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We have investigated the three-body force (TBF) effect on the neutron and proton momentum distributions in
asymmetric nuclear matter within the framework of the extended Brueckner-Hartree-Fock approach by adopting
the AV 18 two-body interaction plus a microscopic TBF. In asymmetric nuclear matter, it is shown that the
neutron and proton momentum distributions become different from their common distribution in symmetric
nuclear matter. The predicted depletion of the proton hole states increases while the neutron one decreases as
a function of isospin asymmetry. The TBF effect on the neutron and proton momentum distributions turns out
to be negligibly weak at low densities around and below the normal nuclear density. The TBF effect is found
to become sizable only at high densities well above the saturation density, and inclusion of the TBF leads to an
overall enhancement of the depletion of the neutron and proton Fermi seas.
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I. INTRODUCTION

To determine reliably the properties of isospin asymmetric
nuclear matter is a challenge in nuclear physics and nuclear
astrophysics [1–4]. The nucleon momentum distribution in
nuclear matter is one of the most important properties of
nuclear matter. Many-body correlations induced by nucleon-
nucleon (NN ) interactions among nucleons play a significant
role in a nuclear many-body system, which make the system
much more complicated and have more plentiful properties
than a noninteracting Fermi system. For example, the effect of
the short-range correlations may lead to the depletion of the
nucleon momentum distribution below the Fermi momentum
and the population above the Fermi momentum in nuclear
matter [5]. The nucleon momentum distribution is of a great
physical interest since it is closely related to the nature of
the underlying NN interaction. The depletion of the Fermi
sea is expected to be closely related to the hard core and
the tensor component of the NN interaction [6]. It plays an
important role in testing the validity of the physical picture
of independent particle motion in the mean field theory
or the standard shell model and serves as a measure of
the strength of the dynamical NN correlations induced by the
NN interaction in a nuclear many-body system [7,8]. The
study of the nucleon momentum distribution in nuclear matter
may provide desirable information on the depletion of the
deeply bound states inside finite nuclei and is expected to
be important for understanding the structure of finite nuclei.
Experimentally, the effects of NN correlations and the nuclear
depletion of the Fermi sea can be investigated by the (e, e′p),
(e, e′NN ), and proton induced knockout reactions [9–11]. The
related measurements have been reported continually [12–22]
and definite evidence of the short-range NN correlations has
been observed in these experiments. The analysis of the (e, e′p)
reactions on 208Pb at NIKHEF has indicated that a depletion
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of 15%–20% for the deeply bound proton states is required
for describing the measured coincidence cross sections [15].
Recent experiments on the two-nucleon knockout reactions
have shown that nucleons can form short-range correlated
pairs with large relative momentum and small center-of-mass
momentum. A strong enhancement of the neutron-proton
(np) short-range correlations over the proton-proton (pp)
correlations has been observed at JLab [22] due to the dominate
role played by the short-range tensor components of the NN
interactions in generating the NN correlations [23], and may
have significant implications for neutron star physics [24].

The short-range correlations and the nucleon momentum
distribution in nuclear matter have been investigated exten-
sively by using various theoretical approaches, such as the
extended Brueckner-Hartree-Fock (BHF) method [25–31],
the Green function theory [32–36], the in-medium T -matrix
method [37,38], the variational Monte Carlo approach [23],
and the correlated basis function approach [39,40]. The
predicted depletion of the Fermi sea by adopting different the-
oretical approaches has been shown to be slightly larger than
15% [26,29,39,40]. In Ref. [29], the authors have calculated the
nucleon momentum distribution and quasiparticle strength in
symmetric nuclear matter in the framework of the Brueckner-
Bethe-Goldstone theory by including high-order contributions
in the hole-line expansion of the mass operator, and a good
agreement between the calculated quasiparticle strength and
the experimental data [12] has been shown. In Ref. [31],
the neutron and proton occupation probabilities, averaged
below their respective Fermi seas in neutron-rich matter at
the saturation density, have been predicted. In more recent
papers [35,36], the nucleon momentum distributions in neutron
matter and asymmetric nuclear matter have been investigated
within the framework of the Green function method, and
the isospin-asymmetry dependence of the depletions of the
neutron and proton Fermi seas has been clarified. It has been
shown [31,35,36] that increasing the isospin asymmetry leads
to an increasingly larger depletion of the proton hole-states
than that of the neutron hole states in asymmetric nuclear
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matter. In the present paper, we shall extend the previous
investigation of Ref. [29] to asymmetric nuclear matter and
investigate the isospin-asymmetry dependence of the neutron
and proton momentum distributions within the extended
Brueckner-Hartree-Fock (EBHF) method. Particulary, we will
concentrate on the TBF effect on the momentum distributions
and their isospin dependence in asymmetric nuclear matter
especially at suprasaturation densities.

