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Pseudospin symmetry in supersymmetric quantum mechanics: Schrödinger equations
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The origin of pseudospin symmetry (PSS) and its breaking mechanism are explored by combining
supersymmetry (SUSY) quantum mechanics, perturbation theory, and the similarity renormalization group (SRG)
method. The Schrödinger equation is taken as an example, corresponding to the lowest-order approximation
in transforming a Dirac equation into a diagonal form by using the SRG. It is shown that while the
spin-symmetry-conserving term appears in the single-particle Hamiltonian H , the PSS-conserving term appears
naturally in its SUSY partner Hamiltonian H̃ . The eigenstates of Hamiltonians H and H̃ are exactly one-to-one
identical except for the so-called intruder states. In such a way, the origin of PSS deeply hidden in H can be
traced in its SUSY partner Hamiltonian H̃ . The perturbative nature of PSS in the present potential without a
spin-orbit term is demonstrated by the perturbation calculations, and the PSS-breaking term can be regarded as a
very small perturbation on the exact PSS limits. A general tendency that the pseudospin-orbit splittings become
smaller with increasing single-particle energies can also be interpreted in an explicit way.
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I. INTRODUCTION

The remarkable spin-orbit splitting for the spin doublets
(n, l, j = l ± 1/2), i.e., spin symmetry (SS) breaking, is one of
the most important concepts for understanding the traditional
magic numbers 2, 8, 20, 28, 50, and 82 for both protons and
neutrons as well as 126 for neutrons in stable nuclei [1,2]. Since
these magic numbers are not simply the shell closure of the
harmonic oscillators, it is quite sophisticated to predict the next
proton and neutron magic numbers [3,4], which are critical for
guiding superheavy element synthesis. Meanwhile, so-called
pseudospin symmetry (PSS) [5,6] was introduced in 1969
to explain the near degeneracy between two single-particle
states with quantum numbers (n − 1, l + 2, j = l + 3/2) and
(n, l, j = l + 1/2) by defining the pseudospin doublets (ñ =
n − 1, l̃ = l + 1, j = l̃ ± 1/2). Based on this concept, numer-
ous phenomena in nuclear structure have been successfully
interpreted, including superdeformation [7], identical bands
[8,9], and pseudospin partner bands [10,11]. It will be quite
interesting and challenging to understand shell closure and
pseudospin symmetry on the same footing, in particular for su-
perheavy and exotic nuclei near the limit of nucleus existence.

During the past decades, more and more exotic nuclei have
became accessible with worldwide new-generation radioactive
ion beam (RIB) facilities. It has been shown that the traditional
magic numbers can change in nuclei far away from the stability
line [12]. The splittings of both spin and pseudospin doublets
play critical roles in shell structure evolution; for example,
the N = 28 shell closure disappears due to the quenching
of the spin-orbit splitting for the ν1f spin doublets [13–16],
and the Z = 64 subshell closure is closely related to the
restoration of PSS for the π2p̃ and π1f̃ pseudospin doublets
[17–19]. Therefore, it is a fundamental task to explore the
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origin of SS and PSS, as well as the mechanism of their
breaking in both stable and exotic nuclei.

Since the suggestion of PSS in atomic nuclei, there
have been comprehensive efforts to understand its origin.
Apart from the formal relabeling of quantum numbers as
shown above, various explicit transformations from the normal
scheme to the pseudospin scheme have been proposed [20–22].
Based on the single-particle Hamiltonian of the oscillator shell
model, the origin of PSS is connected with a special ratio of
the strengths of the spin-orbit and orbit-orbit interactions [20].
The relation between PSS and relativistic mean-field (RMF)
theory [4,23–25] was first noted in Ref. [26], where RMF
theory was used to explain approximately such special ratio of
the strengths of the spin-orbit and orbit-orbit interactions.

As substantial progress, PSS was shown to be a symmetry
of the Dirac Hamiltonian, where the pseudo-orbital angular
momentum l̃ is nothing but the orbital angular momentum of
the lower component of the Dirac spinor [27]. In addition, the
equality in magnitude but difference in sign of the scalar poten-
tial S(r) and vector potential V(r) was suggested as the exact
PSS limit by reducing the Dirac equation to a Schrödinger-like
equation [27]. A more general condition d(S + V)/dr = 0
was proposed [28], and it can be approximately satisfied in
exotic nuclei with highly diffuse potentials [29]. However,
since there exist no bound nuclei within such a PSS limit,
a nonperturbative nature of PSS in realistic nuclei has been
suggested [30,31]; this was also related to the consideration of
PSS as a dynamical symmetry [32]. In this sense, an explicit
and quantitative connection between the ideal PSS limits and
realistic nuclei is still missing.

After PSS was revealed as a relativistic symmetry, numer-
ous efforts have been dedicated to tracing the relativistic origin
of PSS and its breaking mechanism in a quantitative way. These
investigations include the one-dimensional Woods-Saxon po-
tential [33], the spherical Woods-Saxon [34–38], Coulomb
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[39–41], harmonic oscillator [42–49], anharmonic oscillator
[50], Hulthén [51,52], Morse [53–57], Rosen-Morse [58,59],
Eckart [60,61], Pöschl-Teller [62–65], diatomic molecular
[66], Manning-Rosen [67–69], Mie-type [70,71], and Yukawa
[72] potentials, as well as the deformed harmonic oscilla-
tor [73–78], anharmonic oscillator [79], Hartmann [80,81],
Kratzer [82], and Makarov [83] potentials, together with some
formal studies [84–89]. Self-consistently, PSS in spherical
[90–104] and deformed [105–111] nuclei have been inves-
tigated within RMF and relativistic Hartree-Fock [112–114]
theories. The PSS investigations were also extended to single-
particle resonances [115–118] as well as the single-particle
states in the Dirac sea, i.e., the SS in the antinucleon spectra
[119–123] and the �̄ spectra in hypernuclei [124–126]. The
relevances of PSS in nuclear magnetic moments and transitions
[127,128] as well as in nucleon-nucleus and nucleon-nucleon
scatterings [129–132] were discussed. The readers are referred
to Refs. [133,134] for reviews.

