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Background: Neutrinoless double-β decay, if observed, would reveal physics beyond the standard model of
particle physics; namely, it would prove that neutrinos are Majorana fermions and that the lepton number is not
conserved.
Purpose: The analysis of the results of neutrinoless double-β decay observations requires an accurate knowledge
of several nuclear matrix elements (NME) for different mechanisms that may contribute to the decay. We provide
a complete analysis of these NME for the decay of the ground state (g.s.) of 48Ca to the g.s. 0+

1 and first excited
0+

2 state of 48Ti.
Method: For the analysis we used the nuclear shell model with effective two-body interactions that were
fine-tuned to describe the low-energy spectroscopy of pf -shell nuclei. We checked our model by calculating
the two-neutrino transition probability to the g.s. of 48Ti. We also make predictions for the transition to the first
excited 0+

2 state of 48Ti.
Results: We present results for all NME relevant for the neutrinoless transitions to the 0+

1 and 0+
2 states, and

using the lower experimental limit for the g.s. to g.s. half-life, we extract upper limits for the neutrino physics
parameters.
Conclusions: We provide accurate NME for the two-neutrino and neutrinoless double-β decay transitions in the
A = 48 system, which can be further used to analyze the experimental results of double-β decay experiments
when they become available.

DOI: 10.1103/PhysRevC.87.014320 PACS number(s): 23.40.Bw, 21.60.Cs, 23.40.Hc, 14.60.Pq

I. INTRODUCTION

If observed, neutrinoless double-β (0νββ) decay, which
can only occur by violating the conservation of the total
lepton number, will reveal physics beyond the standard model,
and it will represent a major milestone in the study of the
fundamental properties of neutrinos [1–7]. Indeed, its discov-
ery would decide if neutrinos are their own antiparticles [8]
and would provide a hint about the scale of their absolute
masses. That is why there are intensive investigations of this
process, both theoretical and experimental. Recent results
from neutrino oscillation experiments have demonstrated that
neutrinos have mass and they can mix [9–11]. However, the
neutrino oscillation experiments cannot be used to determine
the neutrino-mass hierarchy and the lowest neutrino mass.
Neutrinoless double-β decay is viewed as one of the best routes
to decide these unknowns. A key ingredient for extracting the
absolute neutrino masses from 0νββ decay experiments is a
precise knowledge of the nuclear matrix elements (NME) for
this process.

There are potentially many mechanisms that could con-
tribute to the neutrinoless double-β decay process that will be
briefly reviewed below. Several of these mechanisms do not
provide contributions to the decay rate that explicitly depend
on the neutrino masses, but their effect would vanish if the
neutrinos are not massive Majorana particles [8]. In all cases
the half-lives depend on the nuclear matrix elements that need
to be accurately calculated using low-energy nuclear structure
models. In particular, if the exchange of light left-handed
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neutrinos is proven to be the dominant mechanism, one could
be able to use the experimental results and the associated
NME to extract the neutrino mass hierarchy and the lowest
neutrino mass [7]. The two-neutrino double-β (2νββ) decay
is an associate process that is allowed by the standard model,
and it was observed in about ten isotopes. Therefore, a good
but not sufficient test of nuclear structure models would be a
reliable description of the 2νββ half-lives.

Since most of the ββ decay emitters are open-shell nuclei,
many calculations of the NME have been performed within
the proton-neutron quasiparticle random-phase approximation
(pnQRPA) approach and its extensions [12–23]. However,
the pnQRPA calculations of the more common two-neutrino
double-β decay half-lives, which were measured for about
ten cases [24], are very sensitive to the variation of the
so-called gpp parameter (the strength of the particle-particle
interactions in the 1+ channel) [12–14], and this drawback
still persists in spite of various improvements brought by its
extensions [15–20], including higher-order QRPA approaches
[21–23]. The outcome of these attempts was that the cal-
culations became more stable against gpp variation, but at
present there are still large differences between the values
of the NME calculated with different QRPA-based methods,
which do not yet provide a reliable determination of the
two-neutrino double-β decay half-life. Therefore, although
the QRPA methods do not seem to be suited to predict
the 2νββ decay half-lives, one can use the measured 2νββ
decay half-lives to calibrate the gpp parameters, which are
further used to calculate the 0νββ decay NME [25]. Other
methods that were recently used to provide NME for most
0νββ decay cases of interest are the interacting boson model
(IBM-2) [26,27], the projected Hartree-Fock Bogoliubov
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model (PHFB) [28], and the generator coordinate method
(GCM) [29].

