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Background: Direct determination of the neutrino mass through double-β decay is at the present time one of the
most important areas of experimental and theoretical research in nuclear and particle physics.
Purpose: We calculate nuclear matrix elements for the extraction of the average neutrino mass in neutrinoless
double-β decay.
Methods: The microscopic interacting boson model (IBM-2) is used.
Results: Nuclear matrix elements in the closure approximation are calculated for 48Ca, 76Ge, 82Se, 96Zr, 100Mo,
110Pd, 116Cd, 124Sn, 128Te, 130Te, 148Nd, 150Nd, 154Sm, 160Gd, and 198Pt decay.
Conclusions: Realistic predictions for the expected half-lives in neutrinoless double-β decay with light and
heavy neutrino exchange in terms of neutrino masses are made and limits are set from current experiments.
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I. INTRODUCTION

In recent years, the possibility of a direct measurement
of the average neutrino mass in neutrinoless double-β decay
has attracted considerable attention. Three scenarios have
been considered [1–3], shown in Fig. 1. After the discovery
of neutrino oscillations [4–6], attention has been focused
on the first scenario (a). In very recent years, the second
scenario (b) has again attracted attention [7]. For all three
processes (0νββ, 0νhββ, and 0νββM), the half-life can be
factorized as[

τ 0ν
1/2

]−1 = G0ν |M0ν |2 |f (mi,Uei)|2 , (1)

where G0ν is a phase-space factor, M0ν is the nuclear matrix
element, and f (mi,Uei) contains physics beyond the standard
model through the masses mi and mixing matrix elements Uei

of neutrino species.
In addition to the neutrinoless modes, there is also the

process allowed by the standard model, 2νββ, depicted in
Fig. 2. For this process, the half-life can be, to a good
approximation, factorized in the form[

τ 2ν
1/2

]−1 = G2ν |M2ν |2 . (2)

(The factorization here is not exact and conditions under which
it can be done are discussed in Ref. [8] and Sec. III.)

The processes depicted in Figs. 1 and 2 are of the type

(A,Z) → (A,Z + 2) + 2e− + anything. (3)

In very recent years, interest in the processes

(A,Z) → (A,Z − 2) + 2e+ + anything (4)

has also arisen. In this case there are also the competing
modes in which either one or two electrons are captured from
the electron cloud (0νβEC, 2νβEC, and 2νECEC). Also for
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these modes, the half-life can be factorized (either exactly or
approximately) into the product of a phase-space factor and a
nuclear matrix element, which then are the crucial ingredients
of any double-β decay calculation.

Recently, we have initiated a program for the systematic
evaluation of both quantities. The evaluation of the phase-
space factors (PSFs) for 0νβ−β− and 2νβ−β− has been
reported in Ref. [8] and that for 0νβ+β+, 2νβ+β+, 0νβ+EC,
2νβ+EC, and 2νECEC is in preparation [9]. The main
difference between this new calculation of PSFs and older
standard approximations is a few percent for light nuclei
(Z = 20), about 30% for Nd (Z = 60), and a rather large
90% for U (Z = 92), the correction increasing as a power
of Zα. In this article, we concentrate on nuclear matrix
elements M0ν and M2ν , for 0νβ−β− and 2νβ−β−. Calculations
of the nuclear matrix elements for positron emission have
also been completed and will be reported in a subsequent
paper [10]. Nuclear matrix elements have been evaluated in
a variety of models, most notably the quasiparticle random
phase approximation (QRPA) and the interacting shell model
(ISM). Results up to 1998 are reviewed in Refs. [11] and [12].
In 1999 a new formulation of 0νββ was introduced [3] and
calculations within the QRPA [13] and the ISM [14] were
performed, as well as within other models, as discussed in
the following Sec. II C. In 2009, we developed [15] a new
method to evaluate nuclear matrix elements for double-β
decay within the framework of the microscopic interacting
boson model (IBM-2). The advantage of this method is that
it can be used in any nucleus and thus all nuclei of interest
in both β−β− and β+β+ decay can be calculated within the
same model.

The calculation of the nuclear matrix elements is done in
the closure approximation. This approximation is good for
0νββ decay, since the average neutrino momentum is of the
order of 100 MeV/c. It is, in principle, not good for 2νββ,
since the average neutrino momentum is of the order of few
MeV/c. However, formally the approximation is still valid if
one appropriately defines the closure energy. The advantage
of the closure approximation is that all calculations for the
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FIG. 1. Neutrinoless double-β decay mechanism for (a) light
neutrino exchange, (b) heavy neutrino exchange, and (c) Majoron
emission.

processes depicted in Figs. 1 and 2 can be done simultaneously,
by changing the so-called neutrino potential, as discussed in the
sections below, thus eliminating systematic (and accidental)
errors in the calculation, especially in the ratio of matrix
elements for different processes.

In this article, we report the results of our calculations for
the nuclei listed in Table I. A selected number of decays were
considered in Ref. [15] and preliminary results were presented
in Ref. [16,17]. Here we report the complete list of results
divided into 0νββ (light neutrino exchange) and 0νhββ (heavy
neutrino exchange; Sec. II) and 2νββ (Sec. III). By using these
results we also set some limits on the mass of light 〈mν〉 and
heavy 〈mνh

〉 neutrinos.

II. NEUTRINOLESS DOUBLE-β DECAY (0νββ)

A. Transition operator

The theory of 0νββ decay was first formulated by Furry [18]
and further developed by Primakoff and Rosen [19], Molina
and Pascual [20], Doi et al. [1], Haxton and Stephenson [21],
and, more recently, by Tomoda [2] and Šimkovic et al. [3]. All
these formulations often differ by factors of 2, by the number of
terms retained in the nonrelativistic expansion of the current,
and by their contribution. In order to have a standard set of
calculations to be compared with the QRPA and the ISM, we
adopt in this article the formulation of Šimkovic et al. [3]. The
transition operator in momentum space, p = |�q|, is written as

T (p) = H (p)f (mi,Uei), (5)

where for light neutrino exchange

f (mi,Uei) = 〈mν〉
me

, 〈mν〉 =
∑

k=light

(Uek)2 mk , (6)

e
– e

–

n

p

n

p

A 2

A 2

FIG. 2. Double-β decay mechanism with the emission of 2ν̄.

TABLE I. Double-β decays considered in this article, their Q

values, and their isotopic abundances.

β−β− transition Qββ (keV) P (%)

48
20Ca28 →48

22Ti26 4272.26 ± 4.04 0.187 ± 0.021
76
32Ge44 →76

34Se42 2039.061 ± 0.007 7.73 ± 0.12
82
34Se48 →82

36Kr46 2995.12 ± 2.01 8.73 ± 0.22
96
40Zr56 →96

42Mo54 3350.37 ± 2.89 2.80 ± 0.09
100
42Mo58 →100

44Ru56 3034.40 ± 0.17 9.82 ± 0.31
110
46Pd64 →110

48Cd62 2017.85 ± 0.64 11.72 ± 0.09
116
48Cd68 →116

50Sn66 2813.50 ± 0.13 7.49 ± 0.18
124
50Sn74 →124

52Te72 2286.97 ± 1.53 5.79 ± 0.05
128
52Te76 →128

54Xe74 865.87 ± 1.31 31.74 ± 0.08
130
52Te78 →130

54Xe76 2526.97 ± 0.23 34.08 ± 0.62
136
54Xe82 →136

56Ba80 2457.83 ± 0.37 8.8573 ± 0.0044
148
60Nd88 →148

62Sm86 1928.75 ± 1.92 5.756 ± 0.021
150
60Nd90 →150

62Sm88 3371.38 ± 0.20 5.638 ± 0.028
154
62Sm92 →154

64Gd90 1251.03 ± 1.25 22.75 ± 0.29
160
64Gd96 →160

66Dy94 1729.69 ± 1.26 21.86 ± 0.19
198
78Pt120 →198

80Hg118 1047.17 ± 3.11 7.36 ± 0.13

while for heavy neutrino exchange

f (mi,Uei) = mp

〈
m−1

νh

〉
,

(7)〈
m−1

νh

〉 =
∑

k=heavy

(
Uekh

)2 1

mkh

.

The (two-body) operator H (p) can be written as

H (p) =
∑
n,n′

τ †
nτ

†
n′

[−hF (p) + hGT (p)�σn · �σn′ + hT (p)Sp
nn′

]
,

(8)

with the tensor operator defined as

S
p
nn′ = 3[(�σn · p̂)(�σn′ · p̂)] − �σn · �σn′ . (9)

The Fermi (F), Gamow-Teller (GT), and tensor (T) contribu-
tions are given by

hF (p) = hF
V V (p),

hGT (p) = hGT
AA (p) + hGT

AP (p) + hGT
PP (p) + hGT

MM (p), (10)

hT (p) = hT
AP (p) + hT

PP (p) + hT
MM (p).

The terms AP, PP, and MM are higher order corrections (HOC)
arising from weak magnetism (M) and induced pseudoscalar
terms (P) in the weak nucleon current. The terms hF,GT,T (p)
can be further factorized as

hF,GT,T (p) = v(p)h̃F,GT,T (p), (11)

where v(p) is called the neutrino potential and h̃F,GT,T (p) are
the form factors. A list of form factors is given in Ref. [3]
and recast in the form used by us in Table II. In this table, the
finite nucleon size (FNS) is taken into account by taking the
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TABLE II. Form factors in the formulation of Ref. [3] adapted
to our calculation. mp and mπ are, respectively, the proton and pion
mass and κβ = 3.70 is the isovector anomalous magnetic moment of
the nucleon.

Term h̃(p)

h̃F
V V g2

A

(g2
V /g2

A)(
1+p2/M2

V

)4

h̃GT
AA

g2
A(

1+p2/M2
A

)4

h̃GT
AP g2

A

[
− 2

3
1(

1+p2/M2
A

)4
p2

p2+m2
π

(1 − m2
π

M2
A

)
]

h̃GT
PP g2

A

[
1√
3

1(
1+p2/M2

A

)2
p2

p2+m2
π

(
1 − m2

π

M2
A

)]2

h̃GT
MM g2

A

[
2
3

g2
V

g2
A

1(
1+p2/M2

V

)4

κ2
βp2

4m2
p

]

h̃T
AP −h̃GT

AP

h̃T
PP −h̃GT

PP

h̃T
MM

1
2 h̃GT

MM

coupling constants gV and gA as momentum dependent:

gV (p2) = gV

1(
1 + p2

M2
V

)2 ,

(12)
gA(p2) = gA

1(
1 + p2

M2
A

)2 .

The value of MV is well fixed by the electromagnetic form
factor of the nucleon, M2

V = 0.71(GeV/c2)2 [22] and gV = 1
by the hypothesis of conserved vector current (CVC). The
value of MA is estimated to be MA = 1.09 GeV/c2 [23] and
gA = 1.269 [24].

The neutrino potential v(p) is given, in the closure approx-
imation, for light neutrino exchange by

v(p) = 2

π

1

p(p + Ã)
. (13)

For heavy neutrino exchange, the neutrino potential is given
by

v(p) = 2

π

1

memp

. (14)

The contributions in momentum space, hF,GT,T (p), can be
converted to the contributions in coordinate space, hF,GT,T (r),
by taking the Fourier-Bessel transforms

hF,GT,T (r) = 2

π

∫ ∞

0
jλ(pr)

1

p(p + Ã)
h̃F,GT,T (p)p2dp

(15)

for light-neutrino exchange and

hF,GT,T (r) = 2

π

∫ ∞

0
jλ(pr)

1

memp

h̃F,GT,T (p)p2dp (16)

for heavy neutrino exchange. Here λ = 0 for Fermi and
Gamow-Teller contributions and λ = 2 for tensor contribu-
tions.

