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Background: The A = 2 and 3 form factors are among the observables of choice for testing models of nuclear
interactions and associated electromagnetic charge and current operators. Here we investigate the validity of the
chiral-effective-field-theory (χEFT) approach to describe the strong-interaction dynamics in these few-nucleon
systems and their response to electromagnetic probes.
Purpose: The objectives of the present work are twofold. The first is to address and resolve some of the differences
present in independent, χEFT derivations up to one loop, recently appearing in the literature, of the nuclear charge
and current operators. The second objective is to provide a complete set of χEFT and hybrid predictions for the
structure functions and tensor polarization of the deuteron, for the charge and magnetic form factors of 3He and
3H, and for the charge and magnetic radii of these few-nucleon systems.
Methods: The calculations use wave functions derived from either chiral or conventional two- and three-nucleon
potentials and Monte Carlo methods to evaluate the relevant matrix elements.
Results: In reference to the two objectives mentioned earlier, we find that (i) there are no differences between
the χEFT magnetic dipole operator at one loop derived in our formalism and that obtained by Kölling et al.
[Phys. Rev. C 80, 045502 (2009)] with the unitary transformation method and (ii) there is excellent agreement
between theory and experiment for the static properties and elastic form factors of these A = 2 and 3 nuclei up
to momentum transfers q � 2.0–2.5 fm−1. A complete analysis of the results is provided.
Conclusions: Nuclear χEFT provides a very satisfactory description of the isoscalar and isovector charge and
magnetic structure of the A = 2 and 3 nuclei at low momentum transfers q � 3mπ . In particular, contributions
from two-body charge and current operators are crucial for bringing theory into close agreement with experiment.
At higher q values the present χEFT predictions are similar to those obtained in the hybrid approach, as well as
in older studies based on the conventional meson-exchange picture, and fail to reproduce the measured A = 2
and 3 form factors in the diffraction region.
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I. INTRODUCTION

Over the past two decades, chiral effective field theory
(χEFT), originally proposed by Weinberg in a series of papers
in the early 1990s [1], has blossomed into a very active
field of research. The chiral symmetry exhibited by quantum
chromodynamics (QCD) severely restricts the form of the in-
teractions of pions among themselves and with other particles.
In particular, the pion couples to baryons, such as nucleons and
� isobars, by powers of its momentum Q, and the Lagrangian
describing these interactions can be expanded in powers of
Q/�χ , where �χ ∼ 1 GeV specifies the chiral-symmetry-
breaking scale. As a result, classes of Lagrangians emerge,
each characterized by a given power of Q/�χ and each
involving a certain number of unknown coefficients, so-called
low-energy constants (LECs), which are then determined by
fits to experimental data (see, for example, the review papers
[2,3] and references therein). Thus, χEFT provides, on the one
hand, a direct connection between QCD and its symmetries,
in particular chiral symmetry, and the strong and electroweak
interactions in nuclei and, on the other hand, a practical cal-
culational scheme susceptible, in principle, to systematic im-
provement. In this sense, it can be justifiably argued to have put
low-energy few-nucleon physics on a more fundamental basis.

Nuclear electromagnetic charge and current operators in
χEFT up to one loop were derived originally by Park
et al. [4] in covariant perturbation theory. Recently, two
independent derivations, based on time-ordered perturbation
theory (TOPT), have appeared in the literature, one by some of
the present authors [5,6] and the other by Kölling et al. [7,8].
The expressions in Refs. [5–7] for the two-pion-exchange
charge and current operators are in agreement with each other.
Differences between the expressions reported in Refs. [5,6] and
those in Ref. [8] are found in some of the loop corrections to
the one-pion-exchange (OPE) and short-range currents as well
as the minimal currents originating from four-nucleon contact
interactions involving two gradients of the nucleon fields. The
differences in the loop corrections have their origin in the
different implementations of TOPT adopted in Refs. [5,6,8]
and relate to the treatment of reducible diagrams. One of the
objectives of the present work is to resolve some of these dif-
ferences. This is addressed in Sec. II and Appendices A and B.

The other objective is to provide predictions for the charge
and magnetic radii and form factors of the deuteron and
trinucleons (3He and 3H), by utilizing two- and three-nucleon
potentials derived either in χEFT or in the conventional
framework, in combination with the charge and current
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operators obtained here. The methods used to carry out
the calculations are discussed in Sec. III, and a detailed
analysis of the results is presented in Sec. IV. This last
section is organized into three subsections: the first illustrates
the different strategies adopted for the determination of the
low-energy constants that characterize the current operator up
to one loop (i.e., no unknown LECs enter the one-loop charge
operator); the second and third report results, respectively, for
the A(q) and B(q) structure functions and tensor polarization
T20(q) of the deuteron and for the charge and magnetic form
factors of 3He and 3H, as well as results for the charge and
magnetic radii of these few-nucleon systems. The conclusions
are summarized in Sec. V, while details of the evaluation of
the loop integrals entering the charge operator are relegated in
Appendix C.

There have been earlier χEFT studies of the deuteron
electromagnetic structure in Refs. [9–11] and, most recently, in
Ref. [12]—this latter work has focused on the B(q) structure
function. To the best of our knowledge, however, one-loop
χEFT predictions for the 3He and 3H elastic form factors have
not been reported.

