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Three-body force effect on off-shell mass operator and spectral functions in nuclear matter
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Within the framework of the Brueckner theory, the off-shell behaviors of the mass operator M(k, ω) =
V (k, ω) + iW (k, ω), i.e., its dependence upon the momentum k and upon the nucleon frequency ω, are
investigated by including nuclear three-body force (TBF). The first two terms of the hole-line expansion of the
mass operator are taken into account. The TBF effects on their off-shell properties are discussed. A comparison
is made between the on-shell and off-shell values of M1. The nucleon spectral function and nucleon momentum
distribution are also calculated, and the calculation shows that they are hardly affected by the TBF effect at the
saturation density. At a density two times greater than the saturation density, inclusion of the TBF may lead to a
visible effect on the spectral function and may enhance the depletion of the hole states.
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I. INTRODUCTION

The probability of removing a particle with momentum
k from a target nuclear system, leaving the final system
with excitation energy ω, is reflected by the nucleon spectral
function S(k, ω). In the free Fermi gas model, the spectral
function can be written as S(k, ω) = δ(ω − h̄2k2/2m). How-
ever, many-body correlations among the nucleons, induced by
the nucleon-nucleon (NN ) interactions, broaden the peaks of
the Fermi gas spectral function and decrease their strength.
It has been shown that most of this decrease of the strength
of the single-particle (s.p.) states with respect to the standard
mean field estimates [1] is due to the NN correlations [2,3],
whose effects can be most accurately studied in infinite nuclear
matter. Therefore, a microscopic calculation of the nucleon
spectral function in nuclear matter is of special interest since
it may play an important role in understanding the nature of
the NN correlations, especially the short-range and tensor
correlations [4,5].

The interest in the spectral function has also been raised by
the treatment of the off-shell effect in transport theory, which
provides a generalized theoretical framework to describe
the time evolution of heavy-ion reactions. The use of the
quasiparticle approximation (QPA) in transport theory puts
the nucleon on the mass shell, neglecting not only the finite
decay width of the particles but also the width of the nucleon
spectral function. However, the on-shell quasiparticle limit
should not be adequate for particles with short lifetimes and/or
high collision rates, as recognized previously [6,7]. Therefore,
there have been attempts to go beyond the QPA, such
as transport formulations for quasiparticles with dynamical
spectral functions [8–10], and extend the extensively applied
models [11–21]. The nucleon spectral function plays an
important role in the implementation of the off-shell effects
in a transport theoretical treatment of heavy-ion and other
nuclear collisions.
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Experimentally, the information about the nuclear spectral
function and the effect of NN correlations in nuclear systems
can be extracted from the (e, e′p) and proton-induced knock-
out reactions [4,5,22–26]. Theoretically, the nuclear short-
range correlations and the spectral function in nuclear matter
have been investigated extensively using various microscopic
nuclear many-body approaches, such as the Green’s function
theory [27–34], the correlated basis function method [35–38],
the extended Brueckner-Hartree-Fock (EBHF) framework
[39–43], and the in-medium T -matrix approach [44–46].
For a review, we refer readers to Refs. [4,5]. Within the
framework of the Brueckner theory, the nucleon spectral
function in symmetric nuclear matter has been studied in
Ref. [41] by adopting a finite-rank representation of the
realistic Argonne V 14 NN interaction, without taking into
account any three-body force (TBF) effect. In Refs. [34,43], the
neutron and proton spectral functions in isospin-asymmetric
nuclear matter have been explored using the BHF approach
and Green’s function theory, respectively. It is well known that
inclusion of TBF in the nonrelativistic Brueckner theory is
crucial for reproducing the nuclear saturation properties and
for better describing the s.p. properties, such as the momentum
dependence of the nucleon s.p. potential [47–50]. Recently, the
TBF effect on the spectral function in nuclear matter has been
investigated within the framework of the in-medium T -matrix
method in Ref. [46], where the TBF adopted is the Urbana
TBF [51]. In that paper, the authors have shown that the TBF
effect on the spectral functions is quite small at low densities
around and below the saturation density and that noticeable
modification of the spectral functions is realized only for high
densities well above the saturation density. One of our purposes
in the present paper is to investigate the possible impact of a
microscopic TBF on the nucleon spectral function within the
framework of the extended BHF approach.

The spectral function is closely related to the mass operator
M(k, ω), whose off-shell behavior is also our concern in the
present paper. The off-shell mass operator plays an important
role in the dispersion relation to the nuclear mean field [52] and
in the discussion of y scaling in inclusive electron scattering
[53–55]. In Ref. [41], the properties of the off-shell mass
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operator have been obtained within the Brueckner theory in
the absence of any TBF. Therefore, the other purpose of the
present paper is to reveal the TBF effect on the off-shell mass
operator discussed in Ref. [41].

