucleus IQMDD Expt

E/A Rn Rp Rc β2 H (b2) E/A β

46Cr −8.03 3.47 3.61 3.70 0.257 0.081 −8.30
48Cr −8.23 3.58 3.63 3.72 0.339 0.106 −8.57 0.337
50Cr −8.36 3.67 3.65 3.74 0.397 0.110 −8.70 0.293
52Cr −8.41 3.73 3.66 3.75 0.391 0.089 −8.77 0.223
54Cr −8.41 3.79 3.67 3.75 0.354 0.056 −8.78 0.250
56Cr −8.39 3.84 3.67 3.75 0.303 0.028 −8.72
58Cr −8.36 3.88 3.67 3.75 0.228 0.035 −8.64
60Cr −8.31 3.93 3.67 3.76 0.138 0.008 −8.53
62Cr −8.25 3.98 3.67 3.76 0.033 0.000 −8.42
64Cr −8.18 4.05 3.69 3.78 0.011 0.000 −8.30
66Cr −8.00 4.13 3.71 3.80 0.020 0.000 −8.16
50Fe −8.02 3.60 3.74 3.82 0.403 0.115 −8.35
52Fe −8.24 3.70 3.75 3.84 0.443 0.117 −8.61
54Fe −8.35 3.76 3.76 3.84 0.430 0.094 −8.74 0.195
56Fe −8.41 3.81 3.76 3.84 0.401 0.059 −8.79 0.239
58Fe −8.43 3.86 3.76 3.84 0.360 0.029 −8.79 0.258
60Fe −8.42 3.90 3.75 3.84 0.286 0.011 −8.76 0.225
62Fe −8.39 3.93 3.75 3.83 0.189 0.016 −8.69
64Fe −8.36 3.98 3.75 3.83 −0.100 −0.003 −8.61
66Fe −8.32 4.04 3.76 3.84 0.002 0.000 −8.51
68Fe −8.17 4.11 3.78 3.86 0.004 0.000 −8.41
70Fe −8.21 4.21 3.85 3.93 0.266 0.186 −8.29
72Fe −8.10 4.29 3.89 3.97 0.336 0.239 −8.18

where B(E2) ↑ is the reduced electric quadrupole transition
rate for the ground state to 2+ state transition. For better
comparing with the experiment, we show the calculated
absolute values of β2 with IQMDD, NL3, and FSU in Fig. 2.
Here, we take S, Ar, Cr, and Fe isotopic chains as examples,
and then the |β2| obtained with NL3, FSU, and IQMDD and the

FIG. 1. The calculated binding energy per baryon and the ex-
perimental data taken from Ref. [34] for S, Ar, Ca, and Cr isotopic
chains.

experimental data [35] are plotted as functions as the neutron
number N .

It can be seen in Fig. 2 that some absolute values of
the quadrupole deformation calculated with IQMDD are a
bit larger than the ones calculated with NL3, FSU, and the
experimental values. However, the shapes and changing trends

FIG. 2. The calculated absolute values of quadrupole deformation
β2 for S, Ar, Cr, and Fe isotopic chains obtained with IQMDD,
FSU, and NL3. The available experimental data are also included for
comparison.
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TABLE II. Energy difference (in MeV) and associated deforma-
tions for nuclei with possible shape coexistence in the ground-state
with IQMDD.

Nucleus Epro − Eobl β2(pro) β2(obl)

30Si −0.034 0.447 −0.374
28S −0.869 0.451 −0.352
30S −0.178 0.456 −0.380
38S −0.067 0.110 −0.094
44S −0.889 0.407 −0.335
46S −0.402 0.393 −0.340
48S 0.301 0.371 −0.329
42Ar 0.153 0.142 −0.142
44Ar 0.010 0.244 −0.206
46Ar 0.332 0.285 −0.253
54Ti −0.366 0.205 −0.176
56Ti 0.361 0.137 −0.156
58Ti 0.322 0.040 −0.091
42Cr 0.233 0.159 −0.151
58Cr 0.265 0.228 −0.215
60Cr 0.549 0.138 −0.154
60Fe −0.430 0.286 −0.245
62Fe 0.197 0.189 −0.182
64Fe 0.317 0.052 −0.100

