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We calculate the energy per particle in infinite neutron matter perturbatively using chiral N3LO (next-to-
next-to-next-to-leading order) two-body potentials plus N2LO three-body forces. The cutoff dependence of the
predictions is investigated by employing chiral interactions with different regulators. We find that the inclusion of
three-nucleon forces, which are consistent with the applied two-nucleon interaction, leads to a strongly reduced
regulator dependence of the results.
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I. INTRODUCTION

A major breakthrough in the past decade has been the
derivation of nucleon-nucleon (NN ) potentials, VNN , based on
chiral perturbation theory (ChPT), that are able to reproduce
accurately the NN data [1–3].

The idea of constructing realistic two- and three-nucleon
forces (2NF and 3NF) starting from a chiral Lagrangian goes
back to the seminal work of Weinberg [4–6], who invoked the
concept of an effective field theory (EFT) to study the S matrix
for processes involving arbitrary numbers of low-momentum
pions and nucleons. In this approach, the long-range forces
are ruled by the symmetries of low-energy QCD (particularly,
spontaneously broken chiral symmetry), and the short-range
dynamics is absorbed into a complete basis of contact terms
that are proportional to low-energy constants (LECs) fit to
two-nucleon (2N) data.

One great advantage of ChPT is that it generates nuclear
two- and many-body forces on an equal footing [3,7,8]. Most
interaction vertices that appear in the 3NF and in the four-
nucleon force (4NF) also occur in the 2NF. The parameters
carried by these vertices are fixed (along with the LECs of
the 2N contact terms) in the construction of the chiral 2NF.
Consistency then requires that for the same vertices the same
parameter values are used in the 2NF, 3NF, 4NF, and so on.

A crucial theme in EFT is regulator independence within
the range of validity of the theory. In other words, the physical
observables calculated in the theory must be independent of
both the choice of the regulator function and its cutoff scale
�. ChPT is a low-momentum expansion which is valid only
for momenta Q < �χ � 1 GeV, where �χ denotes the chiral
symmetry-breaking scale. Therefore, NN potentials derived in
this framework are usually multiplied by a regulator function

f (p′, p) = exp[−(p′/�)2n − (p/�)2n], (1)

where typical choices for the cutoff parameter are
� � 0.5 GeV. In regards to the physics of the
two-nucleon problem, it is obvious that the solutions of
the Lippmann-Schwinger equation, that are related to the

two-nucleon observables, may depend sensitively on the
regulator and its cutoff parameter. This unwanted dependence
is then removed by a renormalization procedure, in which
the contact terms are readjusted to reproduce the two-nucleon
phase shifts and data. However, it is well known that phase
equivalent potentials do not necessarily yield identical results
in the many-body problem. Thus, one may be confronted with
cutoff dependence in the many-body system [9]. However, in
the many-body problem, 3NF, 4NF, and so on also contribute,
which will have impact on the final predictions and may either
increase or reduce the cutoff dependence.

A convenient theoretical laboratory to investigate this issue
is infinite nuclear matter and neutron matter. The advantage
of pure neutron matter is that the contact interaction, VE , and
the 1π -exchange term, VD , that appear in the next-to-next-to-
leading order (N2LO) three-body force vanish [10]. Thus, the
low-energy constants of VE and VD (known as cE and cD),
which cannot be constrained by two-body observables, are
not needed. Consequently, the calculation of the ground-state
energy of infinite neutron matter, with chiral 3NFs up to N2LO,
depends only on parameters that have been fixed in the two-
nucleon system.

We note that there have been already some attempts to study
the uncertainties in neutron-matter predictions using chiral
forces, e.g., by Hebeler and Schwenk [10] and Tews et al.
[11], who come up with uncomfortably large uncertainties for
reasons to be discussed below. It is also worth noting that,
aside from the above considerations, neutron matter, and more
generally isospin-asymmetric nuclear matter, is currently of
great interest in the nuclear physics community because of its
close connection with the physics of neutron-rich nuclei and,
for higher densities, with the structure of neutron stars.