Recently, in Refs. [135,136], perturbation theory was used
to investigate the symmetries of the Dirac Hamiltonian and
their breaking in realistic nuclei. This provides a clear way for
investigating the perturbative nature of PSS. It is found that
the energy splitting of the pseudospin doublets can be regarded
as a result of perturbation of the Hamiltonian with relativistic
harmonic oscillator potentials, where the pseudospin doublets
are degenerate.

Supersymmetric quantum mechanics was also used to in-
vestigate the symmetries of the Dirac Hamiltonian [137–144].
In particular, by employing both exact and broken supersym-
metry (SUSY), the phenomenon that all states with l̃ > 0
have their own pseudospin partners except for the so-called
intruder states can be interpreted naturally within a unified
scheme. A PSS-breaking potential without a singularity can
also be obtained with the SUSY technique [138]. In contrast,
singularities appear in the reduction of the Dirac equation
to a Schrödinger-like equation for the lower component of
the Dirac spinor. However, by reducing the Dirac equation
to a Schrödinger-like equation for the upper component, the
effective Hamiltonian shown in Ref. [138] is not Hermitian,
since the upper component wave functions alone, as the
solutions of the Schrödinger-like equation, are not orthogonal
to each other. In order to fulfill the orthonormality, an
additional differential relation between the lower and upper
components must be taken into account. Thus, effectively,
the upper components alone are orthogonal with respect to a
modified metric. This prevents us from being able to perform
quantitative perturbation calculations.

A very recent work [145] filled the gap between pertur-
bation calculations and the SUSY descriptions by using the
similarity renormalization group (SRG) technique to transform
the Dirac Hamiltonian into a diagonal form. The effective
Hamiltonian expanded in a 1/M series in the Schrödinger-
like equation thus obtained is Hermitian. This makes the
perturbation calculations possible. Therefore, we deem it
promising to understand PSS and its breaking mechanism in
a fully quantitative way by combining the SRG technique,
SUSY quantum mechanics, and perturbation theory.

By using the SRG technique, a Dirac equation can be
transformed into a diagonal form in a 1/M series, and its

lowest-order approximation corresponds to a Schrödinger
equation. By taking this lowest-order approximation as an
example, the idea for applying SUSY quantum mechanics
to trace the origin of PSS will be illustrated and the PSS-
breaking mechanism will be explored quantitatively using
perturbation theory in this paper. In Sec. II, SUSY quantum
mechanics will be briefly recalled with its application to the
radial Schrödinger equation. The numerical details for solving
the radial Schrödinger equation in coordinate space and the
results for the single-particle eigenstates, the pseudospin-orbit
splittings, the superpotentials, the PSS-conserving and PSS-
breaking potentials, as well as the perturbation corrections
to the single-particle energies will be presented in Sec. III.
Finally, a summary and perspectives will be given in Sec. IV.

II. THEORETICAL FRAMEWORK

A. Similarity renormalization group for the Dirac Hamiltonian

Within the relativistic scheme, the Dirac Hamiltonian for
nucleons reads

HD = α · p + β(M + S) + V, (1)

where α and β are the Dirac matrices, M is the mass of nucleon,
and S and V are the scalar and vector potentials, respectively.
According to the commutation and anticommutation relations
with respect to β, the Dirac Hamiltonian can be separated into
diagonal ε and off-diagonal o parts, HD = ε + o, which satisfy
[ε, β] = 0 and {o, β} = 0. In order to obtain the equivalent
Schrödinger-like equation for nucleons, the main task is to
decouple the eigenvalue equations for the upper and lower
components of the Dirac spinors. A possible way is to make
the off-diagonal part of the Dirac Hamiltonian vanish with a
proper unitary transformation.

According to the similarity renormalization group tech-
nique [146,147], the Hamiltonian HD is transformed by a
unitary operator U (l) as

HD(l) = U (l)HDU †(l), (2)

with HD(l) = ε(l) + o(l), HD(0) = HD , and a flow parameter
l. Then, the so-called Hamiltonian flow equation can be
obtained by taking the differential of the above equation, i.e.,

d

dl
HD(l) = [η(l),HD(l)] (3)

with the anti-Hermitian generator η(l) = dU (l)
dl

U †(l). As
pointed out in Ref. [147], one of the proper choices of η(l)
for letting off-diagonal part o(l) = 0 as l → ∞ reads η(l) =
[βM,HD(l)]. Then, the diagonal part of the Dirac Hamiltonian
ε(l) at the l → ∞ limit can be derived analytically in a series
of 1/M:

ε(∞) = Mε0(∞) + ε1(∞) + ε2(∞)

M
+ ε3(∞)

M2
+ · · ·

= βM + (βS + V) + 1

2M
β(α · p)2

+ 1

8M2
[[α · p, (βS + V)], α · p] + · · · . (4)
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In such way, the eigenequations for the upper and lower
components of the Dirac spinors are completely decoupled.
The equivalent Schördinger-like equations for nucleons with
Hermitian effective Hamiltonians can be obtained. The corre-
sponding details can be found in Ref. [145].