The paper is organized as follows. In Sec. II, we give a
brief review of the mass operator and spectral function, i.e.,
their definitions and physical interpretations, as presented in
Ref. [41]. We also provide a simple introduction to the
Brueckner theory and the microscopic TBF adopted in our
calculation. In Secs. III and IV, we focus on the real and
imaginary parts of the off-shell mass operator. We study the k
dependence of M(k, ω) for the two typical energies, ω = 20
MeV and ω = 160 MeV, at 0.34 fm−3. We also calculate the
ω dependence of M(k, ω) for k = 3

4kF and k = 5
4kF . The

off-shell results of M1(k, ω) are compared with the on-shell
ones. The TBF effect on the k and ω dependence of M(k, ω)
is discussed. In Sec. V, we calculate the spectral function and
investigate the TBF effect on its ω dependence. In Sec. VI, a
summary is given.

II. FORMALISM

A. The mass operator and the spectral function

The Green’s function in the energy-momentum representa-
tion is given by G(k, ω) = [ω − k2/2m − M(k, ω)]−1, where
M(k, ω) = V (k, ω) + iW (k, ω) is the mass operator that can
be identified with the mean field felt by a nucleon in a nuclear
system. The real and imaginary parts of the mass operator are
connected by the dispersion relation [41]

V (k, ω) = lim
ω→∞ V (k, ω) + 1

π

∫ ∞

−∞

W (k, ω′)
ω′ − ω

dω′. (1)

The spectral function is given by

S(k, ω) = − 1

π

(
W (k, ω)

[ω − k2/2m − V (k, ω)]2 + [W (k, ω)]2

)
,

(2)

and it fulfills the sum rule∫ ∞

−∞
S(k, ω) dω = 1. (3)

The occupation probability n(k) is related to the spectral
function by

n(k) =
∫ ωF

−∞
S(k, ω) dω (4)

and

n(k) = 1 −
∫ ∞

ωF

S(k, ω) dω. (5)

The Fermi energy ωF fulfills ωF = k2
F /2m + V (kF , ωF ). For

a system of A nucleons, S(k,E∗) measures the probability
density of finding the residual (A − 1)-nucleon system with
excitation energy E∗ = ωF − ω(ω < ωF ) after removing a
nucleon with momentum k from the ground state, or the prob-
ability density of finding the residual (A + 1)-nucleon system
with the excitation energy E∗ = ω − ωF (ω > ωF ) after one
has added a nucleon with momentum k to the ground state.

B. Brueckner theory with a microscopic TBF

The starting point of Brueckner calculation of nuclear
matter properties is to obtain the Brueckner reaction matrix
G(ω) by solving the Bethe-Goldstone (BG) equation

G(ω) = VNN + VNN

∑
k1k2

|k1k2〉Q(k1k2)〈k1k2|
ω − ε(k1) − ε(k2) + iη

G(ω), (6)

where k1 and k2 are momenta of the two involved nucleons.
Q(k1, k2) = [1 − n(k1)][1 − n(k2)] is the Pauli operator which
prevents two intermediate nucleons from being scattered
into occupied states. ω is the starting energy. The single-
particle energy ε(k) satisfies the on-shell relation ε(k) =
k2/2m + UBHF(k), where the auxiliary potential UBHF(k) is the
single-particle potential at the BHF level and it is defined as
UBHF(k) = ∑

k′ Re〈kk′|G(ε(k) + ε(k′))|kk′〉A. The subscript
A denotes antisymmetrization of the matrix element. The
continuous choice other than gap choice is adopted when
solving the BG equation to obtain the G matrix [56].

Extension of the Brueckner-Bethe-Goldstone (BBG) theory
to include TBFs can be found in Refs. [47,48]. In this paper,
we choose the microscopic TBF, which is based on the meson-
exchange current model proposed by P. Grangé et al. [57] and
reduced to an equivalent effective two-body force V eff

3 via an
average with respect to the third-nucleon degree of freedom.
The effective force V eff

3 in r space reads

V eff
3 (�r ′

1, �r ′
2|�r1, �r2) = 1

4
T r

∑
n

∫
d �r3d �r ′

3φ
∗
n(�r ′

3)[1 − η(r ′
13)]

× [1 − η(r ′
23)]W3(�r ′

1, �r ′
2, �r ′

3|�r1, �r2, �r3)

×φn(�r3)[1 − η(r13)][1 − η(r23)], (7)

where the wave function φn denotes the single nucleon wave
function in free space. The realistic NN interaction VNN in the
BG equation is the sum of the Argonne V18 (AV 18) two-body
interaction and the effective two-body force V eff

3 , as described
in Refs. [47,48]. Since η(r) in expression (7) is the so-called
defect function [57,58] corresponding to the G matrix, V eff

3
should be recalculated along with the G matrix in each iteration
of our BHF procedure to ensure self-consistency of the BG
equation.