Recent progress in computer power, numerical algorithms,
and improved nucleon-nucleon effective interactions made
possible large-scale shell model calculations (LSSM) of the
2νββ and 0νββ decay NME [30–32]. The main advantage of
the large-scale shell model calculations is that they seem to be
less dependent on the effective interaction used, as far as these
interactions are consistent with the general spectroscopy of the
nuclei involved in the decay. Their main drawback is the limita-
tion imposed by the exploding shell model dimensions with the
size of the valence spaces that can be used. The most important
success of the large-scale shell model calculations was the
correct prediction of the 2νββ decay half-life for 48Ca [30,33].
In addition, these calculations did not have to adjust any
additional parameter; i.e., given the effective interaction and
the Gamow-Teller (GT) quenching factor extracted from the
overall spectroscopy in the mass region (including β decay
probabilities and charge-exchange strength functions), one can
reliably predict the 2νββ decay half-life of 48Ca.

Clearly, there is a need to further check and refine these
calculations and to provide more details on the analysis of
the NME that could be validated by experiments. We have
recently revisited [34] the 2νββ decay of 48Ca using two
recently proposed effective interactions for this mass region,
GXPF1 and GXPF1A, calculating the NME and half-lives for
the transition of the 48Ca ground state (g.s.) to the g.s. and the
first excited 2+ state of 48Ti.

In this paper we add the 2νββ transition to the first excited
0+

2 state of 48Ti to the analysis. We also extend our analysis [35]
of the 0νββ decay of 48Ca by providing the NME associated
with the most important 0νββ mechanisms for transitions
to the g.s. 0+

1 and first excited 0+
2 state of 48Ti. Future

experiments on double-β decay of 48Ca (CANDLES [36] and
CARVEL [37]) may reach the required sensitivity of measur-
ing such transitions, and our results could also be useful for
planning these experiments.

II. TWO-NEUTRINO DOUBLE-β DECAY

LSSM calculations of 2νββ decay NME can now be carried
out rather accurately for many nuclei [38]. In the case of 48Ca,
Ref. [30] reported for the first time a full pf -shell calculation
of the NME for the 2νββ decay mode for transitions both to
the g.s. and to the 2+

1 excited state of 48Ti. As an effective
interaction, the Kuo-Brown G matrix [39] with minimal
monopole modifications (KB3 [40]) was used. In Ref. [34]
we used the recently proposed GXPF1A two-body effective
interaction, which has been successfully tested for the pf
shell [41–43], to perform 2νββ decay calculations for 48Ca.
Our goal was to obtain the values of NME for this decay mode
for transitions both to the g.s. and to the 2+

1 state of 48Ti,
with increased degree of confidence, which would allow us
to consider similar calculations for the 0νββ decay mode of
this nucleus [32]. The 2νββ transitions to excited states have
longer half-lives compared with the transitions to the g.s. due
to the reduced values of the corresponding phase-space factors,
but they were measured in some cases, such as 100Mo [44].

For the 2νββ decay mode the relevant NME are of the
Gamow-Teller type and have the following expression for
decays to states in the granddaughter that have angular
momentum J = 0, 2 [1–6]:

M2ν
GT (J+) = 1√

J + 1

∑
k

〈J+
f ||στ−||1+

k 〉〈1+
k ||στ−||0+

i 〉
(Ek + EJ )J+1

.

(1)

Here Ek is the excitation energy of the 1+
k state of the

intermediate odd-odd nucleus, and EJ = 1
2Qββ(J+) + �M .

Qββ(J+) is the Q value corresponding to the ββ decay to
the final J+

f state of the granddaughter nucleus, and �M is
the mass difference between the parent and the intermediate
nucleus 48Sc. The most common case is the decay to the 0+

1
g.s. of the granddaughter, but decays to the first excited 0+

2 and
2+

1 states are also investigated.
The 2νββ decay half-life expression is given by[

T
2ν,J

1/2

]−1 = G2ν
J

∣∣M2ν
GT (J )

∣∣2
, (2)

where G2ν
J are 2νββ phase-space factors. Specific values

of G2ν
J for different 2νββ decay cases can be found in

different reviews, such as Ref. [3]. For a recent analysis
of G2ν

J see Ref. [45]. In Ref. [34] we explicitly analyzed
the dependence of the double-Gamow-Teller sum entering
the NME equation (1) vs the excitation energy of the 1+
states in the intermediate nucleus 48Sc. This sum was recently
investigated experimentally [46], and it was shown that,
indeed, the incoherent sum (using only absolute values of the
Gamow-Teller matrix elements) would provide an incorrect
NME, thus validating our prediction. We have also corrected
by several orders of magnitude the probability of the transition
of the g.s. of 48Ca to the first excited 2+ state of 48Ti reported
in Ref. [30].