The present paper is organized as follows. In the next
section, we give a brief review of the adopted theoretical
approaches including the EBHF theory and the TBF model. In
Sec. III, the calculated results will be reported and discussed.
Finally, a summary is given in Sec. IV.

II. THEORETICAL APPROACHES

The present calculations are based on the extended BHF
approach for asymmetric nuclear matter [41]. The extension of
the BHF scheme to include microscopic three-body forces can
be found in Refs. [42–44]. Here we simply give a brief review
for completeness. The starting point of the BHF approach is
the reaction G matrix, which satisfies the following isospin
dependent Bethe-Goldstone (BG) equation [45]:

G(ρ, β; ω)

= VNN + VNN

∑
k1k2

|k1k2〉Q(k1, k2)〈k1k2|
ω − ε(k1) − ε(k2)

G(ρ, β; ω), (1)

where ki ≡ (�ki, σi, τi) denotes the momentum and the z
components of spin and isospin of a nucleon, respectively. VNN

is the realistic NN interaction and ω is the starting energy. The
asymmetry parameter β is defined as β = (ρn − ρp)/ρ, where
ρ, ρn, and ρp denote the total nucleon, neutron, and proton
number densities, respectively. The Pauli operator is defined
as Q(k1, k2) = [1 − n0(k1)][1 − n0(k2)], and it prevents two
nucleons in intermediate sates from being scattered into
their respective Fermi seas (Pauli blocking effect). Here by
n0(k) we denote the Fermi distribution function which is
a step function at zero temperature, i.e., n0(k) = θ (kF − k).
The single-particle (s.p.) energy ε(k) is given by ε(k) =
h̄2k2/(2m) + U (k), where the auxiliary s.p. potential UBHF(k)
controls the convergent rate of the hole-line expansion [45]. In
the present calculation, we adopt the continuous choice for the
auxiliary potential since it provides a much faster convergence
of the hole-line expansion up to high densities than the gap
choice [46]. Under the continuous choice, the s.p. potential
describes physically at the lowest BHF level the nuclear mean
field felt by a nucleon in nuclear medium [47], and is calculated
as follows:

U (k) = Re
∑
k′�kF

〈kk′|G[ρ, ε(k) + ε(k′)]|kk′〉A, (2)

where the subscript A denotes antisymmetrization of the
matrix elements.

For the realistic NN interaction VNN , we adopt the Argonne
V18 (AV 18) two-body interaction [48] plus a microscopic
TBF [43] constructed by using the meson-exchange current
approach [42]. In the TBF model adopted here, the most

important mesons, i.e., π , ρ, σ , and ω have been considered.
The parameters of the TBF model, i.e., the coupling constants
and the form factors, have been self-consistently determined
to reproduce the AV 18 two-body force using the one-boson-
exchange potential model, and their values can be found in
Ref. [43]. In our calculation, the TBF contribution has been
included by reducing the TBF to an equivalently effective
two-body interaction according to the standard scheme as
described in Ref. [42]. In r space, the equivalent two-body
force V eff

3 reads

〈�r ′
1 �r ′

2 |V eff
3 |�r1�r2〉

= 1

4
Tr

∑
n

∫
d�r3d�r ′

3 φ∗
n(�r ′

3 )[1 − η(r ′
13))(1 − η(r ′

23)]