Finally, an additional improvement is the introduction
of short-range correlations (SRC). These can be taken into
account by multiplying the potential V (r) in coordinate space
by a correlation function f (r) squared. The most commonly
used correlation function is the Jastrow function

fJ (r) = 1 − ce−ar2
(1 − br2), (17)

with a = 1.1 fm−2, b = 0.68 fm−2, and c = 1 for the
phenomenological Miller-Spencer parametrization [25], and,
in recent years, the Argonne (CD-Bonn) parametrizations
[26] a = 1.59 (1.52) fm−2, b = 1.45 (1.88) fm−2, and c =
0.92 (0.46). Since our formulation is in momentum space, we
take into account SRC by using the Fourier-Bessel transform
of fJ (r).

In assessing the goodness of Šimkovic’s formulation it is
of interest to compare it with Tomoda’s formulation. Apart
from some differences in definitions, namely, the fact that
Tomoda defines the transition operator with a factor of 1/2
in front of Eq. (8) (see Eq. (3.31) of Ref. [2]) and the
tensor operator with a factor of 1/3 in front of Eq. (9) (see
Eq. (3.54) of Ref. [2]) and with a plus sign in front of the
tensor operator in Eq. (8), in contrast with Eq. (13) of Ref. [3],
and a nuclear radius R = r0A

1/3 with r0 = 1.2 fm instead
of r0 = 1.1 fm of Ref. [3], differences which have caused,
however, considerable confusion in the literature, the main
difference between Tomoda’s formulation and Šimkovic’s
formulation is that Tomoda considers more terms in H (p)
[nine in all: three GT terms, three F terms, one T term, one
pseudoscalar (P) term, and one recoil (R) term]. Also, except
for the terms hV V (p) and hAA(p), where the form factors and
potentials coincide, all other form factors and potentials in
Tomoda’s formulation are different from those in Šimkovic’s
formulation. Although in this article we report results in the
latter formulation, we note that we have results available for
seven of the nine terms in Tomoda’s formulation (the three GT
terms, the three F terms, and the T term). The form factors
and potentials for these seven terms are listed in Table VIII
of our Ref. [15]. In Table II of the same reference, we also
show that the contribution of additional terms χ ′

GT , χ ′
F , and

χ ′
T is not negligible and thus the assessment of the goodness

of Šimkovic’s formulation must reflect this point.

B. Matrix elements

We consider the decay of a nucleus A
ZXN into a nucleus

A
Z+2 YN−2. An example is shown in Fig. 3. The nuclear matrix
elements are those of the operator H (p) of Eq. (8) between
the ground state of the initial nucleus and the final state with
angular momentum JF ,

M0ν ≡ 〈AX;0+
1 |H (p)|AY;JF 〉. (18)

If the decay proceeds through an s wave, with two leptons in
the final state we cannot form an angular momentum greater
than one. We therefore calculate, in this article, only 0νββ
matrix elements to final 0+ states, the ground state 0+

1 , and
the first excited state 0+

2 , for which in a previous article [8]
we have calculated the phase-space factors. The form factors
in Table II have a common factor of g2

A, except h̃F
V V . They
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FIG. 3. The decay 76
32Ge44 →76

34Se42, an example of double-β decay.

depend on g2
A and g2

V . We write

M0ν = g2
AM (0ν),

(19)

M (0ν) = M
(0ν)
GT −

(
gV

gA

)2

M
(0ν)
F + M

(0ν)
T ,

with the ratio gV /gA explicitly displayed in front of M
(0ν)
F . The

ratio gV /gA is also implicitly contained in M
(0ν)
GT and M

(0ν)
T

through the terms h̃GT
MM and h̃T

MM (see Table II), and the matrix
elements M

(0ν)
GT , M

(0ν)
F , and M

(0ν)
T are defined as

M
(0ν)
GT ≡ 〈AX;0+

1 |hGT (p)/g2
A|AY;JF 〉,

M
(0ν)
F ≡ 〈AX;0+

1 |hF (p)
/
g2

V |AY;JF 〉, (20)

M
(0ν)
T ≡ 〈AX;0+

1 |hT (p)
/
g2

A|AY;JF 〉.
The reason for this separation is that the calculated single-β
decay matrix elements of the GT operator in a particular
nuclear model appear to be systematically larger than those
derived from the measured f t values of the allowed GT
transitions. The simplest way of taking into account this result
is by introducing an effective gA,eff , also sometimes written as
gA,eff = qgA, where q is a quenching factor. The quenching of
gA will be discussed in Sec. III. Here we report results of the
calculation of M (0ν) in IBM-2 with the free values gV = 1 and
gA = 1.269. These form the baseline for any discussion of the
nuclear matrix elements (NME) in 0νββ.

In order to evaluate the matrix elements we make use of
the microscopic interacting boson model (IBM-2) [27]. The
method of evaluation is discussed in detail in Ref. [15]. Here
we briefly mention the logic of the method, which is a mapping
of the fermion operator H onto a boson space and its evaluation
with bosonic wave functions. The mapping [28] can be done
to leading order (LO), next to leading order (NLO), etc. In
Ref. [15] we showed, by explicit calculations, that NLO terms
give, in general, negligible contribution, �1%. In this article,
we present only LO calculations. The matrix elements of
the mapped operators are then evaluated with realistic wave
functions, taken either from the literature, when available, or
obtained from a fit to the observed energies and other properties
[B(E2) values, quadrupole moments, B(M1) values, magnetic
moments, etc.]. The values of the parameters used in the

calculation are given in the appendices. In Appendix A, we give
the neutrino potential and its parameters. In Appendix B, we
list the single-particle and single-hole energies and strengths
of interaction. In Appendix C, we give the parameters of the
IBM-2 Hamiltonian for each nucleus considered in this article,
together with their references. As shown in the references
quoted in Appendix C, the quality of the IBM-2 wave functions
ranges from very good to excellent for nuclei with A � 70
where collective features are very pronounced, especially
in deformed nuclei. As an example, we show in Fig. 4 a
comparison between calculated and experimental spectra for
the pair of nuclei 150Nd and 150Sm.

For nuclei with A � 70, the IBM-2 description is only
approximate, and one needs to go to the isospin-conserving
versions IBM-3 [29] and IBM-4 [30]. Nonetheless, we will
report, for the sake of completeness, also results for 48Ca
decay, with the proviso that these are rather approximate. Also,
in some cases, intruder configurations play a role, especially
in the structure of the excited 0+ state, and one needs to go
to the configuration-mixing version IBM2-CM [31]. All these
improvements will be reported in subsequent papers.

C. Results

The matrix elements of the operator H (p) have dimensions
of inverse femtometers. It has become customary to quote
the values of M (0ν) by multiplying by the nuclear radius
in femtometers, R = R0A

1/3, with R0 = 1.2 fm. The matrix
elements are then dimensionless.

1. 0νββ decay with light neutrino exchange

In Table III, we show the results of our calculation of the
matrix elements to the ground state, 0+

1 , and first excited state,
0+

2 , broken down into GT, F, and T contributions and their sum
according to Eq. (19). We note that since we are covering all

TABLE III. IBM-2 nuclear matrix elements M (0ν) (dimension-
less) for 0νββ decay with Jastrow M-S SRC and gV /gA = 1/1.269.

A 0+
1 0+

2

M
(0ν)
GT M

(0ν)
F M

(0ν)
T M (0ν)[0+

1 ] M
(0ν)
GT M

(0ν)
F M

(0ν)
T M (0ν)[0+

2 ]

76 4.10 −2.53 −0.25 5.42 1.81 −1.21 −0.10 2.46
82 3.26 −2.12 −0.25 4.37 0.86 −0.69 −0.05 1.23

96 2.26 −0.24 0.13 2.53 0.04 −0.00 0.00 0.04
100 3.32 −0.33 0.20 3.73 0.88 −0.09 0.05 0.99
110 3.22 −0.26 0.24 3.62 0.41 −0.04 0.03 0.46
116 2.49 −0.23 0.15 2.78 0.78 −0.06 0.04 0.85

124 2.69 −1.53 −0.13 3.50 2.03 −1.23 −0.10 2.70
128 3.46 −1.90 −0.16 4.48 2.44 −1.40 −0.10 3.22
130 3.12 −1.69 −0.14 4.03 2.33 −1.32 −0.09 3.07
136 2.59 −1.37 −0.11 3.33 1.40 −0.75 −0.04 1.82

148 1.73 −0.28 0.08 1.98 0.22 −0.04 0.01 0.25
150 2.03 −0.28 0.11 2.32 0.35 −0.05 0.02 0.39
154 2.23 −0.26 0.12 2.50 0.01 −0.01 0.01 0.02
160 3.25 −0.31 0.18 3.62 0.66 −0.08 0.05 0.75
198 1.64 −0.23 0.10 1.88 0.07 −0.01 0.01 0.08

48 1.53 −1.03 −0.19 1.98 3.62 −3.78 −0.13 5.83
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150Nd

th

0 0
2 134

4 374

0 669
6 708
2 848

2 1086
8 1127
4 1212

exp

0 0
2 130

4 381

0 675
6 720
2 851
2 1062
8 1130
4 1138

150Sm

th

0 0

2 314

4 740
0 813

2 1049

6 1272
2 1423

4 1614

exp

0 0

2 334

4 773
0 740

2 1046

6 1279
2 1194

4 1449

FIG. 4. Comparison between calculated and experimental low-lying spectra for the pair of nuclei 150Nd and 150Sm.

nuclei from A = 76 to A = 198, we have two classes of nuclei,
those in which protons and neutrons occupy the same major
shell (A = 76, 82, 124, 128, 130, and 136) and those in which
they occupy different major shells (A = 96, 100, 110, 116,
148, 150, 154, 160, and 198). For example in 76

32Ge44 →76
34Se42

decay both protons and neutrons occupy the shell 28–50, while
in 110

46Pd64 →110
48Cd62 decay protons occupy the shell 28–50,

and neutrons occupy the shell 50–82. The magnitude of the
Fermi matrix element which is related to the overlap of the
proton and neutron wave functions is therefore different in
these two classes of nuclei, being large in the former and
small in the latter case. This implies a considerable amount of
isospin violation for nuclei in the first class. The two classes are
separated by lines in Table III in order to make the distinction
clear. For completeness, we have added at the bottom of the
table the IBM-2 calculation of 48Ca→48Ti, assuming 48Ca
to be double magic. IBM-2 is rather poor in this case, as
evidenced by the large Fermi matrix element, and the values
in the table for 48Ca→48Ti decay should be considered a rough
estimate. Table III also shows the tensor matrix elements,
M

(0ν)
T . These are systematically small (about 5% of M

(0ν)
GT ) and

have sign opposite to or the same as M
(0ν)
GT when protons and

neutrons occupy the same major shell or not, respectively. This
behavior can be traced to the fact that the neutrino potential
V (r) is different for the tensor contribution than for Fermi and
Gamow-Teller contributions. In the notation of Table VIII of
Ref. [15], V (r) = H (r) for Fermi and Gamow-Teller matrix
elements and V (r) = −rH ′(r) for tensor matrix elements.