of the theoretical curves obtained by IQMDD are similar to
those of the experimental results. It is worthwhile to note that
the calculated results with IQMDD, NL3, and FSU show that
the shapes of 36S and 38Ar are spherical, while the experiment
results show that they have quadrupole deformation with β
more than 0.15. Meanwhile, it can be seen from Table I that
the calculated quadrupole deformation of the Ca isotopic chain
also shows the same phenomena. The even-even nuclei from
38Ca to 48Ca are spherical as calculated with IQMDD and
NL3 [17], while the experimental β values of these nuclei are
more than 0.1. Though the β value provides a useful guide to
the nuclear potential deformation, the β and β2 values differ
somewhat [35]. The relationship between β and β2 may need
more discussion.

The shape coexistence is a common phenomenon in
deformed nuclei. Our calculation shows that in some nuclei
the differences in binding energies between oblate and prolate
solutions are very small, which indicates that these nuclei may
have shape coexistence in ground state. In Table II, we list
the nuclei whose binding energy differences between prolate
and oblate minima are less than 1 MeV. Our calculations also
show that the shape coexistence nuclei are able to exist close
to the spherical nuclei. For instance, the shape of 40Ar is
spherical as calculated with IQMDD and NL3 [17], and then
the neighbor nuclei 42Ar,44Ar, and 46Ar have shape coexistence
by theoretical calculation. The same phenomena can also be
seen in Ti and Fe isotopic chains, for the nuclei 60Ti and 66Fe
are spherical as calculated with IQMDD and NL3.

The two neutron and two proton separation energies (S2n

and S2p) are also very important for describing the nuclei
properties and testing the stability of a model. The separation
energies can be obtained as the following combinations of

FIG. 3. The two-neutron separation energies S2n for Si, S, Ar, and
Cr isotopic chains. The squares, stars, diamonds, and open circles
denote the results of the experimental values and the values with
NL3, FSU, and IQMDD, respectively.

atomic masses [34]:

S2n = −M(A,Z) + M(A − 2, Z) + 2n, (24)

S2p = −M(A,Z) + M(A − 2, Z − 2) + 21H. (25)

The results with IQMDD and the experimental values taken
from Ref. [34] are shown in Figs. 3 and 4. For comparison,
the results calculated with NL3 and FSU are also included in
the two figures. It can be clearly seen from Fig. 3 that the two-
neutron separation energies are getting smaller with increasing
neutron number N , and the calculated results with NL3,

FIG. 4. The two-proton separation energies S2p for S, Ar, Ti, and
Cr isotopic chains. The squares, stars, diamonds, and open circles
denote the results of the experimental values and the ones with NL3,
FSU, and IQMDD, respectively.
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FIG. 5. The neutron skin thickness (�R = Rn − Rp) of S, Ar, Ca,
and Fe isotopic chains with NL3, FSU, and IQMDD, respectively.

FSU, and IQMDD are all in agreement with the experimental
data. In contrast, it is seen from Fig. 4 that the two-proton
separation energies are getting bigger with increasing neutron
number N . Except for several Cr isotopes, the calculated
values with IQMDD are close to the ones with NL3, FSU,
and the experimental data. Besides, for S, Ar, and Cr isotopic
chains shown in Fig. 3, both the experimental and theoretical
curves have a sudden decline at N = 20, which indicates that
N = 20 is a shell closure. With the two-neutron or two-proton
separation energy decreasing, there may exist two-neutron or
two-proton radioactivity. Though the two-neutron emission
has not yet been observed by experiment, the two-proton
emissions of 12O and 45Fe have been observed experimentally
[36,37].