×W3(�r ′
1 �r ′

2 �r ′
3 |�r1�r2�r3)φn(�r3)[1 − η(r13))(1 − η(r23)]. (3)

In order to calculate the nucleon momentum distribution in
nuclear matter with the EBHF approach, we follow the scheme
given in Refs. [5,29] and extend the scheme to asymmetric
nuclear matter. Within the framework of the Brueckner-Bethe-
Goldstone theory, the mass operator can be expanded in a
perturbation series according to the number of hole lines, i.e.,

Mτ (k, ω) = Mτ
1 (k, ω) + Mτ

2 (k, ω) + Mτ
3 (k, ω) + · · · , (4)

where τ denotes neutron or proton (hereafter we will write
out explicitly the isospin index τ ). The mass operator is a
complex quantity and the real part of its on-shell value can be
identified with the potential energy felt by a neutron or a proton
in asymmetric nuclear matter. In the expansion of the mass
operator, the first-order contribution Mτ

1 (k, ω) corresponds to
the standard BHF s.p. potential, and the on-shell value of
its real part coincides with the auxiliary potential under the
continuous choice given by Eq. (2). The higher-order terms
stem from the density dependence of the effective G matrix.
As shown by Jeukenne et al. [5], in order to predict reliably
the s.p. properties within the Brueckner theory, one has to go
beyond the lowest-order BHF approximation by considering
the high-order contributions in the hole-line expansion of the
mass operator. The second-order term Mτ

2 is called the Pauli
rearrangement term and is induced by the medium dependence
of the G matrix via the Pauli operator in the BG equation [5,41].
The Pauli rearrangement effect of the Gmatrix describes the
influence of the ground state two-hole correlations on the
s.p. potential [28,49]. The ground state NN correlations have
been investigated extensively in literature [50–52]. The Pauli
rearrangement have been shown to play its role mainly in
the low momentum region around and below the Fermi
surface where the ground state two-hole correlations are most
effective, and it weakens the momentum dependence of the
s.p. potential especially around the Fermi surface. The effect
of ground state correlations not only is essential for getting
a satisfactory agreement between the predicted depth of the
microscopic BHF s.p. potential and the empirical value [5]
and for restoring the Hugenholtz-Van Hove theorem which is
destroyed seriously at the lowest BHF approximation [41],
but also plays a crucial role in generating a nucleon self-
energy to describe realistically the s.p. strength distribution
in nuclear matter and finite nuclei below the Fermi energy
[10]. According to Refs. [5,41], the Pauli rearrangement
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contribution is calculated as follows from the G matrix:

Mτ
2 (k, ω) =

∑
τ ′

M
τ,τ ′
2 = 1

2

∑
τ ′

∑
σ ′ �k′>kτ ′

F

∑
k1<kτ

F

∑
k2<kτ ′

F

|〈kk′|Gτ,τ ′
[ετ (k1) + ετ ′

(k2)]|k1k2〉|2
ω + ετ ′(k′) − ετ (k1) − ετ ′(k2) − iη

. (5)

Due to the NN correlations in asymmetric nuclear medium,
the neutron and proton Fermi seas are partially depleted, and
consequently the correlated momentum distributions differ
from the uncorrelated ones. The third-order term Mτ

3 in the
hole-line expansion of mass operator is called the renormal-
ization contribution and it takes into account the above effect
of the depletion of the Fermi seas. The renormalization term
Mτ

3 is given by [5,28,41]

Mτ
3 (k, ω) = −

∑
τ ′

∑
�h′σ ′

κτ ′
2 (h′)〈kh′|Gττ ′

(ω + ετ ′
(h′))|kh′〉A,

(6)

where h′ refers to the hole state with momentum smaller than
kτ

F, and

κτ ′
2 (h′) = −

[
∂

∂ω
Mτ ′

1 (h′, ω)

]
ω=ετ ′ (h′)

(7)

is the depletion of the neutron or proton Fermi sea at the
lowest-order approximation in asymmetric nuclear matter
[5,41]; i.e., κτ ′