A point of great interest is the comparison among various
model calculations of the NME. Up to 2009, the methods
used were the QRPA and the ISM. In addition to these,
there are now our calculation (IBM-2) and calculations
based on density functional theory (DFT). Among the QRPA
calculations there are those of the Tübingen group and those
of the Jyväskylä group. These calculations often use different
parametrizations of the SRC, may or may not include g2

A in
M (0ν), use different values of gA, and are done in the closure or
nonclosure approximation. Therefore, the comparison among

matrix elements in different models should be taken only as
relative to a given matrix element, for example, 76Ge →76Se.

In Table IV we compare our results with those of a particular
QRPA calculation, QRPA-Tü [13], and of an ISM calculation
[14] with Miller-Spencer (M-S) parametrization of the SRC.
The IBM-2 and QRPA-Tü results show a similar variation with
A, while the ISM results are, apart from the small value in 48Ca,
clustered around ∼ 2.00 in the entire range A = 76–136 and
are a factor of approximately 2 smaller than results from IBM-2
and QRPA-Tü. It should be noted that, due to the different
approximation made in each model, a range of values would
be more appropriate. For example, if we set to zero the Fermi

TABLE IV. Nuclear matrix elements for 0νββ decay to the ground
state, 0+

1 , in IBM-2 with Jastrow M-S SRC and gA = 1.269, QRPA-
Tü with Jastrow M-S SRC and gA = 1.254 [13], and the ISM with
Jastrow M-S SRC and gA = 1.25 [14]. All matrix elements are in
dimensionless units.

Decay M (0ν)

IBM-2 QRPA-Tü ISM

48Ca→48Ti 1.98 0.54
76Ge→76Se 5.42 4.68 2.22
82Se→82Kr 4.37 4.17 2.11
96Zr→96Mo 2.53 1.34
100Mo→100Ru 3.73 3.53
110Pd→110Cd 3.62
116Cd→116Sn 2.78 2.93
124Sn→124Te 3.50 2.02
128Te→128Xe 4.48 3.77 2.26
130Te→130Xe 4.03 3.38 2.04
136Xe→136Ba 3.33 2.22 1.70
148Nd→148Sm 1.98
150Nd→150Sm 2.32
154Sm→154Gd 2.50
160Gd→160Dy 3.62
198Pt→198Hg 1.88
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FIG. 5. (Color online) IBM-2 results for 0νββ compared with
QRPA-Tü [13] and the ISM [14].

matrix element in our calculated 48Ca→48Ti decay, we obtain
M (0ν) = 1.33 and thus our matrix elements should be more
appropriately quoted as M (0ν) = 1.33–1.98. The sensitivity of
the IBM-2 results to parameter changes, model assumptions,
and operator assumptions is further discussed in Sec. II C3.
The results in Table IV are summarized in Fig. 5, where they
are plotted as a function of neutron number. The reason for this
way of plotting is due to shell effects, as discussed in Sec. VI
B of Ref. [15]. The matrix elements M (0ν) attain their smallest
values at the closed proton and neutron shells due to the form
of the transition operator, which for β−β− decay annihilates
a neutron pair and creates a proton pair. These shell effects
are very clear in both IBM-2 and QRPA calculations and to
some extent also in the ISM calculation. They are responsible
for the small matrix element in the decay of the doubly magic
nucleus 48Ca. They are also responsible for the ratio of the
matrix elements of two different isotopes of the same element.
For example, a simple calculation using the pair operators of
Eq. (42) of Ref. [15] gives M (0ν)(128Te)/M (0ν)(130Te) = 1.11,
to be compared with 1.11 from IBM-2, 1.13 from QRPA-Tü,
and 1.11 from the ISM.

Our results to 0+
2 are shown in Table V. Because of the

reduced phase-space factor for decay to 0+
2 , this table is of

less interest. In this case, there appears to be no correlation
between IBM-2 and other calculations. It should be noted,
however, that the QRPA-Tü results shown in Table V were
done before an error was discovered in the treatment of short-
range correlations [34] and with two different methods for
treating the excited 0+

2 state, the recoupling method (RCM)
and the boson expansion method (BEM) [32]. These results are
therefore inconsistent by a factor of approximately 2 with those
in Table IV and Ref. [13] for 0+

1 . Also, IBM-2 calculations
have been done without including intruder configurations. It is
known that, in some cases, the 0+

2 state is an intruder state. The
most notable cases are Ge, Mo, Cd, Nd, and Hg isotopes ([35],
p. 180). Although configuration-mixing IBM-2 calculations
for these nuclei are available, they have not been implemented
yet in the calculation of 0νββ to 0+

2 states. The comparison
among IBM-2, QRPA-Tü, and the ISM is shown in Fig. 6.

TABLE V. Neutrinoless nuclear matrix elements to the first
excited state, 0+

2 , in IBM-2, QRPA-Tü RCM/BEM [32], and the
ISM [33]. All matrix elements are in dimensionless units.

Decay M (0ν)

IBM-2 QRPA-Tü ISM

48Ca→48Ti 5.83 0.68
76Ge→76Se 2.46 1.28/0.99 1.49
82Se→82Kr 1.23a 1.34/0.95a 0.28a

96Zr→96Mo 0.04
100Mo→100Ru 0.99 1.27/1.76
110Pd→110Cd 0.46
116Cd→116Sn 0.85
124Sn→124Te 2.70 0.80
128Te→128Xe 3.22a

130Te→130Xe 3.07 0.19
136Xe→136Ba 1.82 4.42/0.44 0.49
148Nd→148Sm 0.25
150Nd→150Sm 0.39
154Sm→154Gd 0.02
160Gd→160Dy 0.75
198Pt→198Hg 0.08a

aNegative Q value.

The most detailed comparison among different model
calculations yet has been done recently by Suhonen [36].
This author has shown a very close correspondence between
the IBM-2 results and the QRPA-Jy result (Table VI) and
has argued that the reason why the QRPA and IBM-2 agree
is because the QRPA can be seen as a leading-order boson
expansion. This statement should be taken, however, with
caution since QRPA results require the adjustment of the
parameter gpp.

Another question which has been extensively analyzed in
recent months is the size of the Fermi matrix elements and
its comparison among different models. To this end, it is con-
venient to introduce the quantity χF = (gV /gA)2M

(0ν)
F /M

(0ν)
GT .

This quantity is shown in Table VII. One can see that the
situation is more complex than in the case of the overall matrix
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FIG. 6. (Color online) IBM-2 results for 0νββ decay to 0+
2

compared with QRPA-Tü [32] and the ISM [33].
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TABLE VI. Comparison between IBM-2 and QRPA-Jy [36]
nuclear matrix elements M (0ν) (dimensionless) for 0νββ decay.

A 0+
1 0+

2

IBM-2 QRPA IBM-2 QRPA

48 1.98 1.09–1.89 5.83
76 5.42 2.28–4.17 2.46 2.47–5.38
82 4.37 2.11–3.51 1.23 0.831–1.85
96 2.53 2.00–2.07 0.04 1.96
100 3.73 2.26–2.74 0.99 0.31
110 3.62 3.63–4.51 0.46 0.96–1.73
116 2.78 2.36–3.98 0.85 0.25
124 3.50 2.58–4.18 2.70 3.96–5.88
128 4.48 2.74–4.15 3.22
130 4.03 2.60–3.78 3.07 3.88–6.61
136 3.33 1.83–2.53 1.82 2.75–6.08

elements, due to the different approximations made by the
different models. The IBM-2 results are large for nuclei in
which protons and neutrons occupy the same major shells
but small in cases in which protons and neutrons occupy
different major shells. For QRPA-Jy they are uniformly large
(χF ∼ −0.30) while for the ISM they are uniformly small
(χF ∼ −0.15).

The large Fermi matrix elements in IBM-2 with protons and
neutrons in the same major shell and in the QRPA throughout
point to large isospin violation in the wave functions of the
initial and final nuclei. In the case of 2νββ decay, if isospin
is a good quantum number, the Fermi matrix elements should
identically vanish. By a similar argument, the Fermi matrix
elements in 0νββ are expected to be small, although not
zero, the main difference between 2νββ and 0νββ being the
neutrino potential, given in Appendix A, Table XIX. For this
reason, the calculated values of χF given in Table VII may
be entirely spurious and should be considered with a large

TABLE VII. Comparison among Fermi matrix elements, χF , in
IBM-2, QRPA-Jy [37], and the ISM [38].

Decay χF

IBM-2 QRPA-Jy ISM
48Ca −0.42 −0.56a −0.14
76Ge −0.38 −0.22 −0.10
82Se −0.42 −0.28 −0.10
96Zr −0.06 −0.43
100Mo −0.06 −0.40
110Pd −0.05 −0.38 −0.16
116Cd −0.06 −0.28 −0.19
124Sn −0.35 −0.42 −0.13
128Te −0.34 −0.37 −0.13
130Te −0.34 −0.37 −0.13
136Xe −0.33 −0.34 −0.13
148Nd −0.10
150Nd −0.09
154Sm −0.07
160Gd −0.06
198Pt −0.09

aReference [39].

error. It is difficult to estimate the error in χF introduced by
isospin violation, since there are no direct experimental data
for single-β 0+ → 0+ transitions from odd-odd to even-even
(or vice versa) nuclei in heavy nuclei. The estimate of the error
also depends on which nucleus is considered. The maximum
error is 100%, if the Fermi matrix elements are entirely
spurious, in which case the values of Table VII should be
quoted as −0.42(42) for 48Ca and similarly for all others.
Another estimate is to extract the error by comparing with
ISM calculations which have the smallest values of χF , in
which case the quoted value should be −0.42(28) with an
error of 67%. We have used this estimate of the error in the
following section and in Table XII.

In addition to the calculations discussed above, several
others have been made, most notably in the deformed QRPA
[40,41] and in the projected Hartree-Fock-Bogoliubov (HFB)
framework [42], and using the energy density functional
method [43]. Since these use SRC with Argonne and CD-Bonn
and the unitary correlation operator method they will be
discussed at the end of Sec. II C3.

2. 0νββ decay with heavy neutrino exchange

These matrix elements can be simply calculated by replac-
ing the potential v(p) = 2π−1[p(p + Ã)]−1 of Eq. (13) with
the potential vh(p) = 2π−1(memp)−1 of Eq. (14). Table VIII
gives the corresponding matrix elements. The index h distin-
guishes these matrix elements from those with light neutrino
exchange. Our results are compared with QRPA-Tü results
in Table IX. These QRPA results are obtained with Jastrow
SRC [3] and prior to the more refined treatment of SRC of
Ref. [13] and are shown here for the sake of comparison of
the A dependence, not of their absolute magnitude, which is a
factor of approximately 2 smaller than in IBM-2. It has been
suggested that measurement of neutrinoless double-β decay
in different nuclei may be used to distinguish between the two
mechanisms (light or heavy neutrino exchange). However, the
results in Table III and Table IX are highly correlated, as
is clear from the fact that they are obtained one from the
other by replacing the potential v(p) with vh(p). Therefore,
this criterion cannot be used to distinguish between the two
mechanisms [51].