It is the purpose of the present paper to investigate how the
equation of state of neutron matter, calculated using chiral
nuclear potentials, depends on the choice of the regulator
function. More precisely, we employ three different chiral
potentials whose cutoff parameters are � = 414 [12], 450,
and 500 MeV [1,3] and calculate, including 3NF effects, the
energy per nucleon for neutron matter at nuclear densities in
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the framework of many-body perturbation theory. The crucial
point of our calculations is that we use in the 3NF exactly
the same LECs as well as the same cutoff parameters as in
the 2NF. We will show that this consistent use of the LECs
in the 2NF and 3NF leads to a substantial reduction of the
regulator dependence of the neutron-matter predictions.

The paper is organized as follows. In Sec. II, we briefly
describe the features of the different chiral potentials employed
and, in Sec. III, we give an outline of the calculation of the
energy per nucleon in neutron matter that takes into account
3NF effects. Our results are presented in Sec. IV, and some
concluding remarks and an outlook are given in Sec. V.

II. THE CHIRAL POTENTIALS

During the past two decades, it has been demonstrated
that chiral effective field theory (chiral EFT) is a powerful
tool to deal with hadronic interactions at low energy in a
systematic and model-independent way (see Refs. [3,13] for
recent reviews). For the construction of an EFT, it is crucial
to identify a separation of scales. In the hadron spectrum, a
large gap between the masses of the pions and the masses
of the vector mesons, like ρ(770) and ω(782), can clearly
be identified. Thus, it is natural to assume that the pion
mass sets the soft scale, Q ∼ mπ , and the ρ mass the hard
scale, �χ ∼ mρ ∼ 1 GeV, also known as the chiral-symmetry-
breaking scale. This is suggestive of considering a low-energy
expansion arranged in terms of the soft scale over the hard
scale, (Q/�χ )ν , where Q is generic for an external momentum
(nucleon three-momentum or pion four-momentum) or a pion
mass. The appropriate degrees of freedom are, obviously, pions
and nucleons, not quarks and gluons. For this EFT to rise
above the level of phenomenology, it must have a firm link
with QCD. The link is established by having the EFT observe
all relevant symmetries of the underlying theory, in particular,
the broken chiral symmetry of low-energy QCD [4]. The past
15 years have seen great progress in applying ChPT to nuclear
forces. As a result, NN potentials of high precision have been
constructed, which are based upon ChPT carried to N3LO.

Since ChPT is a low-momentum expansion, valid only for
momenta Q < �χ , the potentials are either abruptly set to zero
for momenta above a certain cutoff � < �χ (“sharp cutoff”)
or they are multiplied with a smooth regulator function, like,
e.g., the one of Gaussian shape given in Eq. (1).

In this investigation, we consider three N3LO potentials
which differ by the cutoff parameter � and/or the regulator
function:

(i) � = 414 MeV together with a sharp cutoff (published
in Ref. [12]).

(ii) � = 450 MeV using the regulator function Eq. (1)
with n = 3. We have constructed this potential for the
present investigation.

(iii) � = 500 MeV using the regulator function Eq. (1) with
n = 2 for the 2π exchange contributions. This potential
was published in 2003 [1].

All three potentials use the same (comprehensive) analytic
expressions which can be found in Ref. [3]. Note that the Gaus-
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FIG. 1. (Color online) Neutron-proton phase parameters as pre-
dicted by chiral N3LO potentials with different cutoff scale �. Solid
(red) curve, � = 414 MeV; dashed (blue) curve, � = 450 MeV; and
dotted (black) curve, � = 500 MeV. Partial waves with total angular
momentum J � 1 are displayed. The solid dots and open circles are
the results from the Nijmegen multienergy np phase shift analysis [14]
and the VPI/GWU single-energy np analysis SM99 [15], respectively.

sian regulator function Eq. (1) suppresses the potential also for
Q < �, which is why we use a sharp cutoff function in the case
of the lowest cutoff of 414 MeV. Cutoff independence is an
important aspect of an EFT. In lower partial waves, the cutoff
dependence of the NN phase shifts is counterbalanced by an
appropriate adjustment of the contact terms which, at N3LO,
contribute in S, P , and D waves. The extent to which cutoff
independence can be achieved in lower partial waves is demon-
strated in Figs. 1 and 2. In F and higher partial waves (where
there are no NN contact terms) the LECs of the dimension-two
πN Lagrangian can be used to obtain cutoff independence of
the phase shift predictions; see Table I and Fig. 3.