2 (h′) is the probability that a neutron or proton
hole-state (|�h′| � kτ ′

F ) is empty. Hereafter, we shall use h and
h′ to denote the s.p. hole states below the Fermi momentum.
As shown in Ref. [29], it is a satisfactory approximation to
replace in Eq. (6) the depletion coefficient κτ ′

2 (h′) by its value
at the averaged momentum inside the Fermi sea, i.e., κτ ′ =
κτ ′

2 (h′ = 0.75kτ ′
F ). We have Mτ

3 (k, ω) ≈ −∑
τ ′ κτ ′

Mττ ′
1 (k, ω).

By taking into account the renormalization term Mτ
3 (k, ω),

one may get the renormalized BHF approximation for the
mass operator [41], i.e.,

M̃τ
1 (k, ω) ≡ Mτ

1 (k, ω) + Mτ
3 (k, ω)

≈
∑
τ ′

[1 − κτ ′
]Mττ ′

1 (k, ω). (8)

Similarly, one may consider a renormalization correction from
the four hole-line terms to the second-order term Mτ

2 in order
to take into account the fact that the hole state k2 in Eq. (5)
is partially empty (see also Ref. [5] for symmetric nuclear
matter). Accordingly we obtain the renormalized M2, which
is approximately given by [41]

M̃τ
2 (k, ω) =

∑
τ ′

[1 − κτ ′
]Mττ ′

2 (k, ω). (9)

In terms of the off-energy-shell mass operator, one can readily
calculate the neutron and proton momentum distributions in
asymmetric nuclear matter below and above the corresponding
Fermi momentum [5,29]:

nτ (k) = 1 +
[
∂Ũ τ

1 (k, ω)

∂ω

]
ω=ετ (k)

, for k < kτ
F , (10)

nτ (k) = −
[
∂Ũ τ

2 (k, ω)

∂ω

]
ω=ετ (k)

, for k > kτ
F , (11)

where Ũ τ
1 and Ũ τ

2 denote the real parts of M̃τ
1 and M̃τ

2 ,
respectively.

III. RESULTS AND DISCUSSIONS

In Fig. 1 we display the TBF effect on the predicted
momentum distributions below and above the corresponding
Fermi momenta in symmetric nuclear matter (β = 0) at two
typical densities ρ = 0.17 and 0.34 fm−3, respectively. In
the figure, the solid lines correspond to the results obtained
by including the TBF; the dashed ones are calculated by
adopting purely the AV 18 two-body force alone. It is clear
from Fig. 1 that, due to the many-body correlations induced
by the NN interaction, the s.p. states below the Fermi surface
are partly empty, and those above the Fermi surface can be
partly occupied in the correlated ground state of nuclear matter.
In the case of excluding the TBF, the density dependence of
the momentum distribution, as a function of the ratio k/kF ,
is shown to be quite weak in the density region considered
here, which is in good agreement with the previous EBHF
calculation in Ref. [29] by adopting the separable AV 14
interaction and the prediction reported in Ref. [36] by using
the Green function method. One may notice that the TBF
effect is negligibly small at low densities around and below the
empirical saturation density ρ0 = 0.17 fm−3 of nuclear matter.
This is consistent with the conclusion in Ref. [39] within the
correlated basis function approach by adopting the Urbana
v14 interaction plus an effective three-body interaction. At the
high density ρ = 0.34 fm−3, which is well above the saturation
density, the TBF effect turns out to become noticeable. By
comparing the solid curves and the corresponding dashed

FIG. 1. (Color online) TBF Effect on the nucleon momentum
distribution in symmetric nuclear matter (β = 0) for two densities
0.17 fm−3 (left panel) and 0.34 fm−3 (right panel).
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curves in Fig. 1, it is seen that the TBF effect is to enhance
the depletion of the momentum distribution below the Fermi
momentum at high densities, i.e., to reduce the occupation
probability of the hole states. This is readily understood since
inclusion of the TBF is expected to induce stronger short-range
correlations in dense nuclear medium as compared with the
case of excluding the TBF. In both cases of including and
excluding the TBF, the obtained depletions of the hole states at
zero momentum (k = 0) are roughly 15% around the saturation
density, compatible with the previous predictions reported in
Refs. [26,29,36,39,40]. Since the depletion of the s.p. hole
states well below the Fermi momentum in nuclear matter
can be identified with the depletion of the occupation of the
deeply bound s.p. levels in finite nuclei [9,32,40], the present
obtained depletion at saturation density is also consistent with
the experimental result in Ref. [15].