In the spirit of Brueckner theory, the first two terms
of the hole-line expansion of the mass operator are the
BHF approximation M1(k, ω) and the Pauli rearrangement
correction M2(k, ω). They are represented by the diagrams of
Fig. 1, and their expressions read

M1(k, ω) =
∑
h<kF

〈kh|G[ω + ε(h)]|kh〉A, (8)

M2(k, ω) = 1

2

∑
l,m<kF ,n>kF

|〈lm|G[ε(l) + ε(m)]|kn〉A|2
ω + ε(n) − ε(l) − ε(m) − iδ

. (9)

Their off-shell values can be calculated as long as the G matrix
is obtained.
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FIG. 1. Representation of the first two terms of the hole-line
expansion of the mass operator. The thin lines represent either par-
ticle (upward-pointing arrows) or hole (downward-pointing arrows)
momentum states. The thick lines show the values of the nucleon
momentum k and frequency ω.

III. FREQUENCY DEPENDENCE OF THE MASS
OPERATOR AT FIXED MOMENTUM

A. Real part of the off-shell mass operator

The calculated ω dependence of V1(k, ω) = ReM1(k, ω)
and V2(k, ω) = ReM2(k, ω) is shown in Fig. 2 for the two
densities of ρ = 0.17 fm−3 and ρ = 0.34 fm−3, respectively.
Two fixed momenta (k = 3

4kF and k = 5
4kF ) are selected.

The quantity eF is the calculated value of the single-particle

energy ε(k) at the Fermi momentum: eF = ε(kF ) = k2
F /2m +

UBHF(kF ). As one can see in Fig. 2, the quantity V1(k, ω) is
attractive for ω < eF and its attraction increases as a function
of frequency ω in the region of ω < eF , while V2(k, ω)
is repulsive for ω > eF and its repulsion decreases with
increasing ω in the region of ω > eF . The TBF effect on their
ω dependence is also reported in this figure. Inclusion of the
TBF in our calculations hardly affects the ω dependence of
V2(k, ω) but tends to reduce the attraction of V1(k, ω) well
below eF and enhance its attraction as ω is much larger than
eF . At the saturation density of 0.17 fm−3, the TBF effect on
V1(k, ω) is weak enough to be neglected in the vicinity of eF .
However, the TBF effect gets much stronger at high densities.
As a result, the TBF-induced reduction of the attraction of
V1(k, ω) well below eF is obviously seen at two times the
saturation density 0.34 fm−3, as revealed in the right panel of
Fig. 2. At high densities, the TBF effect on V2 turns out to be
rather small. At ρ = 0.34 fm−3 and k = 2.1 fm−1, inclusion
of the TBF may enhance slightly the repulsion of V2.

Besides, it is worth noticing that the distinct deviation of
the curve with open squares from that with filled squares when
ω − eF is above 150 MeV. The deviation appears regardless
of the density value, which indicates that one should account
for the TBF effect carefully in the high-energy domain.

B. Imaginary part of the off-shell mass operator

Figure 3 shows the dependence of W1(k, ω) and W2(k, ω)
upon the difference ω − eF . One important feature of the two
components is that W1(k, ω) vanishes for ω < eF and W2(k, ω)
vanishes for ω > eF . Moreover, W2(k, ω) also vanishes for
large negative ω. At the saturation density of 0.17 fm−3, the

FIG. 2. (Color online) Dependence of V1(k, ω) and V2(k, ω) upon ω − eF for the two densities of ρ = 0.17 fm−3 and ρ = 0.34 fm−3,
and for the two fixed momenta of k = 3

4 kF and k = 5
4 kF . The curves with open squares and open triangles have taken into account the TBF

contribution.
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FIG. 3. (Color online) Dependence of W1(k, ω) and W2(k, ω) upon ω − eF for the two densities of ρ = 0.17 fm−3 and ρ = 0.34 fm−3

and for the two fixed momenta of k = 3
4 kF and k = 5

4 kF . The curves with open squares and open triangles have taken into account the TBF
contribution.

calculated W1(k, ω) including the TBF contribution is very
close to its values without including the TBF contribution in
the energy domain ranging from eF to approximately 300 MeV.
However, as density increases to 0.34 fm−3 where the TBF
effect becomes strong, inclusion of the TBF leads to a
faster increase of the attraction of W1(k, ω) with increasing
frequency ω as compared to the result without the TBF effect.
At ρ = 0.34 fm−3 and k = 2.1 fm−1, inclusion of the TBF
may lead to a sizable enhancement of the attraction of W2.