In Ref. [34] we fully diagonalized 250 1+ states in the
intermediate nucleus to calculate the 2νββ decay NME for
48Ca. This procedure can be used for somewhat heavier nuclei
using the J -scheme shell model code NUSHELLX [47], but for
cases with large dimensions one needs an alternative method.
The pioneering work on 48Ca [30] used a strength-function
approach that converges after a small number of Lanczos iter-
ations, but it requires large-scale shell model diagonalizations
when one wants to check the convergence. Reference [48]
proposed an alternative method, which converges very quickly,
but it did not provide a complete recipe for all its ingredients,
and it was never used in practical calculations. Recently [49],
we proposed a simple numerical scheme to calculate all
coefficients of the expansion proposed in Ref. [48]. Following
Ref. [48], we choose as a starting Lanczos vector L±

1 either the
initial or final state in the decay (only 0+ to 0+ transitions are
considered) to which we apply the Gamow-Teller operator.
This approach is very efficient for large model spaces, for
example, the jj55 space (consisting of the 0g7/2, 1d, 2s, and
h11/2 orbits), which for the 128Te decay leads to m-scheme
dimensions of the order of 10 billion necessary to calculate
the g.s. of 128Xe. In the calculation of 48Ca decay we use the
standard quenching factor, qf = 0.77, for the Gamow-Teller
operator στ . We checked the result reported in Ref. [34] using
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TABLE I. Matrix elements and half-lives for 2ν decay calculated
using GXPF1A interaction and two quenching factors. Matrix
elements are in MeV−1 for transitions to 0+ states and in MeV−3

for transitions to 2+ states.

qf = 0.77 qf = 0.74

J π
n M2ν T 2ν

1/2 (yr) M2ν T 2ν
1/2 (yr)

0+
1 0.054 3.3 × 1019 0.050 3.9 × 1019

2+
1 0.012 8.5 × 1023 0.010 1.0 × 1024

0+
2 0.050 1.6 × 1024 0.043 1.9 × 1024

this alternative method, and we found the same result. The
novel result reported here for the first time is for the transition
to the first excited 0+ state in 48Ti at 2.997 MeV. The matrix
element when using GXPF1A interactions is 0.050, very close
to that for the transition to the g.s. Using the phase-space
factor G2ν

0+
2

= 2.43 × 10−22 MeV−1 from Ref. [3] (a new set of

phase-space factors was recently proposed [45], but for 2νββ
decays they differ only by 4% from those of Ref. [3]), we
found that the half-life for this transition is 1.6 × 1024 yr. We
recall here that our results reported in [34] for the half-lives
of the transitions to g.s. and to the first 2+ excited state are
3.3 × 1019 and 8.5 × 1023 yr, respectively. One can see that the
transition to the first excited 0+

2 state at 2.997 MeV is predicted
to compete with the transition to the first excited 2+

1 state at
0.994 MeV.

The half-life for the transition to the g.s. 0+
1 was measured

by several groups with increased precision (see, e.g., [24]). The
most recent result from NEMO-3 collaboration (see [24] and
references therein) is T 2ν

1/2 = 4.4+0.5
−0.4(stat.) ± 0.4(syst.). Our

GXPF1A result is marginally out of the recently reduced error
bars. However, a recent publication [50] found a quenching
factor of 0.74 for the pf -shell nuclei using the GXPF1A
interaction. The same quenching factor was proposed some
time ago [51] using a different effective interaction. The
smaller quenching factor of 0.74 brings the calculated half-life
within the experimental limits. A comparison of the matrix
elements and the associated half-lives for the two quenching
factors used here is given in Table I. Potential observation
of the 2νββ transitions to the excited states of 48Ti could
shed some light on the variation of the quenching factor for
the Gamow-Teller operator in this nucleus. One should also
mention that the excitation energy of the 0+

2 state in 48Ti
calculated with the GXPF1A interaction is about 1 MeV higher
than the experimental value, while it is about right for 48Ca.
Other available effective interactions do no provide a better
description of this state. This result may raise concerns about
the validity of the nuclear structure description of this state
within the pf shell. An experimental observation of the 2νββ
transition to this state could be used to validate (or not) our
result.