The isospin T = 0 tensor component of the NN interaction
is expected to be crucial for determining the isospin depen-
dence of the equation of state and s.p. properties of asymmetric
nuclear matter [2,4,41,53]. The study of the neutron and proton
momentum distributions as well as their isospin-asymmetry
dependence may be helpful for understanding the properties of
the short-range and tensor correlations in nuclear many-body
systems [22,36]. In Fig. 2 we report the neutron and proton
momentum distributions below and above their respective
Fermi momenta in asymmetric nuclear matter at various
asymmetries β = 0, 0.2, 0.4, 0.6, and 0.8 for two typical
densities ρ = 0.17 and 0.34 fm−3, respectively. In the figure,
the results are obtained by adopting purely the AV 18 two-
body interaction and the TBF is not included. It is clearly
seen that the neutron and proton momentum distributions in
asymmetric nuclear matter are different from their common
distribution in symmetric nuclear matter, and the depletions
of the neutron and proton hole states depend sensitively
on the isospin asymmetry. As the isospin asymmetry β
increases, the occupation probability of the neutron hole
states below the neutron Fermi sea becomes larger while
the occupation of the proton hole states gets smaller with
respect to their common values in symmetric nuclear matter;
that is, increasing the asymmetry leads to a reduction of the

FIG. 2. (Color online) Neutron and proton momentum distribu-
tions in asymmetric nuclear matter at various asymmetries for two
densities 0.17 fm−3 (left panel) and 0.34 fm−3 (right panel). The
results are calculated without including the TBF.

depletion of the neutron hole states, while it enhances the
depletion of the proton hole states. The above result has also
been found in Ref. [36] within the framework of the Green
function approach. Such an isospin-asymmetry dependence of
the neutron and proton momentum distributions in asymmetric
nuclear matter implies that, at a higher asymmetry, the effect
of the short-range correlations, induced by the NN interaction,
becomes stronger (weaker) on protons (neutrons), and can be
understood according to the isospin-asymmetry dependence
of the effect of the tensor component of the NN interaction
in asymmetric nuclear matter. As is well known, the isospin
T = 0 SD tensor component may induce a strong short-range
correlation in nuclear medium and it plays a dominant role
in determining the isospin vector parts of the properties of
asymmetric nuclear matter [41,53–55]. As the neutron excess
increases, the effect of the T = 0 SD tensor channel on protons
(neutrons) from the surrounding neutrons (protons) becomes
stronger (weaker). Accordingly the SD tensor component is
expected to induce a larger (smaller) depletion of the proton
(neutron) Fermi sea at a higher asymmetry. The definite
evidence for the strong enhancement of the np short-range
correlations over the pp and nn correlations observed at
JLab [22] has provided an experimental indication for the
dominant role played by the short-range tensor components
of the NN interactions in generating the NN correlations
[23]. The importance of the tensor force in determining the
isospin-asymmetry dependence of the neutron and proton
momentum distributions in asymmetric nuclear matter has also
been confirmed in Ref. [36] where the authors have calculated
the depletion of the nuclear Fermi sea by adopting various
NN interactions, and they find that the isodepletion [defined
as the difference of the neutron and proton occupation of the
lowest momentum state in asymmetric nuclear matter, i.e.,
nn(k = 0) − np(k = 0)] obtained by the AV 4′ potential which
has no tensor component is much lower than the predictions
by the other NN interactions including the tensor components,
especially at suprasaturation densities.