3. Sensitivity to parameter changes, model assumptions,
and operator assumptions

Many ingredients go into calculation of the nuclear matrix
elements. In Ref. [15], the sensitivity to input parameter
changes was estimated from the sensitivity to parame-
ter changes in five quantities: (1) single-particle energies;
(2) strength of interactions; (3) oscillator parameter in the
single-particle wave functions; (4) closure energy in the
neutrino potential; and (5) nuclear radius. (1) The sensitivity
to single-particle energies was emphasized in Ref. [44] within
the framework of the QRPA and has been the subject of several
experimental investigations [45,46]. We estimate it to be 10%.
(2) We estimate the sensitivity to strengths of interactions, in
the present case the surface delta interaction used to calculate
the structure of the pair states, to be 5%. We note that this is the
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TABLE VIII. Nuclear matrix elements for the heavy neutrino exchange mode of the neutrinoless double-β decay
to the ground state (columns 2, 3, 4, and 5) and to the first excited state (columns 6, 7, 8, and 9) using the microscopic
interacting boson model (IBM-2) with Jastrow M-S SRC and gV /gA = 1/1.269.

A 0+
1 0+

2

M
(0ν)
GTh

M
(0ν)
Fh

M
(0ν)
Th

M
(0ν)
h [0+

1 ] M
(0ν)
GTh

M
(0ν)
Fh

M
(0ν)
Th

M
(0ν)
h [0+

2 ]

76 52.5 −39.5 −29.0 48.1 19.5 −15.4 −10.5 18.5
82 43.9 −33.9 −29.4 35.6 8.53 −7.36 −4.96 8.14

96 33.6 −18.8 13.6 59.0 0.700 −0.382 0.321 1.26
100 54.5 −30.0 26.1 99.3 4.59 −2.55 1.70 7.87
110 49.3 −26.5 29.9 95.7 18.4 −9.73 10.0 34.5
116 36.4 −20.1 18.2 67.1 13.9 −7.72 7.07 25.8

124 37.0 −27.1 −16.1 37.8 25.2 −19.0 −10.6 26.4
128 47.0 −34.1 −19.7 48.4 28.0 −21.1 −11.1 30.0
130 42.7 −30.9 −17.9 44.0 25.9 −19.6 −10.0 28.1
136 33.7 −24.3 −13.7 35.1 12.9 −9.90 −4.39 14.7

148 35.8 −21.2 10.4 59.4 3.99 −2.43 1.07 6.57
150 39.9 −23.0 14.2 68.4 5.90 −3.42 1.90 9.92
154 38.6 −21.8 14.9 67.1 1.93 −1.12 1.20 3.82
160 51.9 −28.7 23.2 92.9 13.1 −7.34 6.65 24.3
198 34.7 −20.8 13.8 61.5 1.51 −0.899 0.688 2.76

48 26.8 −20.1 −22.9 16.3 23.8 −27.3 −6.95 33.8

main source of sensitivity in the QRPA, especially in nuclei
close to spherical-deformed transition, for example 150Nd.
(3) We estimate the sensitivity to the oscillator parameter to
be 5%. (4) We estimate the sensitivity to the closure energy to
be 5%. (5) If the matrix elements are quoted in dimensionless
units there is also a sensitivity to R. We estimate this to be
5%. However this sensitivity can be reduced to a small value,
1%, if the experimental RMS value is used instead of the
formula R = R0A

1/3. The total estimated sensitivity to input

TABLE IX. Neutrinoless nuclear matrix elements to the ground
state, 0+

1 , in IBM-2 and QRPA-Tü [3] for the heavy neutrino exchange
mode and M-S SRC. All matrix elements are in dimensionless units.

Decay M
(0ν)
h

IBM-2 QRPA-Tü

48Ca→48Ti 16.3
76Ge→76Se 48.1 32.6
82Se→82Kr 35.6 30.0
96Zr→96Mo 59.0 14.7
100Mo→100Ru 99.3 29.7
110Pd→110Cd 95.7
116Cd→116Sn 67.1 21.5
124Sn→124Te 37.8
128Te→128Xe 48.4 26.6
130Te→130Xe 44.0 23.1
136Xe→136Ba 35.1 14.1
148Nd→148Sm 59.4
150Nd→150Sm 68.4 35.6
154Sm→154Gd 67.1
160Gd→160Dy 92.9
198Pt→198Hg 61.5

parameters is 30% if all contributions are added or 14% if
combined in quadrature.

In addition, we estimate the sensitivity to model assump-
tions to be: (1) truncation to pairs with angular momentum
J = 0 and J = 2 (S-D space); and (2) isospin purity. We
estimate the former to range from 1% in spherical nuclei to
10% in deformed nuclei. For the latter we estimate this to be
small, 1%, for GT and T matrix elements, and large, 10%, for F
matrix elements. Taking into account the fact that the F matrix
elements contribute only ∼20% to the total matrix elements,
we estimate the total sensitivity to model assumptions to range
from 3% in spherical nuclei to 12% in deformed nuclei (in
addition) or 2%–10% (in quadrature). A special case is that of
48Ca decay for which, for reasons mentioned above, the Fermi
matrix elements are overestimated. In this case the sensitivity
to model assumptions may be as high as 20% (in addition) or
16% (in quadrature).

Finally, there is the estimated sensitivity to operator as-
sumptions. (1) Concerning the form of the transition operator,
we have already commented in Sec. II. A on the differences
between Šimkovic’s [3] and Tomoda’s [2] formulations.
This is a source of considerable uncertainty. We estimate
the sensitivity to 5% by comparing our calculations using
Tomoda’s and Šimkovic’s formulations. However, there still
remains the question of the recoil contribution, which was a
source of major disagreement in early calculations. (2) For
finite nuclear size (FNS), we estimate this to be small, 1%,
because we have used realistic nucleon form factors with
parameters determined from experiment. (3) The sensitivity
to the form of SRC has been very recently the subject of many
studies. To investigate this point, we have done calculations
with three different types of correlations: (a) Jastrow M-S and
(b and c) Argonne–CD-Bonn (CCM). The results are shown
in Table X, where we also show a comparison with results
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TABLE X. Comparison among matrix elements M (0ν) calculated
with Miller-Spencer (M-S) and Argonne–CD-Bonn (CCM) in IBM-2,
with M-S, CCM, and UCOM in QRPA-Tü [13,26,41], and with M-S
and UCOM in the ISM [14,33]. Note that the QRPA matrix elements
are evaluated using gA = 1.254 and the ISM matrix elements are
evaluated using gA = 1.25.

A IBM-2 QRPA-Tü ISM

M-S CCM M-Sa CCMb UCOMa M-Sc UCOMd

48 1.98 2.28/2.38 0.59 0.85
76 5.42 5.98/6.16 4.68 5.81/6.32 5.73 2.22 2.81
82 4.37 4.84/4.99 4.17 5.19/5.65 5.09 2.11 2.64
96 2.53 2.89/3.00 1.34 1.90/2.09 1.79
100 3.73 4.31/4.50 3.52 4.75/5.25 4.58
110 3.62 4.15/4.31
116 2.78 3.16/3.29 2.93 3.54/3.99 3.54
124 3.50 3.89/4.02 2.02 2.62
128 4.48 4.97/5.13 3.77 4.93/5.49 4.76 2.26 2.88
130 4.03 4.47/4.61 3.38 4.37/4.92 4.26 2.04 2.65
136 3.33 3.67/3.79 2.22 2.78/3.11 2.76 1.70 2.19
148 1.98 2.36/2.49
150 2.32 2.74/2.88 3.34e

154 2.50 2.91/3.04
160 3.62 4.17/4.34 3.76e

198 1.88 2.25/2.37

aReference [13].
bReference [26].
cReference [14].
dReference [33].
eReference [41].

of calculations in the QRPA and the ISM using M-S, CCM,
and the unitary correlation operator method (UCOM) [47].
It appears that in going from M-S to CCM or UCOM the
matrix elements in all three methods (IBM-2, the QRPA,
and the ISM) increase. In IBM-2 the multiplicative factor
when going from M-S to CCM-Argonne increases from 1.10
to 1.20. In QRPA-Tü it increases from 1.21 to 1.42 from
M-S to CCM-Argonne and from 1.21 to 1.33 from M-S to
UCOM. In the ISM the factor increases from 1.25 to 1.30
from M-S to UCOM. This multiplicative factor was taken
into account in Ref. [48] when comparing IBM-2 matrix
elements with the ISM. The discrepancy between IBM-2 and
QRPA-Tü multiplicative factors is not understood and should
be investigated further. In Table X, we have also added recent
calculations in the deformed QRPA for decay of 150Nd and
160Gd [41]. One may note that the correspondence between
the QRPA and IBM-2 persists even in deformed nuclei.

The total estimated sensitivity here is 11% (addition) or 7%
(quadrature), under the assumption of no recoil contribution to
the matrix elements. Combining all contributions, we have a
total estimated sensitivity of 44%–55% if all the contributions
are added or 16%–19% if they are combined in quadrature.

The short-range correlations affect 0νhββ decay differently
than 0νββ. We have therefore investigated the dependence of
0νhββ matrix elements with M-S, and CCM correlations. The
results are shown in Table XI. We see here an increase of a
factor from 1.69 to 2.80 when going from M-S to Argonne–

TABLE XI. Comparison among M
(0ν)
h matrix elements calculated

with different Jastrow parametrizations for the SRC: Miller-Spencer
and CCM (Argonne and CD-Bonn) in IBM-2 and QRPA-Tü [3,53].

A IBM-2 QRPA-Tü

M-S CCM M-Sa CCMb

48 16.3 46.3/76.0
76 48.1 107/163 32.6 233/351
82 35.6 84.4/132 30.0 226/340
96 59.0 99.0/135 14.7
100 99.3 165/224 29.7 250/388
110 95.7 155/208
116 67.1 110/149 21.5
124 37.8 79.6/120
128 48.4 101/152 26.6
130 44.0 92.0/138 23.1 234/364
136 35.1 72.8/109 14.1
148 59.4 103/142
150 68.4 116/160 35.6
154 67.1 113/155
160 92.9 155/211
198 61.5 104/141

aReference [3].
bReference [53].

CD-Bonn. This is because, as remarked in Appendix A, the
neutrino potential for heavy neutrino exchange is a contact
interaction in configuration space and thus strongly influenced
by SRC. The correlation function in Eq. (17) has a value
fJ (0) = 1 − c at r = 0. For the M-S parametrization c = 1,
fJ (0) = 0, and thus, in the absence of a nucleon form factor,
the matrix elements M

(0ν)
h vanish. The Argonne and CD-Bonn

parametrizations have c = 0.92 and 0.46, respectively, and
thus a nonzero value at r = 0. These results are modified by
the presence of the nucleon form factors of Eq. (12), and
the final results depend strongly on the choice of gV (p2) and
gA(p2). From Table XI, columns 4 and 5, it appears that
the increase in the matrix elements when going from M-S
to CCM-Argonne in QRPA-Tü is much larger, from 7.01 to
10.1, than in IBM-2. As in the case of light neutrino exchange,
this discrepancy is not understood and should be investigated
further. The large increase both in IBM-2 and the QRPA also
points to the strong sensitivity of the calculated 0νhββ matrix
elements to the specific form of SRC and thus to the fact that
the treatment here and in other calculations in the literature,
through the nucleon form factors, may not be satisfactory. A
more consistent treatment is discussed in Refs. [49,52]. In view
of all these problems, we estimate the sensitivity to SRC for
0νhββ decay to be much larger (50%) than that for 0νββ decay
(5%). The total estimated sensitivity to operator assumptions
for 0νhββ is then 56% (addition) and 50% (quadrature).