In reference to the two objectives mentioned earlier, we find
that (i) there are no differences between the χEFT magnetic
dipole operator at one loop derived in our formalism and that
obtained by Kölling et al. [8] with the unitary transformation
method and (ii) there is excellent agreement between theory
and experiment for the static properties and elastic form
factors of these A = 2 and 3 nuclei up to momentum transfers
q � 2.0–2.5 fm−1. In particular, contributions from two-body
charge and current operators are crucial for bringing theory
into this close agreement with experiment. At higher q values
the present χEFT predictions are similar to those obtained
in the hybrid approach, as well as in older studies based
on the conventional meson-exchange picture, and they fail
to reproduce the measured A = 2 and 3 form factors in the
diffraction region.

II. NUCLEAR CHARGE AND CURRENT OPERATORS
UP TO ONE LOOP

The two-nucleon current (j) and charge (ρ) operators have
been derived in χEFT up to one loop (to order eQ) in Refs.
[5,6], respectively. In the following, we denote the momentum
due to the external electromagnetic field with q, and we define

ki = p′
i − pi , Ki = (p′

i + pi)/2, (2.1)

k = (k1 − k2) /2, K = K1 + K2, (2.2)

where pi (p′
i) is the initial (final) momentum of nucleon i. We

further define

j =
+1∑

n=−2

j(n), ρ =
+1∑

n=−3

ρ(n), (2.3)

where the superscript n in j(n) and ρ(n) specifies the order eQn

in the power counting. The lowest-order (LO) contributions
j(−2) and ρ(−3) consist of the single-nucleon current and charge

operators, respectively:

j(−2) = e

2 mN

[ 2 eN,1(q2) K1 + i μN,1(q2) σ 1 × q]

× δ(p′
2 − p2) + 1 ⇀↽ 2 (2.4)

and

ρ(−3) = e eN,1(q2) δ(p′
2 − p2) + 1 ⇀↽ 2, (2.5)

where mN is the nucleon mass, q = ki with i = 1 or 2 (where
the δ functions enforcing overall momentum conservation q =
k1 have been dropped for simplicity here and in the following),

eN,i(q
2) = GS

E(q2) + GV
E(q2) τi,z

2
,

(2.6)

μN,i(q
2) = GS

M (q2) + GV
M (q2) τi,z

2
,

and GS
E (GV

E) and GS
M (GV

M ) denote the isoscalar (isovector)
combinations of the proton and neutron electric (E) and
magnetic (M) form factors, normalized as GS

E(0) = GV
E(0) =

1, GS
M (0) = 0.880μN , and GV

M (0) = 4.706μN in units of
the nuclear magneton μN . The counting eQ−2 (eQ−3) of
the leading-order current (charge) operator results from the
product of a factor eQ (eQ0) due to the coupling of the
external electromagnetic field to the individual nucleons and
the factor Q−3 from the momentum δ function entering this
type of disconnected contributions. Of course, this counting
ignores the fact that the nucleon form factors themselves also
have a power-series expansion in Q. Here, they are taken
from fits to elastic electron scattering data off the proton
and deuteron [13]—specifically, the Höhler parametrization
[14]—rather than derived consistently in chiral perturbation
theory (χPT) [15]. The calculations of the A = 2 and 3 nuclei
elastic form factors that follow are carried out in the Breit
frame, in which the electron-energy transfer vanishes. Hence,
the hadronic electromagnetic form factors are evaluated at
four-momentum transfer qμqμ = −q2.

At order n = −1 (NLO) there is a one-pion-exchange
(OPE) contribution to the current operator which reads

j(−1) = −i e
g2

A

F 2
π

GV
E (q2) (τ 1 × τ 2)z

(
σ 1 − k1

σ 1 · k1

ω2
k1

)

×σ 2 · k2

ω2
k2

+ 1 ⇀↽ 2, (2.7)

where we have defined ω2
k = k2 + m2

π , with mπ being the pion
mass. However, there are no n =−2 contributions to the charge
operator. The presence of the isovector electric form factor GV

E

in j(−1) follows from the continuity equation

q · j(−1) = [
v(0)

π , ρ(−3)
]
, (2.8)

where [· · · , · · ·] denotes the commutator, ρ(−3) is the charge
operator given in Eq. (2.5), and v(0)

π is the static OPE potential

v(0)
π (k) = − g2

A

F 2
π

τ 1 · τ 2
σ 1 · k σ 2 · k

ω2
k

. (2.9)

The left-hand side of Eq. (2.8) is of order Q0, the same as the
right-hand side since the commutator brings in an additional
factor Q3 due to the implicit momentum integrations. It should
be emphasized that the continuity equation requires that the
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(b) (c)(a)

FIG. 1. Diagrams illustrating the two-body charge operators at
order n = 0 or eQ0. Nucleons, pions, and photons are denoted by
solid, dashed, and wavy lines, respectively. The solid circle in panel
(a) is associated with a γπN vertex of order eQ. Only one among
the possible time orderings is shown.

same form factor be used to describe the electromagnetic
structure of the hadrons in the longitudinal part of the current
operator and in the charge operator. However, it places no
restrictions on the electromagnetic form factors which may be
used in the transverse parts of the current. By ignoring this
ambiguity, the choice made here (GV

E) satisfies the “minimal”
requirement of current conservation [16].