FIG. 4. (Color online) Comparison between the e dependence of
the on-shell W1(e) and W2(e) (solid curve) with the ω dependence
of W1(k, ω) and W2(k, ω), for k = 1.3 fm−1 (filled squares) and k =
2.1 fm−1 (open squares), at the density of 0.34 fm−3.

C. Comparison with on-shell values

In Fig. 4, we compare the off-shell values of W1(k, ω) and
W2(k, ω) with their on-shell values. Although our calculations
are done at a higher density of 0.34 fm−3 and in the
presence of the TBF, the results plotted in Fig. 4 are similar
qualitatively to those in Fig. 12 of Ref. [41], regardless of the
magnitude. Therefore, the analysis and conclusion in Ref. [41]
remain valid. That is to say, on the one hand, W1(k, ω) and
W2(k, ω) are symmetric with each other only in the vicinity
of the Fermi energy; on the other hand, the assumption in
the simplest version of the dispersion relation approach for
the nuclear mean field—i.e., the ω dependence of W1(k, ω) is
approximated by the e dependence of the on-shell W1(e)—is
only justified qualitatively.

IV. MOMENTUM DEPENDENCE OF THE BHF FIELD
M1(k, ω) AT FIXED FREQUENCY

At the density of 0.34 fm−3, we calculate the dependence
of V1(k, ω) and W1(k, ω) upon momentum k for two fixed
frequencies, namely ω1 = 20 MeV and ω2 = 160 MeV. The
corresponding on-shell values of the momentum, which
can be obtain from the energy-momentum relation ω(k) =
k2/2m + V [k, ω(k)], are approximately k(ω1) = 2.15 fm−1

and k(ω2) = 3.15 fm−1. Results for the saturation density
0.17 fm−3 are not provided, because the TBF effect is not
expected to play an important role at such a relatively low
density.

In Fig. 5, the upper part displays the calculated values
of V1(k, ω = 20 MeV) and V1(k, ω = 160 MeV); the lower
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FIG. 5. (Color online) Dependence upon k of the calculated
values of V1(k, ω) and of W1(k, ω) for the two selected frequencies:
ω = 20 MeV and ω = 160 MeV. Open symbols correspond to the
case with TBF contribution, while filled symbols do not. The density
is fixed at 0.34 fm−3.

part presents the calculated values of W1(k, ω = 20 MeV) and
W1(k, ω = 160 MeV).

As we can see from the figure, for both the real and the
imaginary parts of M1(k, ω), the open squares are very close
to the corresponding filled squares in the high-momentum
region, indicating that the TBF correction is small at high
momenta. However, in the low-momentum region, the TBF
has a strong effect on the shape of the k dependence of V1(k, ω)
and W1(k, ω) only at the larger frequency of ω = 160 MeV,
and it may separate the open squares and the corresponding
filled ones considerably. As a result, it is necessary to take
into account the TBF effect if one wants to get more exact and
reliable k dependence of the off-shell mean field M1(k, ω) felt
by a nucleon with both low momentum and large frequency.

V. SPECTRAL FUNCTION

The spectral function S(k, ω) can be calculated from Eq. (2),
using the real and imaginary parts of the mass operator.
Notice that in the present approximation scheme, W (k, ω) =
W2(k, ω) for ω < eF and W (k, ω) = W1(k, ω) for ω > eF .
For energies ω < eF , the spectral function S(k, ω) is referred

FIG. 6. (Color online) Spectral function S(k, ω) calculated from
Eq. (2) at the density of 0.34 fm−3.

to as the “hole spectral function,” Sh(k, ω), and for energies
ω > eF , the S(k, ω) becomes the “particle spectral function,”
Sp(k, ω). Sh(p)(k, ω) measures the probability that a nucleon
with momentum k and energy ω can be removed from (added
to) the ground state.

In Fig. 6, the spectral function is plotted versus ω at
the density of 0.34 fm−3. The upper part of the figure
displays the spectral distribution for momentum below the
Fermi momentum. In the independent-particle model, states
with momenta below the Fermi surface would be completely
occupied so that the spectral function is identical to a δ function
located at the on-shell value of ω. However, the two-hole
configuration leads to a nonvanishing imaginary part of the
mass operator and consequently a finite spectral function
peaked at the on-shell energy for momenta below kF [4,5]. The
quasiparticle peak in the spectral function can be related to the
shell model by the fact that when a nucleon with momentum
k is removed from the ground state, the residual system has
a large probability of having a well-defined excitation energy
E∗

A−1 [41]. The lower part of the figure shows the spectral
distribution for momentum above kF .