To summarize the situation we show in Table XII our final
results with M-S SRC, together with an estimate of the error,
based on the arguments given above. The error estimate is
30% in 48Ca, 19% in nuclei with protons and neutrons in the
same major shell, and 16% in nuclei with protons and neutrons
in different major shells, for 0νββ. For 0νhββ, our estimated

014315-9



J. BAREA, J. KOTILA, AND F. IACHELLO PHYSICAL REVIEW C 87, 014315 (2013)

TABLE XII. Final IBM-2 matrix elements with M-S SRC and
error estimate.

Decay Light neutrino exchange Heavy neutrino exchange

48Ca 1.98(59) 16.3(95)
76Ge 5.42(103) 48.1(255)
82Se 4.37(83) 35.6(189)
96Zr 2.53(40) 59.0(309)
100Mo 3.73(60) 99.3(516)
110Pd 3.62(58) 95.7(498)
116Cd 2.78(44) 67.1(321)
124Sn 3.50(67) 37.8(200)
128Te 4.48(85) 48.4(257)
130Te 4.03(77) 44.0(233)
136Xe 3.33(63) 35.1(186)
148Nd 1.98(32) 59.4(309)
150Nd 2.32(37) 68.4(356)
154Sm 2.50(40) 67.1(349)
160Gd 3.62(58) 92.9(483)
198Pt 1.88(30) 61.5(320)

error is dominated by SRC. In Table XII we have used 58%
in 48Ca, 53% in nuclei with protons and neutrons in the same
major shell, and 52% in nuclei with protons and neutrons in
different major shells.

Finally, having investigated the effect of short-range corre-
lations on 0νββ we are now able to compare our results with
all available calculations done with the same SRC including
DFT [43] and HFB [42]. These are shown in Fig. 7. We
note now that while the ISM, the QRPA, and IBM-2 have
the same trend with A, the other two do not. For the isotopic
ratio M (0ν)(128Te)/M (0ν)(130Te) the DFT method gives 0.86,
in sharp contrast with the value 1.11. Also, while the ISM,
the QRPA, and IBM-2 have a small value for 96Zr, DFT has
a large value. We therefore conclude that the approximations
made in the DFT and HFB method lead to a different behavior
with A. This point is currently being investigated [50]. Also,
the Fermi matrix elements in DFT are comparable to those in
IBM-2 and larger than those in the ISM [50].
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FIG. 7. (Color online) IBM-2 results for 0νββ nuclear matrix
elements compared with QRPA-Tü [13], the ISM [14], QRPA-Jy
[36,54–56], QRPA-deformed [41], DFT [43], and HFB [42].
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FIG. 8. (Color online) Expected half-lives for 〈mν〉 = 1 eV, gA =
1.269. The points for 128Te and 148Nd decays are not included in this
figure. The figure is in semilogarithmic scale.

D. Limits on neutrino mass

1. Light neutrino exchange

The calculation of nuclear matrix elements in IBM-2 can
now be combined with the phase-space factors calculated in [8]
and given in Table III and Fig. 8 of that reference to produce
our final results for half-lives for light neutrino exchange in
Table XIII and Fig. 8. The half-lives are calculated using the
formula

[
τ 0ν

1/2

]−1 = G
(0)
0ν |M0ν |2

∣∣∣∣ 〈mν〉
me

∣∣∣∣
2

. (21)

We note here that the combination must be done consistently.
If the value of gA is included in M0ν , then it should not be
included in G

(0)
0ν , and similarly for a factor of 4 included in

some definition of G
(0)
0ν [2] and not in others [57]. See Eq. (53)

of Ref. [8]. This point has caused considerable confusion in
the literature. In Table XIII and Fig. 8 the values 〈mν〉 = 1 eV
and gA = 1.269 are used. For other values they can be scaled
with |〈mν〉/me|2 and g4

A.
The effective neutrino mass is the quantity we want

to extract from experiment. Unfortunately, the axial vector
coupling constant is renormalized in nuclei to gA,eff . A
(model-dependent) estimate of gA,eff can be obtained from
the experimental knowledge of single-β decay and/or of 2νββ
decay. This will be discussed in the following section. Here
we show in Fig. 9 and Table XIII the limits on neutrino
mass from current experimental upper limits using IBM-2
matrix elements of Table V and gA = 1.269. In addition to
the experimental upper limits, a value has been reported for
the half-life in 76Ge, 1.2 × 1025 yr [59]. This is also reported
in Fig. 9.

The average light neutrino mass is constrained by atmo-
spheric, solar, reactor, and accelerator neutrino oscillation
experiments to be [64]

〈mν〉 = ∣∣c2
13c

2
12m1 + c2

13s
2
12m2e

iϕ2 + s2
13m3e

iϕ3
∣∣ ,

cij = cos ϑij , sij = sin ϑij , ϕ2,3 = [0, 2π ],
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TABLE XIII. Left: Calculated half-lives in IBM-2 M-S SRC
for neutrinoless double-β decay for 〈mν〉 = 1 eV and gA = 1.269.
Right: Upper limit on neutrino mass from current experimental
limit from a compilation of Barabash [58]. The values reported by
Klapdor-Kleingrothaus et al. [59] and the IGEX Collaboration [60]
and the recent limits from KamLAND-Zen [61] and EXO [62] are
also included.

Decay τ 0ν
1/2 (1024 yr) τ 0ν

1/2,exp (yr) 〈mν〉 (eV)

48Ca→48Ti 1.03 >5.8 × 1022 <4.2
76Ge→76Se 1.45 >1.9 × 1025 <0.28

1.2 × 1025a 0.35
>1.6 × 1025b <0.30

82Se→82Kr 0.52 >3.6 × 1023 <1.2
96Zr→96Mo 0.77 >9.2 × 1021 <9.1
100Mo→100Ru 0.46 >1.1 × 1024 <0.64
110Pd→110Cd 1.60
116Cd→116Sn 0.78 >1.7 × 1023 <2.1
124Sn→124Te 0.91
128Te→128Xe 8.53 >1.5 × 1024 <2.4
130Te→130Xe 0.44 >2.8 × 1024 <0.39
136Xe→136Ba 0.62 >5.7 × 1024c <0.33

>1.6 × 1025d <0.20
148Nd→148Sm 2.54
150Nd→150Sm 0.30 >1.8 × 1022 <4.1
154Sm→154Gd 5.34
160Gd→160Dy 0.80
198Pt→198Hg 3.77

aReference [59].
bReference [60].
cReference [61].
dReference [62].

(
m2

1,m
2
2,m

2
3

) = m2
1 + m2

2

2
+

(
−δm2

2
,+δm2

2
,±�m2

)
.

(22)

Using the best-fit values [64]

sin2 ϑ12 = 0.213, sin2 ϑ13 = 0.016,

sin2 ϑ23 = 0.466, δm2 = 7.67 × 10−5 eV2, (23)

�m2 = 2.39 × 10−3 eV2

we obtain the values given in Fig. 10. In this figure we
have added the current limits, for gA = 1.269, coming from
CUORICINO [63], IGEX [60], NEMO-3 [65], KamLAND-
Zen [61], and the EXO [62] experiment. Also, henceforth we
use c = 1 to conform with standard notation.

2. Heavy neutrino exchange

The half-lives for this case are calculated using the formula[
τ

0νh

1/2

]−1 = G
(0)
0ν

∣∣M0νh
|2∣∣η|2,

η ≡ mp

〈
m−1

νh

〉 =
∑

k=heavy

(
Uekh

)2 mp

mkh

. (24)

The expected half-lives for |η| = 2.75 × 10−7, and using the
IBM-2 matrix elements of Table IX, are shown in Table XIV.
For other values of η they scale as |η|2. There are no direct

FIG. 9. (Color online) Limits on neutrino mass from current
experimental limits from a compilation of Barabash [58] and recent
measurement for 136Xe from EXO [62]. The value reported by
Klapdor-Kleingrothaus et al. [59] is shown by the symbol X. The
figure is in semilogarithmic scale. The shaded area represents the
values of |〈mν〉| allowed by the current experiments.

experimental bounds on η. Recently, Tello et al. [7] have
argued that from lepton-flavor-violating processes and from
Large Hadron Collider (LHC) experiments one can put some
bounds on the right-handed leptonic mixing matrix Uek,heavy

and thus on η. In the model of Ref. [7], when converted to our
notation, η can be written as

η = M4
W

M4
WR

∑
k=heavy

(
Vekh

)2 mp

mkh

, (25)

where MW is the mass of the W -boson, MW = (80.41 ±
0.10) GeV [24], MWR is the mass of the WR boson, assumed
in [7] to be MWR = 3.5 TeV, and V = (MWR/MW )2U . The
ratio (MW/MWR)4 is then 2.75 × 10−7, the value we have used
in the left portion of Table XIV. By comparing the calculated
half-lives with their current experimental limits, we can set
limits on the lepton-nonconserving parameter |η|, shown in
Table XIV and Fig. 11.

If we write

η = M4
W

M4
WR

mp〈
mνh

〉 , (26)

we can also set limits on the average heavy neutrino mass,
〈mνh

〉, as shown in the last column of Table XIV. This limit
is model dependent since it is assumed that MWR = 3.5 TeV.
For other values of MWR it scales as M−4

WR .
If both light and heavy neutrino exchange contribute, the

half-lives are given by

[
τ 0ν

1/2

]−1 = G
(0)
0ν

∣∣∣∣M0ν

〈mν〉
me

+ M0νh
η

∣∣∣∣
2

. (27)

014315-11



J. BAREA, J. KOTILA, AND F. IACHELLO PHYSICAL REVIEW C 87, 014315 (2013)

TABLE XIV. Left: Calculated half-lives for neutrinoless double-β decay with exchange of heavy neutrinos for
η = 2.75 × 10−7 and gA = 1.269. Right: Upper limits of |η| and lower limits of heavy neutrino mass (see text for details)
from current experimental limit from a compilation of Barabash [58]. The values reported by Klapdor-Kleingrothaus
et al. [59] and the IGEX Collaboration [60] and the recent limits from KamLAND-Zen [61] and EXO [62] are also
included.

Decay τ
0νh
1/2 (1024 yr) τ

0νh
1/2,exp (yr) |η| (10−6) 〈mνh

〉 (GeV)

48Ca→48Ti 0.77 >5.8 × 1022 <1.00 >0.26
76Ge→76Se 0.95 >1.9 × 1025 <0.061 >4.2

1.2 × 1025a 0.077 3.362
>1.6 × 1025b <0.066 >3.88

82Se→82Kr 0.40 >3.6 × 1023 <0.29 >0.89
96Zr→96Mo 0.07 >9.2 × 1021 <0.77 >0.34
100Mo→100Ru 0.03 >1.1 × 1024 <0.0047 >5.5
110Pd→110Cd 0.12
116Cd→116Sn 0.07 >1.7 × 1023 <0.17 >1.5
124Sn→124Te 0.39
128Te→128Xe 3.71 >1.5 × 1024 <0.43 >0.60
130Te→130Xe 0.19 >2.8 × 1024 <0.071 >3.6
136Xe→136Ba 0.29 >5.7 × 1024c <0.061 >4.2

>1.6 × 1025d <0.116 >2.2
148Nd→148Sm 0.14
150Nd→150Sm 0.02 >1.8 × 1022 <0.27 >0.96
154Sm→154Gd 0.38
160Gd→160Dy 0.06
198Pt→198Hg 0.18

aReference [59].
bReference [60].
cReference [61].
dReference [62].