The neutron skin thickness for S, Ar, Ca, and Fe isotopic
chains with IQMDD, FSU, and NL3 are plotted in Fig. 5. It is
seen from Fig. 5 that with the neutron number increasing,
the neutron skins display an increasing trend for all the
isotopic chains with the NL3, FSU, and IQMDD. Such a
behavior has also been predicted by the droplet model [38]
and experimentally measured [39]. It can also be seen in
Table I that the neutron radii increase with neutron number
for all the isotopic chains, while the proton radii just slightly
decrease for some light isotopes in all isotopic chains and then
slightly increase with the neutron number further increasing.
Hence the neutron skins increase with the neutron number for
all the isotopic chains, which also reflect the pressure of the
symmetry energy [40]. Meanwhile, we can see from Fig. 5
that the neutron skin thicknesses calculated with the IQMDD
are close to the results with FSU, and become smaller than the
ones with the NL3 with the neutron number increasing for all
the isotopic chains.

Finally, we discuss the charge radii and show the calculated
and experimental ones [41] in Table III. It can be seen that
for most nuclei the calculated charge radii are close to the
experimental data. The rms deviation of the charge radii with
the IQMDD are about 0.06 fm while the rms deviations of

TABLE III. The charge radii (in fm) for some nuclei near Z = 20
in IQMDD, as well as the available experimental data for comparison.
Here, �Rc = Rcal

c − Rexpt
c .

Nucleus Rexpt
c Rcal

c �Rc Nucleus Rexpt
c Rcal

c �Rc

30Si 3.13 3.29 0.16 44Ca 3.52 3.48 −0.04
32S 3.26 3.35 0.09 46Ca 3.49 3.50 0.01
34S 3.28 3.33 0.05 48Ca 3.47 3.51 0.04
36S 3.30 3.30 0.00 50Ca 3.51 3.54 0.03
34Ar 3.36 3.42 0.06 46Ti 3.61 3.61 0.00
36Ar 3.39 3.41 0.02 48Ti 3.59 3.63 0.04
38Ar 3.40 3.38 −0.02 50Ti 3.57 3.64 0.05
40Ar 3.43 3.39 −0.04 50Cr 3.66 3.74 0.08
46Ar 3.44 3.49 0.05 54Cr 3.69 3.75 0.06
40Ca 3.48 3.46 −0.02 56Fe 3.74 3.84 0.10
42Ca 3.51 3.47 −0.04 58Fe 3.77 3.84 0.07

the charge radii for these nuclei in NL3 and FSU are about
0.02 fm. Though the rms deviation of the charge radii with the
IQMDD are a bit larger than those with NL3 and FSU, the
relative deviation of the charge radii in IQMDD with respect
to the experimental data is still less than 2%. In conclusion,
the IQMDD model can be used to describe the charge radii of
the nuclei.

IV. SUMMARY

In the present work, the ground-state properties of the
isotopic chains near Z = 20 have been systemically inves-
tigated in the IQMDD model. It is the first time that the
deformed relativistic mean-field calculation based on quark
and meson degrees of freedom has been applied to study the
ground-state properties of these isotopic chains. The deviations
between the calculated binding energies and the experimental
data are small, and they have the same changing trend with
the mass number increasing. Meanwhile, the IQMDD model
can successfully reflect the shell effect of the neutron magic
number N = 20. Except for several Ca and Cr isotopes, the
calculated two-neutron and two-proton separation energies in
IQMDD are in agreement with the results calculated in NL3
and FSU, as well as the experimental data. The calculated
quadrupole deformations are a bit larger than the experimental
values for some nuclei, but the shapes and changing trends
of the theoretical quadrupole deformation curves are very
similar to those of experimental results. According to the
comparison with available data in this mass region, we find
that the IQMDD model can reproduce the charge radii of the
nuclei. Additionally, the neutron skin thicknesses calculated
with IQMDD are very close to the results in FSU and become
smaller than the ones in NL3 with the neutron number
increasing for all the isotopic chains. In conclusion, the
IQMDD model can give a reasonable description of the axially
deformed nuclei in this region. We note that the IQMDD model
is based on an effective nuclear potential that has been fitted to
nuclear saturation properties. Further fit to the nuclear surface
properties should be taken into account in this model in order
to improve the result for finite nuclei. Work on this topic is in
progress.
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