Recently, the TBF effect on the spectral function in nuclear
matter has been investigated explicitly within the in-medium
T -matrix method in Ref. [46], where the Urbana TBF [51]
has been adopted. One may notice from the upper panel of
Fig. 6 that, at momentum below the Fermi momentum kF ,
the TBF effect on the spectral distribution leads to a shift of
the peak location to slightly higher energy and a decrease in the
peak value, in agreement with the results of Ref. [46] within
the in-medium T -matrix method using the Urbana TBF. It is
also seen that the TBF reduces the strength of the spectral
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FIG. 7. (Color online) Nucleon momentum distribution in sym-
metric nuclear matter at two densities, ρ = 0.17 fm−3 (left panel) and
ρ = 0.34 fm−3 (right panel).

distribution at large negative energies. At momentum above
kF , the TBF effect is mainly to shift the peak value to a
higher energy. The TBF-induced shift of the peak location
of the spectral distribution can be understood readily since
the TBF gives an extra repulsive contribution to the on-shell
single-particle potential and consequently increases the on-
shell energy for a given momentum k.

In order to test the numerical accuracy of the present
work, in Fig. 7 we display the nucleon momentum distribution
defined in Eq. (4) for two densities, ρ = 0.17 and 0.34 fm−3.
By using Eq. (5) we get almost the same results. Due to
the nucleon-nucleon correlations, the s.p. hole states below
kF are partly empty and the particle states above kF are
partly occupied in the correlated ground state of nuclear
matter. The depletion of the lowest hole state at k = 0 at
ρ = 0.17 fm−3 is about 16.4%, which is compatible with the
previous predictions in Refs. [5,34,35,37,40,42]. This value
is also consistent with the experimental result in Ref. [26].
As discussed in Ref. [40], inclusion of the (higher order)
renormalization contribution M3 in the mass operator may
reduce the calculated depletion from ∼17% to ∼14% by using
a separable AV 14 interaction. It is noticed that the TBF effect
is negligibly small at the saturation density ρ = 0.17 fm−3,
in agreement with the conclusion of Ref. [35] within the
correlated basis function approach by adopting the Urbana v14
interaction plus an effective TBF. The TBF effect only becomes
sizable at high densities well above the saturation density as
shown in the right panel of Fig. 7, where the momentum
distribution for ρ = 0.34 fm−3 is plotted. The TBF effect is
shown to enhance the depletion of the hole states since the TBF

may induce sufficiently strong extra-short-range correlations
at sufficiently high densities. At ρ = 0.34 fm−3, inclusion of
the TBF may enhance the depletion of the zero-momentum
state from ∼17% to ∼22%.

VI. SUMMARY

Within the framework of Brueckner theory extended to
include a microscopic TBF, we have calculated the dependence
of the off-shell mass operator upon the momentum k and upon
the nucleon frequency ω. The first two terms in the hole-line
expansion of the mass operator are taken into account. Our
calculations show that the TBF effect on the values of M1(k, ω)
for fixed momentum is only important at high densities or at
frequencies far away from its on-shell energy at kF . However,
the ω dependence of the Pauli rearrangement term M2(k, ω)
at fixed momenta is even less affected by the TBF effect. At
ρ = 0.34 fm−3, which is well above the saturation density,
inclusion of the TBF may enhance the repulsion of V2 at a
large momentum k = 2.1 fm−1 above kF . We also compare
the off-shell values of M1 at fixed momenta with its on-shell
values. For fixed frequency, the k dependence of the BHF field
M1 is investigated, and it is shown that it is necessary to take
into account the TBF effect if one wants to get a more exact k
dependence of the mean field M1(k, ω) felt by a nucleon with
both low momentum and large frequency. The nucleon spectral
function has been calculated. At density of ρ = 0.34 fm−3 well
above the saturation density, the TBF effect shifts the peak
location in the spectral function to slightly higher energy and
reduces slightly the peak value at low momentum below the
Fermi momentum kF . The TBF effect on the nucleon spectral
function and nucleon momentum distribution turns out to be
neglected at the saturation density ρ = 0.17 fm−3. It becomes
sizable only at high densities well above the saturation density,
and inclusion of the TBF leads to an enhancement of the
depletion of the zero-momentum hole state from ∼17% to
∼22% at ρ = 0.34 fm−3.
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