Relativistic corrections to the leading-order one-body cur-
rent and charge operators enter, respectively, at n = 0 and
n = −1 (both denoted as N2LO) and are given by

j(0) = − e

8 m3
N

eN,1(q2)
[
2
(
K2

1 + q2/4
)
(2 K1 + i σ 1 × q)

+ K1 · q (q + 2 i σ 1 × K1)
]

− i e

8 m3
N

[ μN,1(q2) − eN,1(q2)]

× [K1 · q (4 σ 1 × K1 − i q) − (2 i K1 − σ 1 × q) q2/2

+ 2 (K1 × q) σ 1 · K1] δ(p′
2 − p2) + 1 ⇀↽ 2, (2.10)

ρ(−1) = − e

8 m2
N

[ 2 μN,1(q2) − eN,1(q2)]

× (q2 + 2 i q · σ 1 × K1) δ(p′
2 − p2) + 1 ⇀↽ 2, (2.11)

while the n = 0 (N3LO) OPE two-body charge operators,
illustrated in Fig. 1, read

ρ(0)
a = e

2 mN

g2
A

F 2
π

[
GS

E(q2) τ 1 · τ 2 + GV
E (q2) τ2z

]
× σ 1 · q σ 2 · k2

ω2
k2

+ 1 ⇀↽ 2, (2.12)

ρ
(0)
b (ν) = − e

4 mN

g2
A

F 2
π

σ 1 · k2 σ 2 · k2

ω4
k2

× [
(1 − ν)

[
GS

E(q2) τ 1 · τ 2 + GV
E(q2) τ2,z

]
q · k2

+ 2 i GV
E (q2) (τ 1 × τ 2)z k2 · [ (1 − ν) K1

+ (1 + ν) K2]
] + 1 ⇀↽ 2, (2.13)

ρ(0)
c = i

e

mN

g2
A

F 2
π

Gπ (q2) (τ 1 × τ 2)z k1 · K1
σ 1 · k1 σ 2 · k2

ω2
k1

ω2
k2

+ 1 ⇀↽ 2. (2.14)

The operator of panel (a) of Fig. 1 is due to a γπN vertex of
order eQ originating from the interaction Hamiltonian

e gA

2 mNFπ

∫
dx N † σ · (∇A0)(τ · π + πz)N,

derived first by Phillips [10]. In the context of meson-exchange
phenomenology, an operator of precisely this form results
from considering the low-energy limit of the relativistic
Born diagrams associated with virtual pion photoproduction
amplitudes (see the review paper [17] and references therein).
From this perspective, it appears reasonable to include the
nucleon form factors GS

E and GV
E in Eq. (2.12).

The operator of panel (b) of Fig. 1 depends on the
off-energy-shell extrapolation, specified by the parameter ν,
adopted for the nonstatic corrections of order Q2 to the OPE
potential [18],

v(2)
π (k, K; ν) = (1 − 2 ν)

v(0)
π (k)

ω2
k

(k · K)2

4 m2
N

. (2.15)

As shown in Ref. [18] (and within the present approach in
Ref. [6]), different off-shell prescriptions for v(2)(ν) and ρ(0)(ν)
are unitarily equivalent:

ρ(−3) + ρ
(0)
b (ν) = e−i U (ν)[ρ(−3) + ρ

(0)
b (0)

]
e+i U (ν)

� ρ(−3) + ρ
(0)
b (0) + [ρ(−3), i U (0)(ν)], (2.16)

where the Hermitian operator U (ν) admits the expansion

U (ν) = U (0)(ν) + U (1)(ν) + · · · , (2.17)

and U (0)(ν) and U (1)(ν) (see below) have been constructed,
respectively, in Refs. [18] and [6] [and, in this last paper,
Eqs. (28) and (55), which give equivalent momentum-space
expressions for U (1)(ν), contain a typographical error: the
imaginary unit on the left-hand side should be removed].
Phenomenological potentials, such as the Argonne v18

(AV18) [19], and χEFT potentials, such as those recently
derived by Entem and Machleidt [20], make the choice
ν = 1/2 in Eq. (2.15); i.e., nonstatic corrections to the OPE
potential are ignored.

The operator of panel (c), containing the γππ vertex, is
obtained by expanding the energy denominators as [6]

1

Ei − EI − ωπ

= − 1

ωπ

[
1 + Ei − EI

ωπ

+ · · ·
]

, (2.18)

where EI denotes NN (or NNγ ) intermediate energies and
ωπ the pion energy (or energies, as the case may be), and
by noting that the leading (static) corrections vanish, when
summed over the possible six time orderings. However, the
terms proportional to the ratio (Ei − EI )/ωπ , which is of
order Q, lead to the nonstatic operator given in Eq. (2.14).
It is multiplied by the pion form factor Gπ (q2), which we
parametrize in vector-meson dominance and consistently with
experimental data at low momentum transfers as

Gπ (q2) = 1

1 + q2/m2
ρ

, (2.19)

where mρ is the ρ-meson mass.

A. Current operators at order n = 1 (e Q)

The currents at order eQ (N3LO) are illustrated diagram-
matically in Fig. 2, and they consist of (i) terms generated by
minimal substitution in the four-nucleon contact interactions
involving two gradients of the nucleon fields as well as by
nonminimal couplings to the electromagnetic field, (ii) OPE

014006-3



M. PIARULLI et al. PHYSICAL REVIEW C 87, 014006 (2013)

(a) (b) (c) (d)

(f) (g)

(j) (k)

(h) (i)

(e)

FIG. 2. Diagrams illustrating the two-body current operators at
order n = 1 or eQ. Nucleons, pions, and photons are denoted by
solid, dashed, and wavy lines, respectively. The solid circle in panel
(b) is associated with a γπN vertex of order eQ2. Only one among
the possible time orderings is shown.

terms induced by γπN interactions beyond leading order,
and (iii) one-loop two-pion-exchange (TPE) terms. We discuss
them below.