III. NEUTRINOLESS DOUBLE-β DECAY

The 0νββ decay, (Z,A) → (Z + 2, A) + 2e−, requires the
neutrino to be a massive Majorana fermion; i.e., it is identical
to the antineutrino [8]. We already know from the neutrino

oscillation experiments that some of the neutrinos participating
in the weak interaction have mass and that the mass eigenstates
are mixed by the Pontecorvo-Maki-Nakagawa-Sakata (PMNS)
matrix Ulk , where l is the lepton flavor and k is the mass
eigenstate number (see, e.g., Ref. [52]). However, the neutrino
oscillation experiments cannot decide the mass hierarchy,
the mass of the lightest neutrino, and some of the CP-
nonconserving phases of the PMNS matrix (assuming that
neutrinos are Majorana particles).

Considering only contributions from the exchange of light,
left-handed(chirality), Majorana neutrinos [7], the 0νββ decay
half-live is given by

[
T 0ν

1/2

]−1 = G0ν
∣∣M0ν

ν

∣∣2
( |〈mββ〉|

me

)2

. (3)

Here, G0ν is the phase-space factor, which depends on the
0νββ decay energy Qββ , the charge of the decaying nucleus
Z, and the nuclear radius [3,45]. The effective neutrino mass
〈mββ〉 is related to the neutrino mass eigenstates mk via the
left-handed lepton mixing matrix Uek ,

〈mββ〉/me ≡ ηνL =
∑

k=light

mkU
2
ek /me. (4)

Here, me is the electron mass. The NME M0ν
ν is given by

M0ν
ν = M0ν

GT −
(

gV

gA

)2

M0ν
F − M0ν

T , (5)

where M0ν
GT , M0ν

F , and M0ν
T are the Gamow-Teller (GT), Fermi

(F), and tensor (T) matrix elements, respectively. Using closure
approximation, these matrix elements are defined as follows:

M0ν
α = 〈0+

f |
∑
m,n

τ−mτ−nO
α
mn|0+

i 〉

=
∑

jpjp′ jnjn′Jπ

T BT D
(
jpjp′ , jnjn′ ; Jπ

)
×〈jpjp′ ; JπT |τ−1τ−2O

α
12|jnjn′ ; JπT 〉a, (6)

where Oα
mn are 0νββ transition operators, α = (GT, F, T ),

|0+
i 〉 is the g.s. of the parent nucleus, and |0+

f 〉 is the final 0+
state of the granddaughter nucleus. The two-body transition
densities (TBTD) can be obtained from LSSM calculations
[35]. Expressions for the antisymmetrized two-body matrix
elements (TBME) 〈jpjp′ ; JπT |τ−1τ−2O

α
12|jnjn′ ; JπT 〉a can

be found elsewhere, e.g., Refs. [35,53]. Assuming that one
can unambiguously measures a 0νββ half-life and one can
reliably calculate the NME for that nucleus, one could use
Eqs. (3) and (4) to extract information about the lightest
neutrino mass and the neutrino mass hierarchy [52]. In
addition, one could consider the contribution from the right-
handed currents to the effective Hamiltonian, which can mix
light and heavy neutrinos of both chiralities [left (L) and
right (R)]:

νeL =
∑

k=light

UekνkL +
∑

k=heavy

UekNkL,

(7)
νeR =

∑
k=light

VekνkR +
∑

k=heavy

VekNkR,
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where Nk are the heavy neutrinos that are predicted by several
seesaw mechanisms for neutrino masses [52]. Ulk and Vlk are
the left- and right-handed components of the unitary matrix
that diagonalizes the neutrino mass matrix [54]. One should
also mention that there are several other mechanisms that
could contribute to the 0νββ decay, such as the exchange of
supersymmetric (SUSY) particles (e.g., gluino and squark ex-
change [55]), whose effects are not directly related to the neu-
trino masses but indirectly related via the Schechter-Valle the-
orem [8]. Assuming that the masses of the light neutrinos are
smaller than 1 MeV and the masses of the heavy neutrinos Mk

are larger than 1 GeV, the particle physics and nuclear structure
parts get separated, and the inverse half-life can be written as[