An important advantage of the EFT approach to nuclear
forces is that it creates two- and many-body forces on an equal
footing. The first nonvanishing 3NF occurs at N2LO. At this
order, there are three 3NF topologies: the two-pion exchange
(2PE), one-pion exchange (1PE), and 3N-contact interactions.
The 2PE 3N-potential is given by

Vc =
(

gA

2fπ

)2 1

2

∑
i �=j �=k

(�σi · �qi)(�σj · �qj )(
q2

i + m2
π

)(
q2

j + m2
π

) Fab
ijk τ a

i τ b
j (2)
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FIG. 2. (Color online) Same as Fig. 1, but J = 2 phase shifts and
J � 2 mixing parameters are shown.

with �qi ≡ �pi
′ − �pi , where �pi and �pi

′ are the initial and final
momenta of nucleon i, respectively, and

Fab
ijk = δab

[
−4c1m

2
π

f 2
π

+ 2c3

f 2
π

�qi · �qj

]

+ c4

f 2
π

∑
c

εabc τ c
k �σk · [�qi × �qj ]. (3)

Note that the 2PE 3NF does not contain any new parameters,
because the LECs c1, c3, and c4 appear already in the 2PE 2NF.

TABLE I. For the various chiral N3LO NN potentials used
in the present investigation, we show the cutoff �, the type of
regulator, the exponent n used in the regulator function, Eq. (1),
and the LECs of the dimension-two πN Lagrangian, ci (in units
of GeV−1), which are relevant for the N2LO 3NF in neutron
matter.

Cutoff parameter � (MeV)

414 450 500

Regulator type Sharp Gaussian Gaussian
n 3 2
c1 −0.81 −0.81 −0.81
c3 −3.00 −3.40 −3.20
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FIG. 3. (Color online) Same as Fig. 1, but some representative
peripheral partial waves are shown.

The 1PE contribution is

VD = − cD

f 2
π �χ

gA

8f 2
π

∑
i �=j �=k

�σj · �qj

q2
j + m2

π

(τ i · τ j )(�σi · �qj ) (4)

and the 3N contact potential reads

VE = cE

f 4
π �χ

1

2

∑
j �=k

τ j · τ k. (5)

In the above, we use gA = 1.29, fπ = 92.4 MeV, mπ =
138.04 MeV, and �χ = 700 MeV. The last two 3NF terms
involve the two new parameters cD and cE , which do not
appear in the 2N problem. There are many ways to pin these
two parameters down. The triton binding energy and the nd
doublet scattering length 2and can be used. Alternatively, one
may choose the binding energies of 3H and 4He or an optimal
overall fit of the properties of light nuclei. However, in neutron
matter, VD and VE do not contribute such that we do not have
to worry about their values here. Note also that the c4 term of
Vc, Eqs. (2) and (3), vanishes in neutron matter.

III. CALCULATION OF THE ENERGY PER PARTICLE
IN NEUTRON MATTER

We calculate the ground-state energy per particle (g.s.e.)
of infinite neutron matter within the framework of many-body
perturbation theory. In particular, we express the g.s.e. as a
sum of Goldstone diagrams up to third order.

In order to take into account the effects of the N2LO 3NF,
a density-dependent two-body potential V NNN is added to the
chiral N3LO potential VNN . This potential V NNN is obtained
by summing one nucleon over the filled Fermi sea, which
leads to a density-dependent two-nucleon interaction [16,17].
Hebeler et al. [10] have pointed out that to take care of the
correct combinatorial factors of the normal ordering at the
two-body level of the 3NF, the matrix elements of V NNN (kF )
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FIG. 4. First-, second-, and third-order diagrams of the Goldstone
expansion included in our calculations with VNN vertices only. Latin-
letter subscripts denote particle states, and Greek-letter subscripts
correspond to hole states.

are to be multiplied by a factor of 1/3 in the first-order Hartree-
Fock (HF) diagram and by a factor of 1/2 in the calculation of
the single-particle energies (s.p.e.).