The contact minimal and nonminimal currents, denoted by
the subscripts “min” and “nm,” respectively, are written as

j(1)
a,min = i e

16
GV

E (q2) (τ 1 × τ 2)z [(C2 + 3 C4 + C7) k1

+ (C2 − C4 − C7) k1 σ 1 · σ 2

+C7 σ 1 · (k1 − k2) σ 2] − i e

4
eN,1(q2) C5

× (σ 1 + σ 2) × k1 + 1 ⇀↽ 2, (2.20)

j(1)
a,nm = −i e

[
GS

E(q2) C ′
15 σ 1 + GV

E (q2) C ′
16

×(τ1,z − τ2,z) σ 1
] × q + 1 ⇀↽ 2. (2.21)

The expression above for j(1)
a,min is the Fierz-transformed version

of the current given in Eq. (3.11) of Ref. [5] (see Appendix A
for a derivation). We note that the first three terms in Eq. (2.20)
agree with the first line of Eq. (5.3) of Kölling et al. [8],
while the term proportional to C5 differs by the isoscalar
piece, which, however, can be absorbed in a redefinition of
C ′

15. The LECs C1, . . . , C7, which also enter the two-nucleon
contact potential, have been constrained by fitting np and pp
elastic scattering data and the deuteron binding energy. We
take their values from the Machleidt and Entem 2011 review
paper [20]. The LECs C ′

15 and C ′
16 (and d ′

8, d ′
9, and d ′

21 below)
are determined by fitting measured photonuclear observables
of the A = 2 and 3 systems, as discussed in Sec. IV. Finally,
we observe that there is no a priori justification for the use
of GS

E and GV
E (or GS

M and GV
M ) in the nonminimal contact

current, and these form factors are included in order to provide
a reasonable fall-off with increasing q2 for the strength of this
current.

The isovector (IV) OPE current at N3LO is given by

j(1)
b,IV = i e

gA

F 2
π

GγN�(q2)

μγN�

σ 2 · k2

ω2
k2

[d ′
8τ2,z k2

− d ′
21(τ 1 × τ 2)z σ 1 × k2] × q + 1 ⇀↽ 2, (2.22)

and it depends on the two (unknown) LECs, d ′
8 and d ′

21. They
can be related [5] to the N -� transition axial coupling constant
and magnetic moment (denoted as μγN�) in a resonance
saturation picture, which justifies the use of the γN�
electromagnetic form factor for this term. It is parametrized as

GγN�(q2) = μγN�(
1 + q2/�2

�,1

)2
√

1 + q2/�2
�,2

, (2.23)

where μγN� is taken as 3μN from an analysis of γN data in
the �-resonance region [21]. This analysis also gives ��,1 =
0.84 GeV and ��,2 = 1.2 GeV. The isoscalar (IS) piece of the
OPE current depends on the LEC d ′

9 mentioned earlier,

j(1)
b,IS = i e

gA

F 2
π

d ′
9 Gγπρ(q2) τ 1 · τ 2

σ 2 · k2

ω2
k2

k2 × q + 1 ⇀↽ 2,

(2.24)

and, again in a resonance saturation picture, reduces to the
well-known γπρ current [5]. Accordingly, we have accounted
for the q2 fall-off of the electromagnetic vertex by including
a γπρ form factor, which in vector-meson dominance is
parametrized as

Gγπρ(q2) = 1

1 + q2/m2
ω

, (2.25)

where mω is the ω-meson mass. We can now clarify the
differences in these tree-level currents as reported here and in
Ref. [8]. We first note that the relations between the primed
d ′

i and di in Ref. [5] should have read d ′
8 = −8d8, d ′

9 = −8d9,
and d ′

21 = 2d21 − d22. The term proportional to d22 originates
from the Lagrangian,

term ∝ d22 = 2e

Fπ

d22 N †Sμ[∂ν(τ × π )z Fμν]N. (2.26)

Kölling et al. [8] integrate it by parts to obtain

term ∝ d22 = −2 e

Fπ

d22[(∂νN )†Sμ (τ × π)z FμνN

+N †Sμ(τ × π )z Fμν(∂νN )], (2.27)

while the authors of Ref. [5] use the equations of motion for
the electromagnetic field tensor at leading order, ∂νFμν = 0,
to express it as

term ∝ d22 = 2 e

Fπ

d22 N † Sμ Fμν (τ × ∂νπ)z N. (2.28)

These two different treatments lead to the d22 current as
given in Refs. [5,8]. They differ by a term proportional to
(σ 1 × q) × q, which does not contribute to the magnetic
moment (M1) operator μ = −(i/2) ∇q × j|q=0 [5]. Similarly,
the term proportional to f5(q) in Eq. (4.28) of Ref. [8] does
not give any contribution to μ, since f5(q) ∝ q2 for small
q. The term proportional to f6(q) is included in Eq. (2.7)
provided g2