T 0ν
1/2

]−1 = G0ν
∣∣ηνLM0ν

ν + 〈λ〉X̃λ

+〈η〉X̃η + (ηNL + ηNR)M0ν
N

+ηλ′M0ν
λ′ + ηq̃M

0ν
q̃ + ηKKM0ν

KK

∣∣2
, (8)

where ηνL was defined in Eq. (4) and

ηNL =
∑

k=heavy

U 2
ek

mp

Mk

,

ηNR ≈
(

MWL

MWR

)4 ∑
k=heavy

V 2
ek

mp

Mk

,

(9)
〈λ〉 = ε

∑
k=light

UekVek,

〈η〉 =
(

MWL

MWR

)2 ∑
k=light

UekVek.

Here ε is the mixing parameter for the right heavy
boson WR and the standard left-handed heavy boson WL,
WR ≈ εW1 + W2, MWR and MWL are their respective masses,
and mp is the proton mass. The ηλ′ and ηq̃ are the R-parity
violation contributions in SUSY grand unified theories (GUT)
related to the long-range gluino exchange and squark-neutrino
mechanism, respectively [52]. Finally, the ηKK term is due to
possible Kaluza-Klein (KK) neutrino exchange in an extradi-
mensional model [56]. The set of nuclear matrix elements M0ν

ν ,
X̃λ, X̃η, M0ν

N , M0ν
λ′ , and M0ν

q̃ is discussed in many reviews,
e.g., Ref. [52]. The M0ν

KK analysis can be found in Ref. [56].
In particular, using the factorization ansatz [56], one gets

ηKKM0ν
KK = 〈m〉SA

me

M0ν
ν + mp〈m−1〉M0ν

N

≡ ηlKKM0ν
ν + ηhKKM0ν

N , (10)

where 〈m〉SA and 〈m−1〉 KK masses depend on the brane
shift and bulk radius parameters and are given in Table II
of [56]. One can see that the mass parameters 〈m〉SA/me

and mp〈m−1〉 have the effect of modifying ηνL and ηNR ,
respectively. |mp〈m−1〉| < 10−8, and it could, in principle,
compete with ηNR . |〈m〉SA/me| varies significantly with
the model parameters, and it could also compete with ηνL.
One needs to go beyond the factorization ansatz and use
information from several nuclei [57] to discern any significant
contribution from the KK mechanism.

TABLE II. Matrix elements for 0ν decay using the GXPF1A
interaction and two SRC models [61], CD-Bonn (SRC1) and Argonne
(SRC2). For comparison, the values labeled (a) are taken from
Ref. [27], and the value labeled (b) is taken from Ref. [62] for gpp = 1
and no SRC.

Model M0ν
ν M0ν

N M0ν
λ′ M0ν

q̃

0+
1 SRC1 0.90 75.5 618 86.7

SRC2 0.82 52.9 453 81.8
others 2.3(a) 46.3(a) 392(b)

0+
2 SRC1 0.80 57.2 486 84.2

SRC2 0.75 40.6 357 80.6

Constraints from collider experiments suggest that terms
proportional with the mixing angles ε, Uek(heavy), and Vek(light)

are very small [54]. The present limits are |〈λ〉| < 10−8 and
|〈η〉| < 10−9, but they are expected to be smaller. In addition,
the contributions from the X̃λ and X̃η terms in Eq. (8) would
produce an angular and energy distribution of the outgoing
electrons different than that coming from all other terms [2],
and these signals are under investigation at SuperNEMO [58].
Here we assume that these contributions are small and can be
neglected. In addition, if 〈λ〉 is small, Eq. (9) suggests that
ηNL is small. Information from colliders also puts some limits
on (MWR

,MN ) ∼ (2.5 GeV, 1.4 GeV), and these limits will be
refined at CERN Large Hadron Collider (LHC) in the coming
years. Based on this information and the present limit on the
0νββ decay of 76Ge, one can estimate that |ηνL| < 10−6, and
|ηNR| < 10−8. Then, the half-life can be written as[

T 0ν
1/2

]−1 = G0ν
∣∣η̃νLM0ν

ν + η̃NM0ν
N + ηλ′M0ν

λ′ + ηq̃M
0ν
q̃

∣∣2
,

(11)

where we adjusted ηνL and ηNR for potential KK contributions,
η̃νL = ηνL + ηlKK and η̃N = ηNR + ηhKK .