For the nucleons in the Fermi sea, the eigenequations with
the Hamiltonian in Eq. (4) up to the (1/M)th order correspond
to Schördinger equations

[
− 1

2M
∇2 + V (r)

]
ψα(r) = Eαψα(r), (5)

where V (r) = S(r) + V(r), and the rest mass of nucleon M
is reduced in the single-particle energies E. By assuming
spherical symmetry, the radial equations can be cast in the
form

HRa(r) = EaRa(r), (6)

with the single-particle Hamiltonian

H = − d2

2Mdr2
+ κa(κa + 1)

2Mr2
+ V (r) (7)

and the single-particle wave functions

ψα(r) = Ra(r)

r
Y la

jama
(r̂), (8)

where Y la
jama

are the spherical harmonics spinors, the single-
particle eigenstates are specified by the set of quantum num-
bers α = (a,ma) = (na, la, ja,ma), and the good quantum
number κ = ∓(j + 1/2) for j = l ± 1/2 is adopted.

It can be clearly seen that H conserves the explicit spin sym-
metry for the spin doublets a and b with κa + κb = −1, which
leads to the same centrifugal barrier (CB) κ(κ + 1)/(2Mr2).
Similarly, in order to investigate the origin of the pseudospin
symmetry and its breaking mechanism, it is crucial to identify
the corresponding term proportional to l̃(l̃ + 1) = κ(κ − 1),
which leads to the same κ(κ − 1) values for the pseudospin
doublets a and b with κa + κb = 1. As noted in Ref. [138],
we also consider that supersymmetric quantum mechanics is
one of the most promising approaches for identifying such
κ(κ − 1) structure.

In the following, we will briefly recall the key formalism
of SUSY quantum mechanics [138,148]. Then we will focus
on the application of SUSY quantum mechanics to the
Schrödinger equations.

B. Supersymmetric quantum mechanics

It has been shown that every second-order Hamiltonian
can be factorized into a product of two Hermitian conjugate
first-order operators [149], i.e.,

H1 = B+B−, (9)

with B− = [B+]†. Its SUSY partner Hamiltonian can thus be
constructed by Ref. [148]

H2 = B−B+. (10)

Since the extended SUSY Hamiltonian

HS =
(

H1 0

0 H2

)
(11)

is the square of the Hermitian operators

HS =
(

0 B+

B− 0

)2

=
(

0 −iB+

iB− 0

)2

, (12)

all eigenvalues ES(n) of the eigenvalue equation

HS�S(n) = ES(n)�S(n) (13)

are non-negative, and the two-component wave functions read

�S(n) =
(

ψ1(n)
ψ2(n)

)
, (14)

where ψ1(n) and ψ2(n) are the eigenfunctions of H1 and H2,
respectively. It can be easily seen that, for each eigenstate with
ES(n) > 0, it is an eigenstate for both H1 and H2, and the
corresponding eigenfunctions satisfy

ψ2(n) = B−
√

ES(n)
ψ1(n), ψ1(n) = B+

√
ES(n)

ψ2(n) (15)

with the normalization factors 1/
√

ES(n).
The property of SUSY can be either exact (also called

unbroken) or broken [148]. On one hand, SUSY is exact when
the eigenvalue equation (13) has a zero-energy eigenstate,
ES(0) = 0. In this case, as an usual convention, the Hamil-
tonian H1 has an additional eigenstate at zero energy that does
not appear in its partner Hamiltonian H2, since

B−ψ1(0) = 0, ψ2(0) = 0; (16)

i.e., the trivial eigenfunction of H2 identically equals zero.
It is noted that, for systems with periodic potentials, exact
SUSY can have a pair of ground states with zero energy
[150–153]. On the other hand, SUSY is broken when the
eigenvalue equation (13) does not have any zero-energy
eigenstate. In this case, the partner Hamiltonians H1 and H2

have identical spectra. The schematic patterns of both cases
are illustrated in Fig. 1.

C. SUSY quantum mechanics for Schrödinger equations

For applying SUSY quantum mechanics to the Schrödinger
equations shown in Eq. (6), first of all, one sets a couple of

FIG. 1. (Color online) Schematic patterns of the exact and broken
supersymmetries.
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Hermitian conjugate first-order operators as

B+
κ =

[
Qκ (r) − d

dr

]
1√
2M

, B−
κ = 1√

2M

[
Qκ (r) + d

dr

]
,

(17)

where the Qκ (r) are the so-called superpotentials to be
determined [138,148]. Then, the SUSY partner Hamiltonians
H1 and H2 can be constructed as

H1(κ) = B+
κ B−

κ = 1

2M

[
− d2

dr2
+ Q2

κ − Q′
κ

]
, (18a)

H2(κ) = B−
κ B+

κ = 1

2M

[
− d2

dr2
+ Q2

κ + Q′
κ

]
. (18b)

In order to explicitly identify the κ(κ + 1) structure shown in
Eq. (7), the reduced superpotentials qκ (r) are assumed as [138]

qκ (r) = Qκ (r) − κ

r
. (19)

In such a way, the Hamiltonians H1 and H2 can be further
expressed as

H1(κ) = B+
κ B−

κ = 1

2M

[
− d2

dr2
+ κ(κ + 1)

r2
+ q2

κ

+ 2κ

r
qκ − q ′

κ

]
, (20a)

H2(κ) = B−
κ B+

κ = 1

2M

[
− d2

dr2
+ κ(κ − 1)

r2
+ q2

κ

+ 2κ

r
qκ + q ′

κ

]
. (20b)

It can be seen that not only does the κ(κ + 1) structure appear
in H1 but also the κ(κ − 1) structure explicitly appears in
the SUSY partner Hamiltonian H2. The so-called pseudo–
centrifugal barrier (PCB) term κ(κ − 1)/(2Mr2) leads to the
conservation of PSS.