In Fig. 3, we show the neutron and proton momentum
distributions below and above their respective Fermi momenta,
predicted by adopting the AV 18 interaction plus the TBF,
in asymmetric nuclear matter at various asymmetries β = 0,
0.2, 0.4, 0.6, and 0.8 for two typical densities ρ = 0.17

FIG. 3. (Color online) The same as Fig. 2, but the results are
obtained by including the TBF.
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FIG. 4. (Color online) Neutron and proton momentum distribu-
tions at zero momentum in asymmetric nuclear matter vs isospin
asymmetry β for two densities 0.17 fm−3 (left panel) and 0.34 fm−3

(right panel). The results are obtained for the two cases of including
the TBF (solid curves) and excluding the TBF (dashed curves).

and 0.34 fm−3, respectively. It is seen that, after including
the TBF in the calculation, the predicted isospin-asymmetry
dependence of the neutron and proton momentum distributions
remain the same as that obtained by adopting purely the AV 18
two-body force. By comparing the corresponding curves
in Figs. 2 and 3, one may notice that the TBF effect is
negligibly small at subsaturation densities. At densities well
above the saturation density, the TBF leads to an overall
enhancement of the depletions of both the neutron and proton
distributions below their respective Fermi momenta, since it
may generate extra short-range NN correlations which become
strong enough at high densities.

In order to see more clearly the isospin dependence and
the TBF effect, in Fig. 4 we display the proton and neutron
momentum distributions at zero momentum k = 0 as functions
of the isospin-asymmetry β in the two cases with (solid
curves) and without (dashed curves) including the TBF. It
is clearly seen that the proton (neutron) occupation of the zero
momentum state decreases (increases) almost linearly as a
function of asymmetry, indicating the short-range and tensor
correlations become stronger (weaker) for protons (neutrons)
at a higher asymmetry in neutron-rich nuclear matter. A similar
result has been reported in Ref. [32] for the averaged neutron
and proton occupation probabilities below their respective
Fermi seas at the empirical saturation density. The above
predicted isospin splitting [i.e., nn(k = 0) > np(k = 0)] of
the neutron and proton occupation of the lowest states in
neutron-rich nuclear matter has also been found in Ref.
[36] by using the Green function approach. In Ref. [36], it
is shown that at finite temperature the thermal effect may
destroy the linear dependence of nn(k = 0) and np(k = 0)
on asymmetry β at high enough asymmetries. As expected,
around and below the saturation densities, the TBF effect on
the proton and neutron momentum distributions is negligibly
small, in agreement with the result of Ref. [39]. However, at
high densities (for example ρ = 0.34 fm−3) well above the
saturation density, the TBF may affect sizably the neutron and
proton occupations of their lowest states. Inclusion of the TBF
leads to an overall enhancement of the depletion of the neutron
and proton hole states. It is noticed from Fig. 4 that the TBF
has almost no effect on the isodepletion nn(0) − np(0) up to

ρ = 0.34 fm−3, which provides a support for the result of
Ref. [36] where it has been shown that, once the tensor compo-
nents fitting the experimental phase shifts are included, various
modern NN interactions lead to almost the same isodepletion
although the momentum distributions of neutrons and protons
predicted by those different NN interactions can be quite
different.