If one neglects the SUSY and KK contributions until a
hint of their existence is provided by colliders experiments
or future results of 0νββ decay experiments show that these
contributions are necessary [57], then[

T 0ν
1/2

]−1 = G0ν
(∣∣M0ν

ν

∣∣2|ηνL|2 + ∣∣M0ν
N

∣∣2|ηNR|2), (12)

where we used the fact that the interference between the left-
handed terms and the right-handed terms is negligible [52].

The structure of the M0ν
N is the same as that described in

Eqs. (5)–(8), with slightly different neutrino potentials Hα(r)
(see, e.g., Ref. [52]). A detailed description of the matrix
elements of Oα

12 for the jj -coupling scheme consistent with the
conventions used by modern shell model effective interactions
is given in Ref. [35]. One should also mention that our
method [35] of calculating the TBTD, Eq. (6), is different from
that used in other shell model calculations [32]. We included
in the calculations the recently proposed higher-order terms
of the nucleon currents, three old and recent parametrization
of the short-range correlations (SRC) effects, finite-size (FS)
effects, and intermediate-state energy effects, and we treated
carefully a few other parameters entering into the calculations.
We found very small variation of the NME with the average
energy of the intermediate states and FS cutoff parameters
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and moderate variation vs the effective interaction and SRC
parametrization. We could also show that if the ground-state
wave functions of the initial and final nuclei can be accurately
described using only the valence space orbitals, the contribu-
tion from the core orbitals can be neglected. This situation
is different from that of the nuclear parity-nonconservation
matrix elements [59], for which the “mean-field”-type con-
tribution from the core orbitals could be significant [60].
Another important result that clearly transpires from our
formalism is that in the closure approximation the neutrinoless
transition to the first excited 2+ state is zero. This result is due
to the rotational invariance of the TBME entering Eq. (6)
(see also the Appendix of Ref. [35]). The structure of the
R-parity-breaking SUSY mechanism NME is similar to that
of light and heavy neutrino exchange mechanisms, but with no
α = F component [55]. The neutrino potentials used here for
the M0ν

N and those used for the most significant contributions to
M0ν

λ′ and M0ν
q̃ NME are given in Ref. [52], but for completeness

they are reviewed in the Appendix with the specific parameters
included in these calculations.

The results for all NME entering Eq. (11) for the transition
to the 0+

1 g.s. and first excited 0+
2 state of 48Ti are presented

in Table II. Comparisons with results of other models, when
available, are also included. For the light neutrino exchange
matrix element we choose to compare with the IBM-2 results,
which is very different from ours. Other shell model analyses
of this particular NME give similar results for both transitions
to 0+

1 and 0+
2 states [32,63]. To our knowledge, with the

exception of the light neutrino exchange NME, no other results
of shell model calculations for these matrix elements were
reported so far (with the possible exception of Ref. [64], where
the NME as a function of neutrino mass is reported, and it
could potentially be used to extract the corresponding M0ν

N ).
Based on these calculations and using the experimental lower
limit of the half-life, one can extract the “single-mechanism
dominance” upper limits for |ηj |, where j = (νL), N, λ′, q̃.
At present only the lower limit of the half-life for the transition
to the g.s. of 48Ti, 1.4 × 1022 yr [52], is available. Using the
phase-space factor from Ref. [45], G0ν = 61.4 × 10−15 yr−1

(for gA = 1.254 and R = 1.2A1/3 fm), we obtained the upper
limits for |ηj | shown in Table III. Alternatively, assuming
that two or more mechanisms contributing to the half-life
in Eq. (11) are competing, one could use the experimental
data from several isotopes to assess the contribution of each
mechanism [55]. Clearly, this scenario requires as many as
possible accurate half-lives and associated NME. For example,
in the likely scenario that no more than two mechanisms
are competing and they are the light and heavy neutrino
exchanges, then Eq. (12) can be used to analyze the data. If

TABLE III. Single-mechanism upper limits for neutrino physics
parameters ηj extracted from the lower limit of the half-life for the
transition to the ground state of 48Ti [52] and using the matrix elements
from Table II.