In general, the Hamiltonian H in the Schrödinger
equation (6) differs from the SUSY Hamiltonian H1 in
Eq. (20) by a constant, i.e.,

H (κ) = H1(κ) + e(κ), (21)

where e(κ) is the so-called energy shift [138,148]. The κ-
dependent energy shifts can be determined in the following
ways: (1) For the case of κ < 0, it is known that the most
deeply bound state for a given κ , e.g, 1s1/2, 1p3/2, etc., has no
pseudospin partner. This indicates that exact SUSY is achieved
and requires

e(κ) = E1κ . (22)

(2) For the case of κ > 0, each single-particle state has its own
pseudospin partner. This indicates that SUSY is broken, and
thus the corresponding energy shift can be, in principle, any
number which makes the whole set of H1 eigenstates positive.
In practice, the energy shifts in this case are determined by
assuming that the pseudospin-orbit (PSO) potentials vanish as
r → 0. This vanishing behavior is similar to that of the usual
surface-peak-type spinorbit (SO) potentials.

In order to fulfill the above condition, we first analyze
the asymptotic behaviors of the reduced superpotentials qκ (r).
Combining Eqs. (7), (20a), and (21), one has

1

2M

[
q2

κ (r) + 2κ

r
qκ (r) − q ′

κ (r)

]
+ e(κ) = V (r). (23)

At large radius, for potential limr→∞ V (r) = 0, qκ (r) becomes
a constant as

lim
r→∞ qκ (r) =

√
−2Me(κ). (24)

At small radius, for any regular potential V (r), qκ (0) = 0, and
also

lim
r→0

qκ (r) = 2M(e(κ) − V )
(1 − 2κ)

r (25)

as a linear function of r .
As the PSO potentials vanish at the original point,

limr→0 qκa
(r) = limr→0 qκb

(r) with κa + κb = 1 for pseu-
dospin doublets [138]. Finally, the energy shifts are determined
by

e(κa) = 2 V |r=0 − e(κb) (26)

for the case of κa > 0.
Before ending this section, it is interesting to seek a possible

exact PSS limit analytically. First of all, by combining Eqs. (7),
(20b), and (21), the SUSY partner Hamiltonian of H (κ) reads

H̃ (κ) = H2(κ) + e(κ) = − d2

2Mdr2
+ κ(κ − 1)

2Mr2
+ Ṽκ (r)

(27)

with

Ṽκ (r) = V (r) + q ′
κ (r)/M. (28)

In this paper, we use a tilde to denote the operators, potentials,
and wave functions belonging to the representation of H̃ . Then,
by definition, the exact PSS limit holds, Enκa

= E(n−1)κb
, with

κa < 0 and κa + κb = 1. This indicates

H2(κa) + e(κa) = H2(κb) + e(κb). (29)

By combining Eqs. (20) and (23), as well as the boundary
condition qκ (0) = 0, one can readily have

qκa
(r) = qκb

(r) = Mωκr (30)

with a known constant ωκ ≡ [e(κa) − e(κb)]/(κb − κa). As the
reduced superpotentials qκ (r) are linear functions of r , the
central potential V (r) in H has the form

VHO(r) = M

2
ω2

κr
2 + V (0). (31)

The corresponding PSS limit is nothing but the well-known
case with harmonic oscillator (HO) potentials, which leads to
the energy degeneracy of the whole major shell.

III. RESULTS AND DISCUSSION

To perform a quantitative investigation, the mass of nucleon
is taken as M = 939.0 MeV, and the central potential V (r) in
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FIG. 2. (Color online) Woods-Saxon potential and discrete
eigenstates for neutrons in the nucleus 132Sn.

Eq. (7) is chosen as a Woods-Saxon form

V (r) = V0

1 + e(r−R)/a
(32)

with the parameters V0 = −63.297 MeV, R = 6.278 fm, and
a = 0.615 fm, which corresponds to the neutron potential
provided in Ref. [154] by taking N = 82 and Z = 50. This
potential is shown as the solid line in Fig. 2. The radial
Schrödinger equations are solved in coordinate space by the
shooting method [155] within a spherical box with radius
Rbox = 20 fm and mesh size dr = 0.05 fm.

A. Representation of the single-particle Hamiltonian H

In Fig. 2, the discrete single-particle states obtained in
the Woods-Saxon potential are shown. In order to see the κ
dependence and the energy dependence of PSO splittings more
clearly, we plot the reduced PSO splittings (Ej<

− Ej>
)/(2l̃ +

1) versus their average single-particle energies Eav = (Ej<
+

Ej>
)/2 in Fig. 3, where j< (j>) denotes the states with

j = l̃ − 1/2 (j = l̃ + 1/2). It is seen that the amplitudes of
the reduced PSO splittings are less than 1 MeV. Moreover,
as a general tendency, the splittings become smaller with
increasing single-particle energies. Such energy-dependent

FIG. 3. (Color online) Pseudospin-orbit splittings (Ej< − Ej> )/
(2l̃ + 1) vs the average single-particle energies (Ej< + Ej> )/2 for
pseudospin doublets.

FIG. 4. (Color online) Single-particle wave functions Rnlj (r) of
H for the 3s1/2, 2d3/2, 2d5/2, and 1g7/2 states.

behavior was also found in the self-consistent relativistic
continuum Hartree-Bogoliubov (RCHB) calculations [28,29].
It was also reported that the PSO splittings can even reverse in
resonance states [115–117]. Note that the SO splittings never
reverse in realistic nuclei. Therefore, it is very interesting to
investigate the physical mechanism for such energy-dependent
behavior. This will also help us to figure out whether or not
PSS is an accidental symmetry [47].