It is interesting to note here the possibility of interference
between light and heavy neutrino exchange, as emphasized
recently by several authors. The limits presented in Figs. 9, 10,
and 11 are based on the calculation with M-S SRC. If CCM
SRC are used, they should be multiplied by ∼1.2 (light
neutrino exchange) and ∼2.0 (heavy neutrino exchange).

III. 2νββ DECAY

A. Matrix elements

As mentioned in the previous section, the calculated matrix
elements of the GT operator in single-β decay appear to be
systematically larger than those extracted from the measured
f t values of allowed GT transitions. To take into account
these results, it has been found convenient to renormalize the
value of gA to be used in a particular model calculation by
introducing an effective gA,eff,β defined as(

gA,eff,β

gA

)
= |Mexp,β |

|Mth,β | , (28)

where gA = 1.269 and Mβ are the matrix elements for single-β
decay. The ratio (gA,eff/gA) is also the called quenching, q, or
hindrance, h = 1/q, factor. The quenching of gA comes from
two effects: (i) the limited model space in which the calculation
is done and (ii) the contribution of non-nucleonic degrees of
freedom, �, . . .. The first type of quenching depends strongly
on the size of the model space used in the calculation and is

thus model dependent. It was extensively investigated in light
nuclei, A ∼ 20, in the 1970s [66–68] within the framework
of the ISM where it was found that gA,eff

∼= 1.0, q ∼= 0.75. In
heavy nuclei, of particular interest in this paper, the question
of quenching was first discussed by Fujita and Ikeda [69] in
1965. These authors analyzed β decay in mass A ∼ 120 nuclei
within the framework of various models (pairing, pairing plus
quadrupole, etc.) and found very small quenching factors,
q � 0.2–0.3, thus stimulating the statement that massive
renormalization of gA occurs in heavy nuclei [68]. The second
type of quenching was extensively investigated theoretically
in the 1970s [70–72]. This effect does not depend much on
the nuclear model used in the calculation, but rather on the
mechanism of coupling to non-nucleonic degrees of freedom.
It is being reinvestigated currently within the framework of
chiral effective field theory (EFT) [73] and there are hints that
it has a complex structure, in particular that it may depend on
momentum transfer and that it may lead in some cases to an
enhancement rather than a quenching.

The values of gA,eff depend crucially on the model used
through the size and composition of the model space, es-
pecially on whether or not spin-orbit partners are included
in the calculation. For example, while the QRPA includes
spin-orbit partners, IBM-2 and the ISM do not. Conversely,
in ISM calculations the size of the model space is ∼109,
while in the QRPA and IBM-2 it is much smaller. In order
to extract gA,eff,β for a given mass number A, one needs to
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FIG. 10. (Color online) Current limits to 〈mν〉 from CUORICINO
[63], IGEX [60], NEMO-3 [65], KamLAND-Zen [61], EXO [62], and
IBM-2 M-S SRC nuclear matrix elements. The value of Ref. [59] is
shown by an X. It is consistent only with nearly degenerate neutrino
masses. The figure is in logarithmic scale.

do a calculation of single-β decay in that region and compare
with experiment where available. Within the context of IBM-2,
some calculations were done in the 1980s [74]. Very recently,
the problem has been readdressed and results will be published
soon [75].

FIG. 11. (Color online) Limits on the lepton nonconserving
parameter |η|. The value of Ref. [59] is shown by an X. The figure
is in semilogarithmic scale. The shaded area represents the values of
|η| allowed by the current experiments.
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FIG. 12. The decay 100
42Mo58 →100

44Ru56, an example of 2νββ decay.

Double-β decay depends on gA as g4
A and thus its

quenching is of extreme importance. Since 2νββ decay has
now been measured in several nuclei, it provides another
way to estimate gA,eff , which we denote by gA,eff,2νββ . In
this section, we attempt an estimation of gIBM-2

A,eff,2νββ within
the framework of IBM-2 in the closure approximation and
also extract gISM

A,eff,2νββ within the framework of the ISM in the
nonclosure approximation. The extraction of gIBM-2

A,eff,2νββ in the
nonclosure approximation will be presented in the forthcoming
publication mentioned above [75].

2νββ is a process allowed by the standard model and thus
in principle exactly calculable. The theory of 2νββ decay was
developed by Primakoff and Rosen [19], Konopinski [76], Doi
et al. [1], and Haxton et al. [21]. The calculation of 2νββ turns
out to be more complex than that of 0νββ.

(i) The closure approximation may not be good and one
needs to evaluate explicitly the matrix elements to and from
the individual 1+

N and 0+
N states in the intermediate odd-odd

nucleus (Fig. 12):

M
(2ν)
GT,N = 〈0+

F ‖τ † �σ‖1+
N 〉〈1+

N‖τ † �σ‖0+
I 〉

1
2 (Qββ + 2mec2) + E1+

N
− EI

(29)

and

M
(2ν)
F,N = 〈0+

F ‖τ †‖0+
N 〉〈0+

N‖τ †‖0+
I 〉

1
2 (Qββ + 2mec2) + E0+

N
− EI

. (30)

This evaluation has been done in selected nuclei within the
framework of the pnQRPA [77], the proton-neutron micro-
scopic anharmonic vibrator approach (pnMAVA) [78,79], and
the ISM [38,80,81], and it has been programmed very recently
within the framework of the proton-neutron interacting boson-
fermion model (IBFM-2) [75]. The calculation requires the
difficult task of determining the structure of the intermediate
odd-odd nucleus.

(ii) The PSFs cannot be exactly separated from the nuclear
matrix elements. These factors must be calculated separately
for each state 1+

N and 0+
N . In order to calculate half-lives and

other observable quantities the product of the PSFs G
(i)
2ν,N

and matrix elements must be calculated and the contributions
summed over all individual states. This is a daunting problem
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compounded by the fact that in most calculations the giant
Gamow-Teller resonance that contributes to the matrix ele-
ments is not included in the model space.

The separation of PSFs and nuclear matrix elements can be
done in two cases: (1) the closure approximation (CA) and (2)
the single-state dominance (SSD) approximation [82–86]. In
both cases, the inverse half-life can be written as[

τ 2ν
1/2

]−1 = G
(0)
2ν |mec

2M2ν |2. (31)

In the CA, the matrix elements M2ν can be written as

M2ν = g2
AM (2ν),

(32)

M (2ν) = −
[

M
(2ν)
GT

ÃGT

−
(

gV

gA

)2
M

(2ν)
F

ÃF

]
,

where

M
(2ν)
GT = 〈0+

F |
∑
nn′

τ †
nτ

†
n′ �σn · �σn′ |0+

I 〉,
(33)

M
(2ν)
F = 〈0+

F |
∑
nn′

τ †
nτ

†
n′ |0+

I 〉.

The closure energies ÃGT and ÃF are defined by

ÃGT = 1
2 (Qββ + 2mec

2) + 〈E1+,N 〉 − EI ,
(34)

ÃF = 1
2 (Qββ + 2mec

2) + 〈E0+,N 〉 − EI ,

where 〈EN 〉 is a suitable chosen excitation energy in the
intermediate odd-odd nucleus. The Fermi matrix elements are
suppressed by isospin considerations and are often neglected.
In case they are not, care must be taken since the closure
energy ÃF is different from the closure energy ÃGT , although,
for simplicity, ÃGT = ÃF = Ã is often used.

In the SSD approximation, the matrix elements are given
by

M
(2ν)
GT,SSD = 〈0+

F ‖τ † �σ‖1+
1 〉〈1+

1 ‖τ † �σ‖0+
I 〉

1
2 (Qββ + 2mec2) + E1+

1
− EI

,

(35)

M
(2ν)
F,SSD = 〈0+

F ‖τ †‖0+
1 〉〈0+

1 ‖τ †‖0+
I 〉

1
2 (Qββ + 2mec2) + E0+

1
− EI

,

where E1+
1

and E0+
1

are the energies in the intermediate odd-odd
nucleus of the single state that dominates the decay. From these
one can form the quantities

M
(2ν)
SSD = −

[
M

(2ν)
GT,SSD −

(
gV

gA

)2

M
(2ν)
F,SSD

]
,

(36)
M2ν,SSD = g2

AM
(2ν)
SSD

and calculate the half-lives from (25), with G
(0)
2ν given by

G
(0)
2ν,SSD .

B. Results

In this article, we present results of a calculation of the
nuclear matrix elements for 2νββ in the CA using the transition
operator of Sec. II A. In this case only the terms h̃F

V V and h̃GT
AA

are considered. An advantage of the closure approximation
for 2νββ decay is that the nuclear matrix elements can be

TABLE XV. 2νββ matrix elements (dimensionless) to the ground
state (columns 2 and 3) and to the first excited state (columns 4 and 5)
using the microscopic interacting boson model (IBM-2) in the closure
approximation.

A 0+
1 0+

2

M
(2ν)
GT M

(2ν)
F M

(2ν)
F M

(2ν)
GT

76 4.34 −2.69 −1.35 1.99
82 3.50 −2.39 −0.83 1.03

96 2.22 0.02 0.00 0.04
100 2.94 0.03 0.00 0.39
110 2.98 0.03 0.01 1.48
116 2.31 0.02 0.01 0.86

124 2.80 −1.60 −1.34 2.15
128 3.63 −1.99 −1.53 2.65
130 3.31 −1.79 −1.45 2.59
136 2.76 −1.44 −0.83 1.63

148 1.24 0.02 0.00 0.17
150 1.54 0.02 0.00 0.29
154 1.91 0.02 −0.00 0.05
160 2.99 0.02 0.01 0.51
198 1.00 0.01 0.00 0.03

48 1.57 −1.08 −4.77 5.02

calculated using the same method discussed in Sec. II, by
simply replacing the neutrino potential v(p) by

v2ν(p) = δ(p)

p2
, (37)

which is the Fourier-Bessel transform of the configuration-
space potential V (r) = 1. Since our purpose here is a direct
comparison of 2νββ and 0νββ decays, this avoids possible
systematic and accidental errors. The CA is not expected to be
good for 2νββ decay, since only 1+ and 0+ intermediate states
in the odd-odd nucleus contribute to the decay. We use it here
only as an estimate, with appropriately chosen closure energy
([2], p. 71) in order to extract gA,eff,2νββ ≡ gA,eff , which is the
purpose of this section.

Our calculated matrix elements for 2νββ decay are shown
in Table XV. Also here as in Table III we have separated
the class of nuclei where protons and neutrons occupy the
same major shell from those where they do not, and we added
A = 48 at the bottom of the table. The problem of spuriosity
of the Fermi matrix elements is here even more acute than in
the case of 0νββ. In the absence of isospin violation, all Fermi
matrix elements for 2νββ should be exactly zero. Breaking
of isospin is present in all calculations (ISM, QRPA, IBM-2,
DFT, and HFB). Within the model space and in the closure
approximation that we are using, we have a large breaking for
nuclei in which protons and neutrons occupy the same major
shell and zero breaking in the others. The small value ∼0.02
in Table XV is an indication of our numerical accuracy in
calculating overlap of wave functions. From the dimensionless
matrix elements in Table XV and the values of Ã we calculate
the values of |mec

2M (2ν)| given in Table XVI. In constructing
this table we have taken into account only the GT matrix
elements, since, as mentioned above, the IBM-2 F matrix
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TABLE XVI. Calculated values of 2νββ matrix elements in IBM-
2 with gA = 1.269 and the ISM with gA = 1.25.