Model |η̃νL| × 105 |η̃N | × 107 |ηλ′ | × 108 |ηq̃ | × 107

0+
1 SRC1 3.79 4.52 5.52 3.93

SRC2 4.16 6.45 7.53 4.17

the exchange of light neutrinos is determined as the dominant
mechanism, then our results could possibly be used to decide
the light neutrino mass hierarchy and the lowest neutrino
mass [52].

IV. CONCLUSIONS AND OUTLOOK

In conclusion, we analyzed the 2νββ and several mecha-
nisms that could compete in the 0νββ decays of 48Ca using
shell model techniques. We described very efficient techniques
to calculate accurate 2νββ NME for cases that involve large
shell model dimensions. These techniques were tested for the
case of 48Ca, and we provided NME and half-lives for 2νββ
transitions to the g.s. and excited states of 48Ti. They can
be used to make predictions for 76Ge and 82Se using the jj44
model space (0f5/2, 1p, 0g9/2) and for 128Te, 130Te, and 136Xe
using the jj55 model space.

We reviewed the main contributing mechanisms to the 0νββ
decay, and we showed that, based on the present constraints
from colliders, one could reduce the contributions to the 0νββ
half-life to the relevant terms described in Eq. (11). A reliable
analysis of the 0νββ decay experimental data requires accurate
calculations of the associated NME. We extended our recent
analysis [35] of the 0νββ NME for 48Ca to include the heavy
neutrino exchange NME, the long-range gluino exchange
NME, and the squark-neutrino mechanism NME. We also
presented for the first time shell model results of these new
NME for the 0νββ transitions to the g.s. and the first excited
0+

2 state in 48Ti.
To extend this analysis to the A > 48 cases, more efforts

have to be done to include all spin-orbit partners in the
valence space and to satisfy the Ikeda sum rule, reduce the
center-of-mass spurious contributions, and better understand
the changes in the effective 0νββ transition operators [65,66].
In addition, the closure approximation used to calculate the
NME within the shell model approach and by other methods
(e.g., IBM-2 [26], PHFB [28], and GCM [29]) needs to be
further checked for accuracy, especially for the heavy neutrino
exchange, the long-range gluino exchange, and the squark-
neutrino mechanism. An analysis of the double-β decay of
136Xe that addresses some of these issues is in preparation.
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APPENDIX

The matrix elements for the light and heavy neutrino
exchanges in Eq. (11) have the same structure as that described
in Eqs. (3)–(6) of Ref. [35]. For M0ν

ν the neutrino potential is
the same as in Eq. (7) of [35]:

Hα(r) = 2R

π

∫ ∞

0
fα(qr)

hα(q2)

q + 〈E〉Gα(q2)qdq, (A1)
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with the same ingredients described in Eqs. (9)–(12) of [35].
Here we corrected the (μp − μn) value to 4.71, an error that
seems to have been propagating for some time through the
literature [7]. This correction explains the small difference
between the M0ν

ν values of Table II and the corresponding ones
reported in Ref. [35]. Fortunately, this correction only changes
the matrix elements by a few percent. All other constants are
the same as in Ref. [35]. In particular, we used gA = 1.254
and R = 1.2A1/3 fm. For M0ν

N there is a slight change in the
neutrino potentials,

Hα(r) = 2R

πmemp

∫ ∞

0
fα(qr)hα(q2)Gα(q2)q2dq, (A2)

where me and mp are the electron and proton masses,
respectively.

The most significant contributions to M0ν
λ′ and M0ν

q̃ have
a structure similar to M0ν

ν and M0ν
N ; however, only the

α = GT, T terms in Eq. (5) are contributing. The radial
neutrino potentials for M0ν

λ′ have the same form as those used
for M0ν

N , Eq. (A2), but with different hα:

hGT,T = −(c1π + c2π )

[
mempq2

/
m4

π

1 + q2
/
m2

π

+ 2mempq2
/
m4

π(
1 + q2

/
m2

π

)2

]
,

(A3)

where mπ is the charged-pion mass, 139 MeV. Expressions for
c1π and c2π are given in Ref. [52]. The numerical values we
used are c1π = −85.23 and c2π = 368.0.

The radial neutrino potentials for M0ν
q̃ have the same form

as those used for M0ν
ν , Eq. (A1), but with different hα:

hGT,T = −1

6

m2
π

me(mu + md )

q2
/
m2

π(
1 + q2

/
m2

π

)2 , (A4)

where mu and md are the current up and down quark masses.
In the calculation we used mu + md = 11.6 MeV.
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