In Fig. 4, the corresponding single-particle radial wave
functions Rnlj (r) of H are shown by taking the 3s1/2, 2d3/2,
2d5/2, and 1g7/2 states, i.e., the pseudospin doublets 2p̃ and
1f̃ , as examples. In the following discussions, these two pairs
of pseudospin doublets will be often used for illustration. It is
clear that the wave functions of the spin doublets are identical
since there is no spin-orbit term in H . In contrast, the wave
functions of the pseudospin doublets are very different from
each other. This leads to difficulty in analyzing the origin of
PSS and its breaking.

Prior to the quantitative analysis using perturbation theory
in Ref. [135], the investigation of PSO splittings EPSO was
usually done by decomposing the contributions by terms,
where each contribution is calculated with the corresponding
operator Ôi by

Ei =
∫

R(r)ÔiR(r) dr. (33)

Within the representation of H shown in Eq. (7), the
operators of the kinetic term, centrifugal barrier, and central
potential read −d2/(2Mdr2), κ(κ + 1)/(2Mr2), and V (r),
respectively. In Table I, the contributions from these terms
to the single-particle energies E as well as the corresponding
PSO splittings EPSO are shown for the pseudospin doublets
2p̃ and 1f̃ . It is not surprising that, within this representation,
the contributions to EPSO come from all channels, while they
substantially cancel each other in a sophisticated way.

In previous studies, the phenomenon of such strong
cancellations among different terms was usually associated
with the dynamical [32,47,145] and even the nonperturbative
[30,31,123] nature of PSS. However, such a connection
is sometimes misleading. We will demonstrate by using
perturbation theory that the nature of PSS in the present
investigation is indeed perturbative.
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TABLE I. Contributions from the kinetic term (kin), centrifugal
barrier (CB), and central potential (cen) to the single-particle energies
E and the corresponding pseudospin-orbit splittings EPSO for the
pseudospin doublets 2p̃ and 1f̃ . All units are in MeV.

State Ekin ECB Ecen E

3s1/2 28.953 0.000 −50.545 −21.591
2d3/2 16.845 11.758 −51.746 −23.143
EPSO 12.109 −11.758 1.201 1.552
2d5/2 16.845 11.758 −51.746 −23.143
1g7/2 6.197 20.483 −54.188 −27.508
EPSO 10.648 −8.725 2.442 4.365

The main idea for using Rayleigh-Schrödinger perturbation
theory [156] to investigate SS and PSS in a single-particle
Hamiltonian as well as their breaking in atomic nuclei can be
found in Ref. [135]. Following this idea, the Hamiltonian H
is split as

H = H0 + W, (34)

where H0 conserves exact PSS and W is identified as the
corresponding symmetry-breaking potential. The condition∣∣∣∣ Wmk

Ek − Em

∣∣∣∣ 	 1 for m 
= k (35)

with Wmk = 〈ψm| W |ψk〉 determines whether W can be
treated as a small perturbation and governs the convergence of
the perturbation series [156].

For the present case, it has been analytically shown in
Sec. II C that the Hamiltonian with HO potentials is one of
the exact PSS limits. Thus, one has

H HO
0 = − 1

2M

[
d2

dr2
+ κ(κ + 1)

r2

]
+ M

2
ω2r2 + V (0), (36)

and WHO is just the difference between H and H HO
0 . To

minimize the perturbations to the sdg states, the coefficient
ω is chosen as 1.118 × 41A−1/3 MeV, and the trivial constant
V (0) is taken as −73 MeV, as illustrated in Fig. 5. Although
the symmetry-breaking potential WHO diverges at r → ∞ due
to the parabolic behavior of H HO

0 , the property that the bound

FIG. 5. (Color online) Woods-Saxon potential in H (solid line)
and harmonic oscillator potential in H HO

0 (dashed line) as a function
of r .

FIG. 6. (Color online) (a) Values of |W HO
mk /(Em − Ek)| vs the

energy differences Em − Ek for the pseudospin doublets k = 2p̃ and
1f̃ . (b) Corresponding single-particle energies obtained at the exact
PSS limit H HO

0 and by the first-, second-, and third-order perturbation
calculations, as well as those obtained with H .

state wave functions decay exponentially at large radius leads
to convergent results of the matrix elements Wmk .

In the upper panel of Fig. 6, the values of |WHO
mk /(Em − Ek)|

for the pseudospin doublets k = 2p̃ and 1f̃ are shown as
functions of the energy differences Em − Ek , where the un-
perturbed eigenstates in perturbation calculations are chosen as
those of H HO

0 . Since spherical symmetry is assumed, only the
single-particle states m and k with the same quantum number
κ lead to nonvanishing matrix elements Wmk . Similar to the
results in Ref. [135], the values of |WHO

mk /(Em − Ek)| decrease
as a general tendency when the energy differences Em − Ek

increase. From the mathematical point of view, this property
provides natural cutoffs of the single-particle states in pertur-
bation calculations. For example, the first-, second-, and third-
order perturbation corrections to the single-particle energies in
the present calculations are of 0.001-MeV accuracy when the
energy cutoff for Em is taken as 150 MeV. Furthermore, it is
shown that the largest perturbation correction is roughly 0.13.
This indicates that the criterion in Eq. (35) can be fulfilled.

In the lower panel of Fig. 6, the single-particle energies
obtained at the exact PSS limit H HO

0 , and their counterparts
obtained by the first-, second-, and third-order perturbation
calculations, as well as those obtained with H , are shown
from left to right. Although the perturbation corrections do not
converge very fast since the largest perturbations for all four
states are beyond 0.1, the PSO splittings are well reproduced
up to the third-order perturbation calculations.
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FIG. 7. (Color online) Reduced superpotentials qκ (r) for the p̃

and f̃ blocks.

The above results have pinned down the perturbative nature
of PSS in the present investigation. In the next section, we will
study the origin of PSS and its breaking mechanism in an
explicit way within the representation of the SUSY partner
Hamiltonian H̃ .