In Fig. 4 we show the diagrams we have included in
our calculation, where only the VNN vertices are taken into
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FIG. 5. Same as in Fig. 4, but also including V NNN vertices,
which are denoted with thick straight lines.

account. The only diagram we do not include is the third-order
ph diagram. The diagrams that include the effects of VNNN

are shown in Fig. 5.
The first-order HF contribution is explicitly given by

E1 = 8

π

∫ kF

0
k2dk

[
1 − 3

2

k

kF

+ 1

2

(
k

kF

)3
] ∑

JLS

(2J + 1)

[
V JLLS

NN (k, k) + 1

3
V

JLLS

NNN (k, k)

]
. (6)

The second-order diagrams are computed using the so-called angle-average (AA) approximation [18], and their
contribution is

E2 = − 6

π2k3
F

∫ 2kF

0
K2dK

∫ ∞

0
k′2dk′

∫ ∞

0
k2dkP (k′,K)Q(k,K)

∑
JLLS

(2J + 1)

[
V JLLS

NN (k, k′) + V
JLLS

NNN (k, k′)
]2

E(k, k′,K)
. (7)

The operators P and Q are defined through the relationships

Q(k,K) = 0, 0 � k �
(

k2
F − K2

4

)1/2

= −k2
F − k2 − K2/4

kK
,

(
k2
F − K2

4

)1/2

� k �
(

kF + K

2

)

= 1, k �
(

kF + K

2

)

P (k,K) = 1, 0 � k �
(

kF − K

2

)

= k2
F − k2 − K2/4

kK
,

(
kF − K

2

)
� k �

(
k2
F − K2

4

)1/2

= 0, k �
(

k2
F − K2

4

)1/2

.

In Eq. (7), the denominator is E(k, k′,K) = h̄2k′2
M

+ 2U (
√

K2

4 + k′2) − h̄2k2

M
− 2U (

√
K2

4 + k2), with U (k̃) being the self-
consistent single-particle potential:

U (k̃) = 8
∑
JLLS

(2J + 1)2

{[∫ 1
2 (kF −k̃)

0
k̃′2dk̃′ + 1

2k̃

∫ 1
2 (kF +k̃)

1
2 (kF −k̃)

k̃′dk̃′
(

1

4

(
k2
F − k̃2

) − k̃′(k̃′ − k̃)
)]

×
[
V JLLS

NN (k̃′, k̃′) + 1

2
V

JLLS

NNN (k̃′, k̃′)
]}

. (8)
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The particle-particle (pp) and hole-hole (hh) third-order diagrams are also computed in the AA approximation, and their
explicit expressions are

E3(pp)= 12

(πkF )3

∫ 2kF

0
K2dK

∫ ∞

0
k2dk

∫ ∞

0
k′2dk′

∫ ∞

0
k′′2dk′′P (k,K)Q(k′,K)Q(k′′,K)

∑
JLLL

′
S

(2J + 1)

× [
V JLLS

NN (k, k′)+V
JLLS

NNN (k, k′)
][

V JLL
′
S

NN (k′, k′′)+V
JLL

′
S

NNN (k′, k′′)
][

V JL
′
LS

NN (k′′, k)+V
JL

′
LS

NNN (k′′, k)
]
/[E(k′′, k) · E(k′, k)],

(9)

E3(hh) = 2

(πkF )3

∫ 2kF

0
K2dK

∫ ∞

0
k2dk

∫ ∞

0
k′2dk′

∫ ∞

0
k′′2dk′′P (k,K)Q(k′,K)P (k′′,K)

×
∑

JLLL
′
S

(2J + 1)
[
V JLLS

NN (k, k′) + V
JLLS

NNN (k, k′)
][

V JLL
′
S

NN (k′, k′′) + V
JLL

′
S

NNN (k′, k′′)
]

× [
V JL

′
LS

NN (k′′, k) + V
JL

′
LS

NNN (k′′, k)
]
/[E(k′, k′′) · E(k′, k)]. (10)

We have also calculated the [2|1] Padé approximant [19]

E[2|1] = E0 + E1 + E2

1 − E3/E2
, (11)

Ei being the ith-order energy contribution in the pertur-
bative expansion of the g.s.e. The Padé approximant is an
estimate of the value to which the perturbative series may
converge. Thus, the comparison between the third-order results
and those obtained by means of the [2|1] Padé approximant
provides an indication of the size of the higher-order per-
turbative terms. It is worth mentioning that the role of Padé
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FIG. 6. (Color online) Neutron-matter energy per particle ob-
tained from the N3LO 2NF with cutoff � = 500 MeV. The first,
second, and third order in the perturbative expansion and the Padé
approximant [2|1] are shown as a function of density ρ.

approximants in many-body perturbation theory for nuclear
systems has been explored in the past decade for finite nuclei
[20–23].