A Ã (MeV) |mec
2M (2ν)|

ÃCA
GT ÃSSD

GT IBM-2 ISMa expb

CA
GT

SSD
GT

CA
exp

SSD
exp

48 7.72c 0.10 0.05 0.038(3)
76 9.41c 0.24 0.15 0.118(5)
82 10.1c 0.18 0.15 0.083(4)
96 11.0 2.20 0.10 0.51 0.080(4) 0.075(4)
100 11.2 1.69 0.13 0.89 0.206(7) 0.185(6)
110 11.8 1.89 0.13 0.80
116 12.1 1.88 0.10 0.63 0.114(5) 0.106(4)
124 12.5 0.12
128 12.5c 0.15 0.044(6)
130 13.3c 0.13 0.07 0.031(4)
136 13.1 0.11 0.06 0.0182(17)
148 13.6 0.05
150 13.7 1.88 0.06 0.42 0.058(4) 0.052(4)
154 13.9 0.07
160 14.2 0.11
198 15.8 0.03

aReference [38].
bReference [8].
cReference [21]

elements are largely spurious in nuclei where protons and
neutrons occupy the same major shell.

We investigate two choices of ÃGT . The first choice is
that taken from Ref. [21] or estimated by the systematics,
ÃGT = 1.12A1/2 MeV, where A without tilde denotes the
mass number. In cases where transitions between spin-orbit
partners dominate, one expects the SSD approximation to be
appropriate. Our second choice is SSD for 40Zr, 42Mo, 46Pd,
and 48Cd, where the dominant transition is g9/2–g7/2, and 60Nd,
where the dominant transition is h11/2–h9/2. In the same table
we also show the values of the matrix elements in the ISM
without the closure approximation [38]. The ISM calculation
are all in nuclei in which protons and neutrons occupy the
same major shell. By comparing these calculations with those
in IBM-2 with the Fermi matrix elements set to zero we see
that the two calculations have the same behavior with mass
number but differ by a factor of approximately 2. The last
columns in Table XVI gives the values of the matrix elements
|Meff

2ν | extracted from experiment [8].
If we write the matrix elements M2ν as

Meff
2ν =

(
gA,eff

gA

)2

M2ν, (38)

where (gA,eff/gA) = q is a quenching factor, by comparing
the experimental values M2ν,exp with the calculated values (or
the experimental half-lives with those calculated using PSFs of
[8]) we can extract the values of gA,eff . These are given in Table
XVII and Fig. 13 for IBM-2 (GT) and the ISM. As mentioned
in Sec. II, the renormalization of gA to gA,eff is due to two main
reasons: (1) limitation of the model space in which calculations
are done and (2) omission of non-nucleonic degrees of freedom
(�,N∗, . . .). As a result, one expects gA,eff to have a smooth

from experimental τ1 2 ISM gA 1.25A 0.12

from experimental τ1 2 IBM 2 GT
CA SSD gA 1.25A 0.18
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FIG. 13. (Color online) Value of gA,eff extracted from experiment
for IBM-2 and the ISM.

behavior with A to which shell effects are superimposed. We
see from Fig. 13 that this is approximately the case if we
assume SSD in 40Zr, 42Mo, 48Cd, and 60Nd. This is consistent
with previous analyses [85,86]. The smooth behavior can be
parametrized as gIBM-2

A,eff = 1.269A−γ , with γ = 0.18 for IBM-2
(GT). This gives for the neutron (A = 1) the free value. The
same type of analysis can be done for the ISM. The values of
gA,eff extracted by comparing the calculated and experimental
matrix elements are also shown in Table XVII and Fig. 13.
We see that gA,eff in the ISM has the same behavior as in
IBM-2, except for its larger value. It can be parametrized as
gISM

A,eff = 1.269A−γ with γ = 0.12. In Ref. [38] the value 0.93
was used for 48Ca, 76Ge, and 82Se and 0.71 for 130Te and 136Xe.

The question of how to extract gA,eff in the QRPA has been
the subject of many investigations [11]. In this case gA,eff can
be extracted either from 2νββ or from single-β decay [89].
We do not discuss this extraction here but simply note that the
values extracted are similar but larger than those in Table XVII
and Fig. 13.

Values of (gA,eff)2 can also be extracted from single-β decay
or electron capture using a Fermi-surface quasiparticle (FSQP)
model [90] where

(gA,eff)
2 = geff

i geff
f (39)

is the product of geff
i for the transition from even-even to odd-

odd nuclei and geff
f for the transition from odd-odd to even-even

nuclei. The values obtained in this way [91] are also similar to
those in Table XVII and Fig. 13. Finally, very recently, values
of gIBM-2

A,eff,2νββ have been extracted from a 2νββ calculation
without the closure approximation for 128,130Te→128,130Xe
decay with similar results [75]. As one can see from the
discussion in the paragraphs above, the extraction of the actual
value of gA,eff is highly dependent on the model calculations
and the assumptions made. All extractions, however, indicate
values of gA,eff in the range gISM

A,eff ∼ 0.57–0.90 and gIBM-2
A,eff ∼

0.35–0.71 depending on mass number A and on the SSD
approximation or the CA, with decreasing trend with A.

It is of considerable interest to analyze the impact that
the quenching of gA to gA,eff observed in single-β and 2νββ
decay may have on 0νββ. The question of whether or not
the quenching of gA is the same in 2νββ as in 0νββ is the
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TABLE XVII. Value of gA,eff extracted from experiment.

Nucleus τ1/2,exp(1018 yr)a τ1/2 (1018 yr) gA,eff gA,eff

exp IBM-2 IBM-2 ISM
CA
GT

SSD
GT

CA
GT

SSD
GT

48Ca 44+6
−5 2.30 0.61(2) 0.90(3)

76Ge 1500 ± 100 144 0.71(1) 0.90(2)
82Se 92 ± 7 7.68 0.68(1) 0.74(2)
96Zr 23 ± 2 5.31 0.187 0.88(2) 0.38(1)
100Mo 7.1 ± 0.4 6.46 0.117 1.24(2) 0.46(1)
116Cd 28 ± 2 14.5 0.306 1.08(2) 0.41(1)
128Te 1900000 ± 400000 65600 1170 0.55(3)
130Te 680+120

−110 15.5 0.49(2) 0.67(3)
136Xe 2110 ± 250b 23.0 0.41(2) 0.57(2)
150Nd 8.2 ± 0.9 3.21 0.048 1.00(3) 0.35(1)

aReference [87].
bReference [88].

subject of debate, since only the states 1+ and 0+ in the
intermediate odd-odd nucleus contribute to 2νββ, while all
multipoles contribute to 0νββ. Two lines of thought have
been considered: (1) Only GT (1+) is quenched and other
multipoles are not. (2) All multipoles are equally quenched.
The experimental information on higher multipoles is meager,
with only some hints coming from muon capture. The
contribution of different intermediate states J± to 0νββ decay
in 100Mo was investigated in Ref. [13] within the framework of
QRPA-Tü. It was found that the contribution of 1+ is sizable,
of opposite sign of that of the other multipoles, and very much
parameter (gpp) dependent. In view of this sizable contribution,
even if the other multipoles are not quenched, there is going
to be an effect coming from the 1+ multipole.

In order to investigate the possible impact of quenching of
gA, we present in Table XVIII the predicted half-lives under

the assumption of maximal quenching in which all multipoles
are quenched with

gIBM-2
A,eff = 1.269A−0.18,

(40)
gISM

A,eff = 1.269A−0.12.

In the same table we show for comparison the unquenched
values with gA = 1.269 discussed in Sec. II and shown in
Table XIII. We observe that while the ISM unquenched values
are a factor of approximately 2 smaller than IBM-2 values,
the quenched values of both calculations are similar, since the
smaller calculated matrix elements in the ISM are compensated
in part by a larger value of gA,eff . (This statement is not correct
in 48Ca where the simple parametrization 1.269A−γ fails.) It
appears therefore that the difference of a factor of 2 in the
calculated nuclear matrix elements in IBM-2 and the ISM is

TABLE XVIII. Predicted half-lives in 0νββ decay with unquenched and maximally quenched gA, gIBM−2
A,eff , and gISM

A,eff

obtained from 2νββ decay.

Decay τ 0ν
1/2 (1024 yr)

IBM-2 ISM

unquenched maximally quenched unquenched maximally quenched

48Ca→48Ti 1.03 16.8 13.9 89.2
76Ge→76Se 1.45 32.8 8.65 69.1
82Se→82Kr 0.52 12.4 2.22 18.5
96Zr→96Mo 0.77 20.5
100Mo→100Ru 0.46 12.5
110Pd→110Cd 1.60 47.1
116Cd→116Sn 0.78 24.0
124Sn→124Te 0.91 29.2 2.73 27.6
128Te→128Xe 8.53 281 33.5 344.4
130Te→130Xe 0.44 14.5 1.70 17.6
136Xe→136Ba 0.62 21.5 2.39 25.3
148Nd→148Sm 2.54 97.4
150Nd→150Sm 0.30 11.0
154Sm→154Gd 5.34 201
160Gd→160Dy 0.80 31.0
198Pt→198Hg 3.77 170
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TABLE XIX. Neutrino potentials used in this article.

Transition V (r) v(p)

0νββ H (r) 2
π

1
p(p+Ã)

0νhββ 1
memp

δ(r)
r2

2
π

1
memp

2νββ 1 δ(p)
p2

simply due to the difference in the size of the model space and
thus in the renormalization of gA.

Another important question in this context is whether or not
gV is quenched. From the conserved vector current (CVC) we
expect gV not to be quenched, at least as far as the contribution
of (�,N∗, . . .) is concerned. On the other side, the size of
the model space certainly affects the Fermi matrix elements,
through the overlap of the initial and final wave functions and
their isospin purity. Thus, if one defines

(
gV,eff,β

gV

) = |Mexp,β |
|Mth,β | , (41)

where gV = 1, one may reasonably expect a quenching of the
Fermi matrix elements as well. Whether or not the quenching
factor for gV,eff,β is the same as for gA,eff,β is not clear. We
are currently investigating this question within the context of
IBM-2. Within this model, it appears also that the question of
isospin violation can be dealt with by means of a quenching of
the Fermi matrix elements. The question of how to project
into states of good isospin was investigated years ago by
introducing the concept of F spin (isospin of the pairs) ([35],
p. 134). Because of the complexity of the problem, we do
not discuss it here but defer it to a subsequent publication. In
the columns “maximally quenched” in Table XVIII we have
assumed equal quenching both for gV and gA and thus no
quenching in the ratio gV /gA. This assumption introduces an
additional error of about 10% in the quenched calculation.

In conclusion, Table XVIII gives ranges of expected half-
lives based on IBM-2 and ISM calculations for unquenched,
gA = 1.269, gV = 1, and “maximally quenched” values of
gA,eff and gV,eff . The actual situation may in fact be in between
these two extreme values. Similar analyses have been done
within the QRPA except that a quenched value gA,eff = 1.0 is
used while gV,eff = 1 is unquenched [13].

TABLE XX. SDI strength values A1 and single-particle and
single-hole energies (in MeV) in the N,Z = 28–50 shell. The
energies are taken from the spectra of 57Cu for proton particles, from
isotones N = 50 for proton holes, and from the spectra of 57Ni for
neutron holes.