B. Representation of the SUSY partner Hamiltonian H̃

In order to obtain the SUSY partner Hamiltonian H̃ in
Eq. (27), first of all, one should solve the first-order differential

equation (23) for the reduced superpotentials qκ (r) with the
boundary condition qκ (0) = 0. By taking the p̃ and f̃ blocks
as examples, the corresponding qκ (r) are shown in units of
MeV/c in Fig. 7. Since the left-hand side of Eq. (23) contains
a κ-dependent term ∝ κ/r , the reduced superpotentials qκ (r)
thus obtained are also κ dependent. In contrast, it should
be emphasized that qκ (r) does not depend on the radial
quantum number n for a given κ . One will discover in the
following that such an n-independent property is essential
for understanding the general pattern of EPSO versus Eav

as shown in Fig. 3. In addition, it can also be examined
that the reduced superpotentials qκ (r) satisfy their asymptotic
behaviors at r → 0 and r → ∞ in Eqs. (25) and (24).

The κ-dependent central potentials Ṽκ (r) in H̃ can be
then calculated by combining Eqs. (23) and (28). Then, the
corresponding asymptotic behaviors read

lim
r→0

Ṽκ (r) = V + 2(e(κ) − V )
(1 − 2κ)

(37)

and

lim
r→∞ Ṽκ (r) = 0. (38)

It is important that these potentials are regular and converge at
both r → 0 and r → ∞.

In the upper panels of Fig. 8, the central potentials Ṽκ (r)
in H̃ are shown by taking the p̃ and f̃ blocks as examples,

FIG. 8. (Color online) Upper panels: κ-dependent central potentials Ṽκ (r) in H̃ as a function of r for the p̃ and f̃ blocks, while the
Woods-Saxon potential in H is shown for comparison. Lower panels: The corresponding single-particle energies obtained with H and H̃ .
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while the Woods-Saxon potential V (r) in H is also shown for
comparison. For all blocks, the potentials Ṽκ (r) approximately
remain a Woods-Saxon shape, and they are shallower than
the original potential V (r). Focusing on a pair of pseudospin
partners, one sees that the potential Ṽκ (r) with κ < 0 is
higher than that of its pseudospin partner with κ > 0 at
r < 6 fm, since in this region the superpotential qκ (r) with
κ < 0 increases faster with r as shown in Fig. 7. In contrast,
these two potentials reverse at r > 6 fm, since in this region
the slope of qκ (r) with κ < 0 becomes negative whereas that
with κ < 0 remains positive. By comparing panels (a) and (b),
it is seen that the amplitude of the difference between Ṽκ (r)
for a pair of pseudospin partners increases with the difference
of their quantum numbers, |κa − κb|.

After getting the central potentials Ṽκ (r), we are ready to
calculate the single-particle energies and wave functions of
the SUSY partner Hamiltonians H̃ (κ). In the lower panels
of Fig. 8, the discrete single-particle energies obtained with
H̃ are shown and compared with those obtained with H .
It is clearly shown that the eigenstates of Hamiltonians H
and H̃ are exactly one-to-one identical, except for the lowest
eigenstates with κ < 0 in H , which are the so-called intruder
states. In other words, the fact that the intruder states have no
pseudospin partners can be interpreted as a natural result of
exact SUSY for κ < 0 and broken SUSY for κ > 0.

By holding the one-to-one mapping relation in the two sets
of spectra, the origin of PSS, which is deeply hidden in the
Hamiltonian H within the normal scheme, can be now traced
by employing its SUSY partner Hamiltonian H̃ .

In order to shed more light on this idea, we first show
the single-particle radial wave functions R̃ñl̃j (r) of H̃ for the
2p̃ and 1f̃ pseudospin doublets in Fig. 9. In SUSY quantum
mechanics [148], the numbers of nodes in the radial wave
functions R̃ñl̃j (r) are one less than those in their counterparts
Rnlj (r) when SUSY is exact, while the numbers of nodes in
R̃ñl̃j (r) are the same as those in their counterparts Rnlj (r)
when SUSY is broken. This indicates that the well-known
node relation between the pseudospin doublets [85],

ñ = n − 1 for κ < 0, ñ = n for κ > 0, (39)

is nothing but an intrinsic property of SUSY quantum me-
chanics. This node relation can be also checked by comparing

FIG. 9. (Color online) Single-particle wave functions R̃ñl̃j (r) of
H̃ for the 2p̃1/2 and 1f̃ states.

TABLE II. Contributions from kinetic term (kin), pseudo–
centrifugal barrier (PCB), and central potential (cen) to the single-
particle energies E and the corresponding pseudospin-orbit splittings
EPSO for the pseudospin doublets 2p̃ and 1f̃ . All units are in MeV.

State Ekin EPCB Ecen E

2p̃1/2 16.602 6.723 −44.916 −21.591
2p̃3/2 17.331 6.857 −47.332 −23.143
EPSO −0.729 −0.134 2.415 1.552
1f̃5/2 5.710 16.286 −45.139 −23.143
1f̃7/2 6.293 16.591 −50.392 −27.508
EPSO −0.584 −0.305 5.253 4.365

the wave functions shown in Figs. 4 and 9. In fact, not only
are the numbers of nodes equal, but also the wave functions
of pseudospin doublets are almost identical to each other.
Therefore, within this representation, the quasidegeneracy of
pseudospin doublets is closely related to the similarity of their
wave functions, and vice versa.