A −→ g2
A

(
1 − d18 m2

π/gA

)
. The value adopted

here for gA is obtained from two-nucleon scattering data
(Sec. IV). Therefore, for processes induced by M1 transitions,
such as the nd and n3He radiative captures at thermal neutron
energies studied in Ref. [22] or the magnetic scattering under
consideration in this work, the differences above are irrelevant.
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The one-loop TPE currents, diagrams (c)–(k) of Fig. 2, are
written as

j(1)
loop =−i e GV

E (q2) (τ 1 × τ 2)z ∇k F1(k) + i e GV
E(q2) τ2,z

×
[
F0(k) σ 1 − F2(k)

k σ 1 · k
k2

]
× q + 1 ⇀↽ 2, (2.29)

where the functions Fi(k) are

F0(k) = g2
A

8 π2F 4
π

[
1 − 2 g2

A + 8 g2
A m2

π

k2 + 4 m2
π

+ G(k)

[
2 − 2 g2

A

− 4
(
1 + g2

A

)
m2

π

k2 + 4 m2
π

+ 16 g2
A m4

π(
k2 + 4 m2

π

)2

]]
, (2.30)

F1(k) = 1

96 π2 F 4
π

G(k)

[
4m2

π

(
1 + 4g2

A − 5g4
A

)
+ k2

(
1 + 10g2

A − 23g4
A

) − 48 g4
Am4

π

4 m2
π + k2

]
, (2.31)

F2(k) = g2
A

8 π2F 4
π

[
2 − 6 g2

A + 8 g2
A m2

π

k2 + 4 m2
π

+ G(k)

[
4 g2

A

− 4
(
1 + 3 g2

A

)
m2

π

k2 + 4 m2
π

+ 16 g2
A m4

π(
k2 + 4 m2

π

)2

]]
, (2.32)

and the loop function G(k) is defined as

G(k) =
√

4 m2
π + k2

k
ln

√
4 m2

π + k2 + k√
4 m2

π + k2 − k
. (2.33)

The expression above results from expanding j(1)
loop(q, k) in a

power series in q as j(1)
loop(q, k) = j(1)

loop(0, k) − i q × μ(0)(k) +
· · ·, where μ(0) is the magnetic dipole operator, and j(1)

loop(0, k),
which corresponds to the first term in Eq. (2.29), satisfies
current conservation with the TPE potential v

(2)
2π (k) (of order

Q2), since[
v

(2)
2π (k), ρ(−3)

] = e
[
v

(2)
2π (k − q/2), eN,1

] + 1⇀↽2

� −i e (τ 1 × τ 2)z q · ∇kF1(k) + 1⇀↽2

(2.34)

(a) (b) (c) (d)

(e) (f)

(i) (j)

(g) (h)

FIG. 3. Diagrams illustrating two-body charge operators entering
at order n = 1 or eQ. Nucleons, pions, and photons are denoted by
the solid, dashed, and wavy lines, respectively. Only one among the
possible time orderings is shown.

to leading order in q. In fact, the current j(1)
loop(0, k) is

proportional to the electric dipole operator, and it does not
contribute to elastic electromagnetic transitions, such as those
of interest here.

Finally, we note that a more careful analysis, detailed in
Appendix B, of the loop short-range currents corresponding to
diagrams (h)–(k) in Fig. 2 shows that they vanish, in contrast
to that which was reported in Ref. [5] and in agreement with
the result of Ref. [8].

B. Charge operators at order n = 1 (e Q)

The two-body charge operators at one loop (N4LO) are
illustrated in Fig. 3 and have been derived in Ref. [6]. The
contributions from diagrams of type (a) and (b) and (g) and (h)
vanish, and after carrying out the loop integrations (discussed
in Appendix C), those from diagrams of type (c)–(f) and (i)
and (j) read

ρ(1)
c = −e

1

2 π

g2
A

F 4
π

GV
E(q2) τ2,z

∫ 1/2

0
dx

[
4 L(x, k2) − m2

π

L(x, k2)

]
+ 1 ⇀↽ 2, (2.35)

ρ
(1)
d = e

1

2 π

g2
A

F 4
π

Gπ (q2) τ2,z

∫ 1/2

0
dx

[
4 L(x, k1) − m2

π

L(x, k1)

]
+ 1 ⇀↽ 2, (2.36)

ρ(1)
e (ν) = −e

1

16 π

g2
A

F 4
π

GV
E (q2)

∫ 1/2

0
dx

[
[4 τ2,z + ν (τ 1 × τ 2)z]

[
−24 L(x, k2) + k2

2 + 8 m2
π

L(x, k2)
+ m4

π

L3(x, k2)

]

+ [4 τ1,z − ν (τ 1 × τ 2)z]
(σ 2 × k2) · (σ 1 × k2)

L(x, k2)

]
+ 1 ⇀↽ 2, (2.37)

ρ
(1)
f = −e

1

8 π

g4
A

F 4
π

Gπ (q2)
∫ 1

0
dx x

∫ 1/2

−1/2
dy

[
−2 τ1,z

[
−15 λ(x, y) + 1

λ(x, y)
[3 A · (B + C) + (A + B) · (A + C)

+ (σ 1 × A) · (σ 2 × A) − (σ 1 × A) · (σ 2 × C) − (σ 1 × B) · (σ 2 × A) + (σ 1 × B) · (σ 2 × C)]
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+ 1

λ3(x, y)
[(A · B)(A · C) + σ 1 · (A × B) σ 2 · (A × C)]

]
+ 1

λ(x, y)
(τ 1 × τ 2)z

[
−3 σ 2 · (A × C)

− B · (σ 2 × A) + (A + B) · (σ 2 × C) − 1

λ2(x, y)
A · B σ 2 · (A × C)

]]
+ 1 ⇀↽ 2, (2.38)