Before our summary, we shall give a brief discussion
about the possible relevance of the present results for the
dense and highly asymmetric nuclear matter in the interior
of neutron stars, especially the cooling of neutron stars via
neutrino emission and the nucleon pairing in neutron stars.
Let us consider a neutron star consisting of neutrons, protons,
and electrons at β equilibrium, i.e., a (n, p, e) neutron star
model. For a (n, p, e) neutron star, there are two different
kinds of URCA processes for neutrino emission. One is the
direct URCA process, the other is the modified URCA process.
The direct URCA process may lead to a much faster cooling
of neutron stars than the modified URCA process. Under the
assumption of a free Fermi momentum distribution of nucleons
(i.e., the Fermi sea is fully occupied and the particle states
above the Fermi momentum are completely empty), the direct
URCA process is only allowed if the proton/neutron ratio
x ≡ ρp/ρn is greater than a threshold value of xc = 1/8 [which
corresponds to a proton fraction of Yp ≡ ρp/(ρn + ρp) =
1/9 and an isospin asymmetry of β = 7/9 	 0.8] in order
to guarantee the momentum conservation [56]. The strong
depletion of the proton Fermi sea and the partial occupation of
the proton states well above the Fermi momentum, induced by
the short-range np correlations in dense and highly asymmetric
nuclear matter, may affect considerably the direct URCA
process as has been discussed in detail by Frankfurt et al.
in Ref. [24], where it is shown that the modification of the
proton momentum distribution in neutron star matter due to
the short-range correlations leads to a significant enhancement
of the neutrino luminosity of the direct URCA process for
temperatures much less than 1 MeV, and the direct URCA
process may even have probability to occur for a small value
of x < 0.1. Nucleon pairing in asymmetric nuclear matter
plays an important role in determining the cooling rate of
neutron stars [57], and its strength has been shown to be rather
sensitive to the medium effect induced by nucleon-nucleon
correlations [58]. The large depletion of the proton Fermi sea
in highly asymmetric nuclear matter due to the T = 0 np
short-range correlations, obtained in the present calculation,
tends to reduce considerably the proton pairing in neutron
stars [24]. Another interesting topic is the thermal transport
parameters in dense asymmetric nuclear matter, which have
special importance for the damping of nonradial modes of
neutron stars and may depend sensitively on the depletion
of nucleon distribution [59–62]. In general, the transport
parameters, including the shear viscosity and thermal conduc-
tivity, may be calculated within the framework of the Landau
Fermi liquid approach in which a free Fermi momentum
distribution is assumed as the equilibrium distribution [59].
Therefore, a strong depleted proton Fermi sea in dense and
supradense asymmetric nuclear matter is expected to affect
substantially the transport properties in the interior of neutron
stars.
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IV. SUMMARY

In summary, we have investigated the TBF effect on the
proton and neutron momentum distributions in asymmetric
nuclear matter within the framework of the EBHF approach by
adopting the AV 18 two-body interaction supplemented with
a microscopic TBF. In symmetric nuclear matter (β = 0), the
obtained depletion of the hole states deep inside the Fermi sea
is roughly 15% at the empirical saturation density, in agree-
ment with the previous predictions [26,29,36,39,40] and the
experimental value in Ref. [15]. In asymmetric nuclear matter
(β > 0), the neutron and proton momentum distributions turn
out to become different and may split with respect to their
common distribution in symmetric nuclear matter. It is shown
that increasing the isospin asymmetry β tends to enhance
the depletion of the proton Fermi sea while it reduces the
depletion of the neutron Fermi sea, which implies that at a
higher asymmetry the effect of the tensor correlations induced
by the NN interaction may become stronger on protons while
it gets weaker on neutrons. At zero momentum, the neutron
occupation probability increases while the proton occupation
decreases almost linearly as a function of asymmetry. The
present obtained isospin dependence of the neutron and proton
momentum distributions in asymmetric nuclear matter is in
good agreement with the recent prediction in Ref. [36] within
the framework of the Green function method. At low densities
around and below the nuclear saturation density, the TBF
effect on the predicted momentum distributions is found to
be negligibly weak, in agreement with the conclusion of
Ref. [39]. At high densities well above the saturation density,

the TBF is expected to induce strong enough extra short-range
correlations and its effect turns out to become noticeable. In
dense asymmetric nuclear matter, inclusion of the TBF effect
may lead to an overall enhancement of both the depletion of
the neutron and proton Fermi seas for all the asymmetries
considered. Although the TBF affects sizably the neutron and
proton momentum distributions at high densities well above
the saturation density, its effect on the isodepletion of the
nuclear Fermi sea (i.e., the difference of the neutron and
proton occupation probabilities) in asymmetric nuclear matter
is shown to be quite small in the density region up to two
times saturation density. The present results are expect to have
significant implications for the cooling, nucleon pairing, and
transport properties of neutron stars.
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