Orbital Protons Protons Neutrons
(particles) (holes) (holes)

A1 = 0.366 A1 = 0.264 A1 = 0.280

2p1/2 1.106 0.931 1.896
2p3/2 0.000 2.198 3.009
1f5/2 1.028 2.684 2.240
1g9/2 3.009 0.000 0.000

TABLE XXI. SDI strength values A1 and single-particle and
single-hole energies (in MeV) in the N,Z = 50–82 shell. The
energies are taken from the spectra of 133Sb for protons particles,
from the spectra of 207Tl for proton holes, from the spectra of 91Zr for
neutron particles, and from the spectra of 131Sn for neutron holes.

Orbital Protons Protons Neutrons Neutrons
(particles) (holes) (particles) (holes)

A1 = 0.221 A1 = 0.200 A1 = 0.269 A1 = 0.163

3s1/2 2.990 0.000 1.205 0.332
2d3/2 2.690 0.350 2.042 0.000
2d5/2 0.960 1.670 0.000 1.655
1g7/2 0.000 2.700 2.200 2.434
1h11/2 2.760 1.340 2.170 0.070

IV. CONCLUSIONS

In this article we have presented a consistent evaluation of
nuclear matrix elements in 0νββ and 0νhββ decay (Sec. II)
and 2νββ decay (Sec. III), within the framework of IBM-2
in the closure approximation. All calculations can be done
simultaneously by replacing the neutrino potential v(p) as
summarized in Appendix A. While the closure approximation
is expected to be good for 0νββ and 0νhββ decay since
the virtual neutrino momentum is of order 100 MeV/c and
thus much larger than the scale of nuclear excitations, it is
not expected to be good for 2νββ decay where the neutrino
momentum is of order of a few MeV/c and thus of the same
scale of nuclear excitation. Furthermore, for 2νββ, single-state
dominance may be a better approximation. Hence the 2νββ
calculation in Sec. III should be viewed only as an estimate.

By using the 0νββ matrix elements and phase-space factors
of Ref. [8], we have calculated the expected 0νββ half-lives
in all nuclei of interest with gA = 1.269 and gV = 1, given in
Table XIII and Fig. 9. This is the main result of this paper,
and should be compared with other calculations (QRPA, ISM,
DFT, and HFB) with the same (or similar) values of gA =
1.25–1.269 and gV = 1.

Finally, in Sec. III, we have examined the impact that
a quenching of gA may have on 0νββ decay and reported
in Table XVIII results of a quenched calculation with the
quenching factor extracted from 2νββ decay. This calculation
is speculative since we have no experimental information to
confirm whether or not quenching is the same for all multipoles

TABLE XXII. SDI strength values A1 and single-particle energies
(in MeV) in the N = 82–126 shell. The energies are taken from [93]
for neutron particles and from the spectra of 208Pb for neutron holes.

Orbital Neutrons Neutrons
(particles) (holes)
A1 = 0.147 A1 = 0.150

3p1/2 2.250 0.000
3p3/2 1.500 0.900
2f5/2 2.600 0.570
2f7/2 0.000 2.340
1h9/2 2.450 3.410
1i13/2 2.800 1.630
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TABLE XXIII. Hamiltonian parameters employed in the IBM-2 calculation of the final wave functions along with their references.

Nucleus εdν εdπ κ χν χπ ξ1 ξ2 ξ3 c(0)
ν c(2)

ν c(4)
ν c(0)

π c(2)
π c(4)

π ωνν ωππ ωνπ wν yν

48Tia 1.11 1.11 −0.20 −0.30 −0.70 1.00 1.00 1.00
76Ge [95] 1.20 1.20 −0.21 1.00 −1.20 −0.05 0.10 −0.05
76Se [96] 0.96 0.96 −0.16 0.50 −0.90 −0.10
82Se [96] 1.00 1.00 −0.28 1.14 −0.90 −0.10
82Kr [97] 1.15 1.15 −0.19 0.93 −1.13 −0.10 −0.10
96Zra 1.00 1.00 −0.20 −2.20 0.65 0.17 0.17 0.33
96Mo [98] 0.73 1.10 −0.09 −1.20 0.40 −0.10 0.10 −0.10 −0.50 0.10
100Mo [98] 0.55 1.00 −0.06 −1.20 0.40 −0.10 0.10 −0.10 −0.60 0.20 0.10
100Ru [99] 0.89 0.89 −0.18 −1.00 0.40 0.60 0.09 −0.13
110Pd [100] 0.78 0.60 −0.13 0.00 −0.30 0.20 0.04 0.00 −0.26 −0.29 −0.30 −0.26 −0.29 −0.03
110Cd [101] 0.92 0.92 −0.15 −1.10 −0.80 1.10 0.109 1.10 0.07 −0.17 0.16
116Cd [102] 0.85 0.85 −0.27 −0.58 0.00 −0.18 0.24 −0.18 −0.15 −0.06
116Sn [103] 1.32 −0.50 −0.22 −0.07 −0.06 0.04
124Snb 1.10 −0.30 −0.16 −0.20 0.30 0.02
124Te [102] 0.82 0.82 −0.15 0.00 −1.20 −0.18 0.24 −0.18 0.10
128Te [102] 0.93 0.93 −0.17 0.50 −1.20 −0.18 0.24 −0.18 0.30 0.22
128Xe [104] 0.70 0.70 −0.17 0.33 −0.80 −0.18 0.24 −0.18 0.30
130Te [102] 1.05 1.05 −0.20 0.90 −1.20 −0.18 0.24 −0.18 0.30 0.22
130Xe [104] 0.76 0.76 −0.19 0.50 −0.80 −0.18 0.24 −0.18 0.30 0.22
136Xeb 1.31 −0.04 0.01 −0.02
136Ba [104] 1.03 1.03 −0.23 1.00 −0.90 −0.18 0.24 −0.18 0.30 0.10
148Nd [105] 0.70 0.70 −0.10 −0.80 −1.20 −0.12 0.24 0.90 0.40 0.20
148Sm [105] 0.95 0.95 −0.12 0.00 −1.30 −0.12 0.24 0.90 0.05
150Nd [105] 0.47 0.47 −0.07 −1.00 −1.20 −0.12 0.24 0.90 0.40 0.20
150Sm [105] 0.70 0.70 −0.08 −0.80 −1.30 −0.12 0.24 0.90 0.05
154Sm [105] 0.43 0.43 −0.08 −1.10 −1.30 −0.12 0.24 0.90 0.05
154Gd [105] 0.55 0.55 −0.08 −1.00 −1.00 −0.12 0.24 0.90 −0.20 −0.10
160Gd [108] 0.42 0.42 −0.05 −0.80 −1.00 0.08 0.08 0.08 −0.20 −0.10
160Dy [108] 0.44 0.44 −0.06 −0.80 −0.90 0.08 0.08 0.08 −0.05 −0.15
198Pt [106] 0.58 0.58 −0.18 1.05 −0.80 −0.10 0.08 −0.10 0.00 0.02 0.00
198Hg [107] 0.55 0.55 −0.21 1.00 −0.40 0.08 0.37 0.25 0.16

aParameters fitted to reproduce the spectroscopic data of the low-lying energy states.
bGS parameters fitted to reproduce the spectroscopic data of the low-lying energy states.

in the intermediate nucleus. Our assessment is that, while in
the unquenched case the situation is such that current (GERDA
and CUORE) and planned experiments may reach accuracies
to detect at least the inverted hierarchy of Fig. 10, in the
quenched case only the degenerate case can be detected in
the foreseeable future. The results presented here point to the
necessity of further studies and refinements, the crucial ones
being: (i) an improved treatment of the Fermi matrix elements,
(ii) an improved treatment of SRC, and (iii) the determination
of the quenching factors gA,eff for all multipoles in 0νββ decay.
The latter is of importance not only for IBM-2 but also for all
other model calculations.
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APPENDIX A: NEUTRINO POTENTIALS AND THEIR
RADIAL INTEGRALS

The neutrino potentials used in this article are given in
Table XIX. The function H (r) is the Fourier-Bessel transform
of 2π−1[p(p + Ã)]−1 and is given in Appendix 2 of Ref. [2]
and in Eq. (19) of [3]. It does not have an explicit form.
We note however that, when the closure energy Ã goes to
zero, then v(p) = 2π−1p−2, and its Fourier-Bessel transform
becomes the Coulomb potential, H (r) → 1/r . The neutrino
potential is a long-range potential, since the mass of the
exchanged particle is very small. The situation is opposite in
the case of heavy neutrino exchange. In this case, the mass of
the exchanged particle is very large and thus the potential is
a contact interaction, δ(r)/r2. For 2νββ decay, the potential
does not have a radial dependence and thus it is a contact
interaction in momentum space. The values of Ã used in this
article are given in Table XVI. The radial integrals of the
neutrino potential are best calculated in momentum space
using the Horie method [92] as discussed in Appendix A
of Ref. [15], with harmonic oscillator single-particle wave
functions with oscillator parameter ν = Mω/h̄, where M is
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the nucleon mass. In this article, we take ν = ν0A
−1/3, where

A is the mass number and ν0 = 0.994 fm−2.

APPENDIX B: SINGLE-PARTICLE ENERGIES AND
STRENGTH OF INTERACTION

In order to calculate the pair structure constants we need
the single-particle and single-hole energies and strength of
interaction. We give in Tables XX–XXII, the single-particle
and single-hole energies used in this article. We generate the
pair structure constants by diagonalizing the surface delta
interaction (SDI) in the two identical particle states, pp
and nn. The strength of the (isovector) interaction, A1, is
also given in Tables XX–XXII. It is obtained by fitting the
2+–0+ energy difference in nuclei with either two protons
(proton holes) or two neutrons (neutron holes). For 48Ca→
48Ti decay, we need also the strength of the interaction in
the 1f7/2 shell, given by A1 = 0.510 MeV. The calculation
of the pair structure constants can be improved by a better
choice of the interaction and of the single-particle energies.
We have tried different choices of the single-particle energies
and included the variation of the corresponding radial integrals
in the estimate of the sensitivity to parameter changes.

APPENDIX C: PARAMETERS OF THE IBM-2
HAMILTONIAN

A detailed description of the IBM-2 Hamiltonian is given
in [27] and [94]. For most nuclei, the Hamiltonian parameters
are taken from the literature [95–107]. The values of the
Hamiltonian parameters, as well as the references from which
they were taken, are given in Table XXIII. The quality of
the description can be seen from these references and ranges
from very good to excellent (see Fig. 4). The only nuclei for
which we have done new calculations are 48Ti, 96Zr, 124Sn,
136Xe, 160Gd, and 160Dy. The new calculations are done using
the program NPBOS [94] adapted by J. Kotila. They include
energies, B(E2) values, quadrupole moments, B(M1) values,
magnetic moments, etc. The calculations for 160Gd and 160Dy
have just been published [108]. A paper with those for 48Ti is
in preparation [109]. The quality of these, as well as of the un-
published results for 96Zr, is equal to that of the results obtained
previously [95–107]. For the semi-magic nuclei 116–124Sn and
136Xe, we have obtained the parameters by a fit to the energy of
the low-lying states using the same procedure as in Ref. [103]
for 116Sn, while 48Ca has been taken as doubly magic. This
procedure is compatible with the generalized seniority (GS)
scheme, which appears to be good for semi-magic nuclei, as ex-
tensively discussed in the 1980s for pairing plus quadrupole in-
teractions and as shown recently for realistic interactions [110].
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