ρ(1)
i = e

1

π

g2
A

F 2
π

CT GV
E (q2) τ1,z σ 1 · σ 2 mπ + 1 ⇀↽ 2, (2.39)

ρ
(1)
j = −e

1

π

g2
A

F 2
π

CT Gπ (q2) τ1,z

∫ 1/2

0
dx

[
3 L2(x, q) − m2

π

L(x, q)
σ 1 · σ 2 − 1/4 − x2

L(x, q)
σ 1 · q σ 2 · q

]
+ 1 ⇀↽ 2, (2.40)

where we have defined

L2(x, p) = (1/4 − x2) p2 + m2
π , (2.41)

λ2(x, y) = x q2/4 − [x y q − (1 − x) k]2

+ (1 − x) k2 + m2
π , (2.42)

A = −x (y q + k) , (2.43)

B = (1 − 2 x y) q/2 + (1 − x) k, (2.44)

C = − (1 + 2 x y) q/2 + (1 − x) k. (2.45)

It is easily verified that the charge operators (c) + (d),
(e) + (f), and (i) + (j) vanish at q = 0. Finally, we note that
the form of the operator (e) depends on the off-the-energy-
shell prescription adopted for the nonstatic corrections to the
TPE potential. As in the OPE case, however, these different
forms for the TPE nonstatic potential and accompanying
charge operator are unitarily equivalent [6]; in particular,
ρ(1)

e (ν) = ρ(1)
e (0) + [ρ(−3), i U (1)(ν)]. In closing, we note that

the reanalysis, outlined in Appendix B, of the loop corrections
to the short-range charge operators illustrated in panels (g)–(j)
has led to expressions which are different from those reported
originally in Ref. [5]. They also differ from those in Ref. [8].

III. CALCULATION

The deuteron charge (GC), magnetic (GM ), and quadrupole
(GQ) form factors are obtained from Ref. [23]

GC(q) = 1

3

∑
M=±1,0

〈d; M|ρ(q ẑ)|d; M〉, (3.1)

GM (q) = 1√
2 η

Im[〈d; 1|jy(q ẑ)|d; 0〉], (3.2)

GQ(q) = 1

2 η
[〈d; 0|ρ(q ẑ)|d; 0〉 − 〈d; 1|ρ(q ẑ)|d; 1〉], (3.3)

where |d; M〉 is the deuteron state with spin projection Jz =
M , ρ and jy denote, respectively, the charge operator and y
component of the current operator, the momentum transfer
q is taken along the z axis (the spin quantization axis), and
η = (q/2 md )2 (where md is the deuteron mass). They are
normalized as

GC(0) = 1, GM (0) = (md/mN ) μd,
(3.4)

GQ(0) = m2
d Qd,

where μd and Qd are the deuteron magnetic moment (in units
of μN ) and quadrupole moment, respectively. Expressions
relating the form factors to the measured structure functions
A and B and tensor polarization T20 are given in Ref. [23].
The calculations are carried out in momentum space [23] with
techniques similar to those described in some detail below for
the trinucleons.

The charge and magnetic form factors of the trinucleons
are derived from

FC(q) = 1

Z
〈+|ρ(q ẑ)|+〉, (3.5)

FM (q) = −2 mN

q
Im[〈−|jy(q ẑ)|+〉], (3.6)

with the normalizations

FC(0) = 1, FM (0) = μ, (3.7)

where μ is the magnetic moment (in units of μN ). Here
|±〉 represent either the 3He state or 3H state in spin
projections Jz = ±1/2. In momentum space, the one-body
electromagnetic operators in Sec. II have the generic form

O1b(q) =
∑

cyclic l,m,n

δ(kl − q) δ(km) δ(kn) O1b(kl , Kl), (3.8)

and their matrix elements can be written as

〈O1b(q)〉 =
∑

cyclic l,m,n

∫
pl ,pm,pn

ψ
†
M ′ (pl + q/2, pm, pn)

×O1b(q, pl) ψM (pl − q/2, pm, pn), (3.9)

where we have defined∫
pi

=
∫

dpi

(2 π )3
and δ(· · ·) = (2 π )3 δ(· · ·). (3.10)

For an assigned configuration (pl , pm, pn), the wave functions
are expanded on a basis of 8 × 3 spin-isospin states for the
three nucleons as

ψ(pl , pm, pn) =
24∑

a=1

ψa(pl , pm, pn) |a〉, (3.11)

where the components ψa are complex functions and the basis
states (for 3H, for example) |a〉 = |(p ↑)1, (n ↑)2, (n ↑)3〉,
|(n ↑)1, (p ↑)2, (n ↑)3〉, and so on. The spin-isospin algebra
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for the overlaps,

ψ† O ψ =
24∑

a,b=1

ψ∗
a Oab ψb, (3.12)

is carried out with the techniques developed in Ref. [24]. Monte
Carlo (MC) methods are used to evaluate the integrations in
Eq. (3.9) by sampling momenta from a (normalized) proba-
bility density |ψM (pl , pm, pn)|2 according to the Metropolis
algorithm.

The two-body operators in Sec. II have the momentum-
space representation

O2b(q) =
∑

cyclic l,m,n

δ(Klm − q) δ(kn)

×O2b(Klm/2 + klm, Klm/2 − klm), (3.13)

where the momenta Klm = kl + km and klm = (kl − km)/2.
These operators have power-law behavior at large momenta
and need to be regularized. This is accomplished by introduc-
ing a momentum cutoff function of the form

C�(klm) = e−(klm/�)4
, (3.14)

with the parameter � in the range 500–600 MeV (see
discussion in Sec. IV). The matrix elements are expressed
as

〈O2b(q)〉 =
∑

cyclic l,m,n

∫
klm

∫
pl ,pm,pn

ψ
†
M ′(pl + q/4 + klm/2, pm

+ q/4 − klm/2, pn) C�(klm)O2b(q, klm)

×ψM (pl − q/4 − klm/2, pm − q/4 + klm/2, pn).