The same strategy is then adopted to investigate the PSO
splittings EPSO by decomposing the contributions from each
term as done in Table I, but now within the representation of
H̃ shown in Eq. (27) instead. The corresponding operators
include the kinetic term −d2/(2Mdr2), the PCB κ(κ − 1)/
(2Mr2), and the central potential Ṽκ (r). The corresponding
results for the pseudospin doublets 2p̃ and 1f̃ are listed in
Table II. It can be seen that for each pair of pseudospin
doublets the energy contributions from the PSS-conserving
terms, i.e., the kinetic term and PCB, are very similar. The
PSO splittings EPSO are mainly contributed by the difference
in the central potentials Ecen., which is due to the slight κ
dependence of Ṽκ (r) as shown in Fig. 8. In other words, the
sophisticated cancellations among different terms in H can be
clearly understood by using a proper decomposition with the
help of SUSY quantum mechanics.

In order to perform the quantitative perturbation calcula-
tions, the Hamiltonian H̃ is split as

H̃ = H̃ PSS
0 + W̃ PSS, (40)

where H̃ PSS
0 and W̃ PSS are the corresponding PSS-conserving

and PSS-breaking terms, respectively. By requiring that W̃ PSS

should be proportional to κ , which is similar to the case of the
spin-orbit term in the normal scheme, one has

Ṽκa
(r) = ṼPSS(r) + κaṼPSO(r), (41a)

Ṽκb
(r) = ṼPSS(r) + κbṼPSO(r), (41b)

for a pair of pseudospin doublets with κa + κb = 1. In such
a way, the PSS-conserving potentials ṼPSS(r) and breaking
potentials ṼPSO(r) can be uniquely determined as

ṼPSS(r) = κbṼκa
(r) − κaṼκb

(r)

κa − κb

, (42a)

ṼPSO(r) = Ṽκa
(r) − Ṽκb

(r)

κa − κb

= 1

M

q ′
κa

(r) − q ′
κb

(r)

κa − κb

. (42b)

014334-8



PSEUDOSPIN SYMMETRY IN SUPERSYMMETRIC QUANTUM . . . PHYSICAL REVIEW C 87, 014334 (2013)

FIG. 10. (Color online) Pseudospin-symmetry-conserving poten-
tials ṼPSS(r) (a) and breaking potentials ṼPSO(r) (b) for the p̃ and f̃

blocks.

The corresponding H̃ PSS
0 and W̃ PSS read

H̃ PSS
0 = 1

2M

[
− d2

dr2
+ κ(κ − 1)

r2

]
+ ṼPSS(r), (43a)

W̃ PSS = κṼPSO(r). (43b)

By taking the p̃ and f̃ blocks as examples, the PSS-conserving
potentials ṼPSS(r) and PSS-breaking potentials ṼPSO(r) are
illustrated in Fig. 10. On one hand, it can be seen that the PSS-
conserving potentials ṼPSS(r) remain an approximate Woods-
Saxon shape, and they are κ dependent to a small extent. On the
other hand, the PSS-breaking potentials ṼPSO(r) show several
special features. First of all, these PSS-breaking potentials are
regular functions of r; in particular, they vanish at r → ∞.
This was also one of the main goals of the investigations in
Ref. [138], but here we not only achieve the goal but also
keep every operator Hermitian. Second, it can be seen that
the amplitudes of ṼPSO are around 1 MeV, which directly lead
to the reduced PSO splittings EPSO � 1 MeV as shown in
Fig. 3. More importantly, different from the usual SO potentials
with a surface-peak shape, the PSO potentials ṼPSO(r) are
negative at small radius but positive at large radius with a node
at the surface region. This property can be traced back to the
differential equation (23) of the reduced superpotentials qκ (r).
By analyzing the corresponding asymptotic behaviors of qκ (r)
at r → 0 and r → ∞, one can conclude that such a particular
shape of ṼPSO(r) holds as long as the central potentials V (r) in
the Schrödinger equations are of a Woods-Saxon-like shape.

FIG. 11. (Color online) Same as Fig. 6, but for the case of
H̃ = H̃ PSS

0 + W̃ PSS.

The particular shape of the PSO potentials ṼPSO(r) can
explain well the variations of the PSO splitting with the single-
particle energy. First of all, it has been emphasized above
that ṼPSO(r) do not depend on the radial quantum number n.
Meanwhile, the single-particle wave functions R̃(r) extend to
larger distance with higher energies. Thus, the matrix element
〈R̃|ṼPSO|R̃〉 is negative when the wave function is centralized
in the inner part. As the wave function becomes more extended,
the positive part of ṼPSO(r) compensates for the negative value
of the matrix element. In such a way, the PSO splittings EPSO

decrease while the radial quantum numbers ñ increase. The
splittings can even reverse for the resonance states, where the
outer part of the PSO potentials plays the major role.

Finally, we perform perturbation calculations based on the
pseudospin symmetric Hamiltonian H̃ PSS

0 with the perturba-
tion W̃ PSS. In Fig. 11, the values of |W̃ PSS

mk /(Em − Ek)| for the
pseudospin doublets k = 2p̃ and 1f̃ are shown as functions of
the energy differences Em − Ek in the upper panel, while the
single-particle energies obtained at the PSS limit H̃ PSS

0 , and
their counterparts obtained by the first-, second-, and third-
order perturbation calculations, as well as those obtained with
H̃ , are shown from left to right in the lower panel. It can be seen
that the pseudospin doublets are exactly degenerate at the PSS
limit H̃ PSS

0 . It can also be examined that the radial wave func-
tions for each pair of pseudospin doublets are identical. For the
present decomposition, the largest perturbation correction is
less than 0.03, which is almost one order of magnitude smaller
than that with the decomposition H = H HO

0 + WHO. This
indicates that the criterion in Eq. (35) is satisfied quite well.
As shown in the lower panel, not only the PSO splittings but
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also the energy degeneracy of the spin doublets are excellently
reproduced by the first-order perturbation calculations.