IV. RESULTS

As explained in the previous section, we calculate the
energy per particle of neutron matter in the framework of
many-body perturbation theory, including contributions up to
third order in the interaction. Therefore, it is of interest to
obtain an idea of the convergence of the perturbative expansion
of the g.s.e.

In Fig. 6, we show the neutron-matter energy per nucleon
as a function of density, calculated at various orders in the
perturbative expansion by applying the chiral N3LO NN
potential with a cutoff parameter equal to 500 MeV. We
have chosen here the potential with the largest cutoff since
it has the worst perturbative behavior. From the inspection of
Fig. 6, it can be seen that the energy per nucleon calculated at
second order, E2, does not differ much from the one computed
at third order, E3, for the whole range of densities shown.
The perturbative character is also indicated by the fact that
E3 is quite close to the energy obtained with the [2|1] Padé
approximant.

For completeness, we mention that we also performed
calculations employing the chiral N3LO NN potential with
a cutoff parameter equal to 600 MeV [3], but we found its
perturbative behavior unsatisfactory, in agreement with the
observations by Tews et al. [11].

We have also investigated the perturbative behavior of our
calculations when including the effects of VNNN . Figure 7
shows that, starting from the same N3LO potential, there is a
small enhancement of the higher-order terms when including
the N2LO 3NF. Nevertheless, the results at third order are very
close to those obtained with the [2|1] Padé approximant.

Our main goal is to calculate the g.s.e. per particle in infinite
neutron matter, starting from N3LO chiral NN potentials that
apply different regulator functions. This is done by using
the chiral potentials introduced in Sec. II. We have added to
each 2NF a chiral N2LO 3NF whose low-energy constants c1
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FIG. 7. (Color online) Same as in Fig. 6, but including the
contribution of the N2LO 3NF.

and c3, cutoff parameters, and regulator function are exactly
the same as in the corresponding N3LO NN potential; see
Table I.

In Fig. 8, we show our results, obtained at third order in the
perturbative expansion, with and without taking into account
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FIG. 8. (Color online) Results obtained for the g.s.e. per particle
of infinite neutron matter at third-order in perturbation theory for
three sets of chiral interactions which differ by the cutoff �.

3NF effects. The results obtained with 2NFs show considerable
dependence on the choice of the regulator and its cutoff param-
eter. This is at variance with the desired regulator independence
of the EFT. However, when including the contributions of the
three-body potentials, which are consistent with their 2NF
partner, regulator dependence is strongly reduced. This is
our main result and first clear evidence that modern chiral
potentials can provide model-independent results in many-
body calculations if 2NF and 3NF are treated consistently.

V. CONCLUDING REMARKS AND OUTLOOK

In this paper we have studied the regulator dependence of
many-body predictions when employing chiral two- and three-
nucleon potentials, using as a testing ground the perturbative
calculation of the neutron-matter energy per particle. We
find substantial regulator dependence of the predictions when
only 2NFs are taken into account. The main outcome of this
study is the observation that the 3NF can play a crucial role
in the restoration of regulator independence. However, this
mechanism works properly only when the chiral 2NF and 3NF
are treated consistently in the sense that the same parameters
are used for the same vertices that occur in all topologies
involved. This is particularly true for the LECs c1 and c3

occurring first at N2LO in the chiral power counting.
In Refs. [10,11] the large uncertainties of the results for

the ground-state energy per neutron trace back to the choice of
using a range of values for c1 and c3 obtained from a high-order
analysis of πN scattering [24]. This is at variance with the cis
employed in the present paper which, as reported in Sec. II,
are uniquely fixed in peripheral NN partial waves.

In closing, we note that the present investigation deals
only with identical nucleon systems and that the regulator
dependence should also be investigated in systems with
different concentrations of interacting protons and neutrons.
In infinite symmetric nuclear matter, contributions from the
intermediate-range 1π -exchange component VD and the short-
range contact interaction VE also come into play. This means
that the calculation of the g.s.e. depends also on the coupling
constants cD and cE . Even though these parameters can be
fixed in few-body systems, there is some freedom in doing so,
resulting in more latitude for the 3NF contribution in nuclear
matter (as compared to pure neutron matter).

This will be an interesting subject for a future study that
may shed more light on the topic of regulator independence
of many-body calculations with chiral potentials. The results
of such investigations will provide valuable guidance for the
proper application of these interactions in microscopic nuclear
structure calculations.
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