(3.15)

The spin-isospin algebra is handled as above, while the multi-
dimensional integrations are efficiently done by a combination
of MC and standard quadrature techniques. We write

〈O2b(q)〉 =
∫

dk̂
∫

pl ,pm,pn

F (k̂, pl , pm, pn)

� 1

Nc

Nc∑
c=1

F (c)

W (c)
, (3.16)

where c denotes configurations (k̂, pl , pm, pn) (for total
number Nc) sampled with the Metropolis algorithm from
the probability density W (c) = |ψM (pl , pm, pn)|2/(4 π ), i.e.,
uniformly over the k̂ directions. For each such configuration
c, the function F is obtained by Gaussian integration over the
magnitude klm (as well as the parameters x and y for the case
of the charge operators at one loop):

F (c) =
∑

cyclic l,m,n

1

(2 π )3

∫ ∞

0
dklm k2

lm

24∑
a,b=1

ψ∗
a (· · · klmk̂ · · ·)

×O2b,ab(q, klmk̂) ψb(· · · klmk̂ · · ·). (3.17)

Convergence in these Gaussian integrations requires of the
order of 20–30 points, in the case of klm distributed over a
nonuniform grid up to 2 � or so, while Nc of the order of
100 000 is sufficient to reduce the statistical errors in the MC

integrations, which are of the order of a few percent at the
highest q values (and considerably smaller at lower q). These
MC errors are further reduced by taking appropriate linear
combinations of the matrix elements of the electromagnetic
operators using different q̂ directions and different spin
projections for the initial and final states. The trinucleons wave
functions are obtained with the hyperspherical harmonics (HH)
expansion discussed in Refs. [25–27]. This method can be
applied in either coordinate or momentum space. Below, we
briefly review its momentum-space implementation.

A. The hyperspherical harmonics method in momentum space

The trinucleon wave functions with total angular momen-
tum JJz are written as

|ψJJz〉 =
∑

μ

cμ

∣∣ψJJz
μ

〉
, (3.18)

where |ψJJz
μ 〉 is a suitable complete set of states and μ is

an index denoting the set of quantum numbers necessary
to specify the basis elements (see below). By applying the
Rayleigh-Ritz variational principle, the problem of determin-
ing cμ and the ground-state energy E0 of the system is reduced
to a generalized eigenvalue problem.

In momentum space we define the Jacobi momenta as

k2p = (pj − pi)/
√

2, k1p =
√

2/3[pk − (pi + pj )/2],

(3.19)

where pi denotes the momentum of nucleon i and p
specifies a given permutation of the three nucleons, with
p = 1 corresponding to the ordering 1, 2, 3. We introduce a
hypermomentum K and a set of angular and hyperangular
variables as

K = (
k2

1p + k2
2p

)1/2
, �(K)

p = [k̂2p, k̂1p; φp], (3.20)

where tan φp = k1p/k2p . In terms of these variables, the basis
functions |ψJJz

μ 〉 are defined as∣∣ψJJz)
μ

〉 = gG l(K)Y{G}(�(K)), (3.21)

where the Y{G}(�(K)) are written as [28]

Y{G}(�(K)) =
3∑

p=1

[
Y

LLz

[G]

(
�(K)

p

) ⊗
[
S2 ⊗ 1

2

]
SSz

]
JJz

×
[
T2 ⊗ 1

2

]
T Tz

, (3.22)

and the sum is over the three even permutations. The spins
(isospins) of nucleons i and j are coupled to S2 (T2), which is
then coupled to the spin (isospin) of the third nucleon to give a
state with total spin S (isospin T Tz). The total orbital angular
momentum L and total spin S are coupled to the total angular
momentum JJz. The functions Y

LLz

[G] (�(K)
p ) with definite values

of LLz are the HH functions and are written as [25]

Y
LLz

[G]

(
�(K)

p

) = [
Y�2

(
k̂2p

) ⊗ Y�1

(
k̂1p

)]
LLz

N[G] (cos φp)�2

× (sin φp)�1 P
�1+ 1

2 ,�2+ 1
2

n (cos 2φp), (3.23)

014006-7



M. PIARULLI et al. PHYSICAL REVIEW C 87, 014006 (2013)

where Y�1 (k̂1p) and Y�2 (k̂2p) are spherical harmonics, N[G] is

a normalization factor, and P
�1+ 1

2 ,�2+ 1
2

n (cos 2φp) denotes the
Jacobi polynomial of degree n. The grand angular quantum
number G is defined as G = 2 n + �1 + �2. The subscripts
{G} and [G] in Eqs. (3.21)–(3.23) stand, respectively, for
{G} ≡ {�1, �2, L, S2, T2, S, T ; n} and [G] ≡ [�1, �2; n], and
μ in Eq. (3.18) stands for μ ≡ {G} l. Finally, the functions
gG l(K) in Eq. (3.21) are defined as

gG l(K) = (−i)G

K2

∫ ∞

0
dρ ρ3 JG+2(Kρ) fl(ρ), (3.24)

where JG+2(Kρ) are Bessel functions and the functions fl(ρ)
are related to Laguerre polynomials L

(5)
l (γρ) via

fl(ρ) = γ 3
√

l!/(l + 5)! L
(5)
l (γρ) e−γρ/2. (3.25)

The nonlinear parameter γ is variationally optimized. With
this form of fl(ρ), the corresponding functions gG l(K) can
easily be calculated, and are explicitly given in Ref. [26]. The
form adopted for gG l(K) is such that the momentum-space
basis is simply the Fourier transform of the coordinate-space
one [27].