In such an explicit and quantitative way, the PSO splittings
EPSO can be directly understood by the PSS-breaking
term W̃ PSS within the representation of the SUSY partner
Hamiltonian H̃ . Furthermore, this symmetry-breaking term
can be treated as a very small perturbation on the exact PSS
limit H̃ PSS

0 . Therefore, PSS in the present potential without a
spin-orbit term is of a pertubative nature.

IV. SUMMARY AND PERSPECTIVES

Supersymmetric quantum mechanics is used to investigate
the origin of pseudospin symmetry and its breaking in
the single-particle spectra in nuclei. In the formalism, it
can be seen that, while the spin-symmetry-conserving term
κ(κ + 1) appears in the single-particle Hamiltonian H , the
PSS-conserving term κ(κ − 1) appears naturally in its SUSY
partner Hamiltonian H̃ . In addition, the fact that all states with
l̃ > 0, except for intruder states, have their own pseudospin
partners can be interpreted by employing both exact and broken
SUSY in a unified way.

In the present study, we focus on a Schrödinger equation
with a Woods-Saxon central potential. This corresponds to the
lowest-order approximation for transforming a Dirac equation
into a diagonal form by using the similarity renormalization
group technique.

Within the single-particle Hamiltonian H representation,
the wave functions of pseudospin doublets are very different
from each other, and the small pseudospin-orbit splittings
EPSO are due to the sophisticated cancellations among all
channels. However, this does not necessarily mean a dynamical
or even a nonperturbative nature of PSS. By taking the
Hamiltonian with a harmonic oscillator potential H HO

0 as
the exact PSS limit, it is found that the largest perturbation
correction due to the symmetry-breaking term WHO is roughly
0.13, and EPSO can be well reproduced by the third-order
perturbation calculations.

The origin of PSS and its breaking mechanism can be
interpreted explicitly within the representation of the SUSY
partner Hamiltonian H̃ . In order to obtain H̃ , one first
solves the first-order differential equation for the reduced
superpotentials qκ (r), and then one obtains the κ-dependent
central potentials Ṽκ (r) in H̃ . It is important that the central
potentials are regular and converge at both r → 0 and r → ∞.
Consequently, the eigenstates of Hamiltonians H and H̃
are exactly one-to-one identical, except for the additional
eigenstates in H when SUSY is exact, which correspond to
the intruder states without pseudospin partners.

By holding this one-to-one mapping relation, the origin of
PSS deeply hidden in H can be traced by employing its SUSY
partner Hamiltonian H̃ . Within this SUSY partner scheme, the
wave functions of the pseudospin doublets are almost identical,
and the well-known node relation between the pseudospin
doublets, i.e., ñ = n − 1 for κ < 0 and ñ = n for κ > 0, is
one of the intrinsic properties of SUSY quantum mechanics.
It is also found that the PSO splittings EPSO are mainly
contributed by the PSS-breaking terms. This indicates that the

sophisticated cancellations among different terms in H can be
understood in a clear scheme by using a proper decomposition.

The Hamiltonian H̃ is then split into a PSS-conserving
term H̃ PSS

0 and a PSS-breaking term W̃ PSS. While the PSS-
conserving potentials ṼPSS(r) remain an approximate Woods-
Saxon shape with a slight κ dependence, the PSS-breaking
potentials ṼPSO(r) show several special features. (1) The
potentials ṼPSO(r) are regular functions of r , and they vanish
at both r → 0 and r → ∞. (2) The amplitudes of ṼPSO

are around 1 MeV, which directly lead to the reduced PSO
splittings EPSO � 1 MeV. (3) The potentials ṼPSO(r) show
a particular shape of being negative at small radius but
positive at large radius, with a node at the surface region.
The general pattern that the PSO splittings become smaller
with increasing single-particle energies, and even reverse for
resonance states, can be understood straightforwardly by such
particular symmetry-breaking potentials.

Finally, perturbation calculations are performed based on
the PSS-conserving Hamiltonian H̃ PSS

0 with the perturbation
W̃ PSS. It is found that in such a decomposition the largest
perturbation correction due to the symmetry-breaking term
W̃ PSS is less than 0.03, and not only the PSO splittings but
also the energy degeneracy of the spin doublets are excellently
reproduced by the first-order perturbation calculations. In
such a way, the origin of PSS can be recognized, and its
breaking is due to a very small perturbation W̃ PSS on the exact
PSS limit H̃ PSS

0 .
In short, the justification for using SUSY quantum mechan-

ics is that the partner Hamiltonian shares its eigenvalues with
the original one, while the PSS-conserving term proportional
to κ(κ − 1) can be naturally identified. Furthermore, the
PSS-breaking term is responsible for the observed PSS
splitting. The amplitudes of ṼPSO quantitatively determine
the amplitudes of the reduced PSO splittings EPSO. The
particular shape of ṼPSO(r) can also explain the decrease of
the PSO splitting with increasing single-particle energies.

The present investigation employs a Schrödinger equation
for illustrating the key ideas on applying SUSY quantum
mechanics to PSS in nuclei. Since the spin-orbit term, which
appears as a second-order correction in 1/M , is crucial for
the nuclear shell structure, it is important to investigate its
effects on the properties of SUSY quantum mechanics and
PSS in a quantitative way. In order to completely answer
the question of why PSS is conserved better than SS in
realistic nuclei, the intrinsic relation between the spin-orbit
potential and the central potential or the effective mass must
be taken into account. In this sense, PSS must be regarded
as a relativistic symmetry, and it should be recognized in the
Dirac equation, or equivalently the Schrödinger-like equation
obtained by transforming the Dirac equation into a diagonal
form by using the SRG technique.
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[97] M. López-Quelle, L. N. Savushkin, S. Marcos, P. Bernardos,

and R. Niembro, Nucl. Phys. A 727, 269 (2003).
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