IV. RESULTS

In Sec. IV A, we discuss various strategies for the determi-
nation of the unknown LECs d ′

8, d ′
9, d ′

21, C ′
15, and C ′

16 entering
the current operator at N3LO. In contrast, the charge operator
up to N4LO only depends on the nucleon axial coupling
constant gA, pion decay amplitude Fπ , and nucleon mass and
magnetic moments. The values adopted in the present work
for gA and Fπ are, respectively, 1.28 and 184.6 MeV, which
give a πN coupling constant (gπNN ) of 13.6, as obtained in
analyses of NN elastic scattering data at energies below the
pion production threshold [29]. The two-body operators are
regularized via the cutoff function in Eq. (3.14), and � values
of 500 and 600 MeV are considered.

In Secs. IV B and IV C we present results, respectively,
for the deuteron A(q) and B(q) structure functions and
tensor polarization T20(q) and for the charge and magnetic
form factors of 3H and 3He, along with results for the
static properties of these few-nucleon systems including the
deuteron quadrupole moment, the deuteron and trinucleon
charge, and magnetic radii and magnetic moments. The A = 2
calculations use either the Argonne v18 (AV18) [19] or chiral
potentials at order Q4 with cutoff set at 500 MeV (N3LO) or
600 MeV (N3LO∗) [20]. Of course, the A = 3 calculations also
include three-nucleon potentials—the Urbana-IX model [30]
in combination with AV18 and the chiral N2LO potential [31]
in combination with either the N3LO or N3LO∗. The LECs
cD and cE (in standard notation) in the chiral three-nucleon
potential have been constrained by reproducing the 3H-3He
binding energies and the tritium Gamow-Teller matrix element
[32] in each case. With the AV18/UIX Hamiltonian, the 3H and
3He binding energies are found to be 8.487 and 7.747 MeV,
respectively.

The calculations are carried out in configuration space
in Sec. IV A and in momentum space—with the methods
outlined in Sec. III—in Secs. IV B and IV C. We have checked

that the r- and p-space versions of the computer codes
produce identical results up to to tiny differences due to
numerics and to numerically nonequivalent implementations
of the momentum cutoff function in Eq. (3.14) in these r-
and p-space calculations. The hadronic electromagnetic form
factors entering the one- and two-body charge and current
operators are those specified in Sec. II. The matrix elements
of these operators are evaluated in the Breit frame with Monte
Carlo methods. The number of sampled configurations is of the
order of 106 for the deuteron and 105 for the A = 3 systems.
The statistical errors, which are not shown in the results that
follow, are typically �1% over the whole momentum-transfer
range, and in fact they are much less than 1% for q � 2 fm−1.

A. Determination of the LECs

As already remarked, the LECs Ci , i = 1, . . . , 7, in the
minimal contact current, corresponding to � cutoffs of 500
and 600 MeV, are taken from fits to NN scattering data [20].
In reference to the LECs entering the OPE and nonminimal
contact currents at N3LO, it is convenient to introduce the
adimensional set d

S,V
i (in units of the cutoff �) as

C ′
15 = dS

1

/
�4, d ′

9 = dS
2

/
�2,

(4.1)
C ′

16 = dV
1

/
�4, d ′

8 = dV
2

/
�2, d ′

21 = dV
3

/
�2,

where the superscripts S and V characterize the isospin
of the associated operator, i.e., whether it is isoscalar or
isovector. The isoscalar dS

i , listed in Table I, have been fixed
by reproducing the experimental deuteron magnetic moment
μd and isoscalar combination μS of the trinucleon magnetic
moments. The LEC dS

1 multiplying the contact current is
rather large, but not unreasonably large, while the LEC dS

2
is quite small. The cumulative contributions to μd and μS

are reported in Table II. The NLO and N3LO-loop magnetic
moment operators are isovector, and therefore they do not
contribute to these isoscalar observables. At N3LO the only
nonvanishing contributions are those associated with the OPE
and minimal (min) and nonminimal (nm) contact currents. Of
course, the last row in Table II reproduces the experimental
values for μd and μS .

The isovector LEC dV
3 is taken as dV

2 /4 by assuming �
dominance. The three different sets of remaining LECs dV

1 and
dV

2 reported in Table III have been determined in the following
way. In set I dV

1 and dV
2 have been constrained to reproduce the

experimental values of the np radiative capture cross section
σnp at thermal neutron energies and the isovector combination
μV of the trinucleons magnetic moments. This procedure,
however, leads to unreasonably large values for both LECs,

TABLE I. Adimensional values of the isoscalar LECs correspond-
ing to cutoffs � = 500 and 600 MeV obtained for the N3LO/N2LO
and N3LO∗/N2LO∗ Hamiltonians; the values in parentheses are
relative to the AV18/UIX Hamiltonian.

� dS
1 dS

2 × 10

500 4.072 (2.522) 2.190 (−1.731)
600 11.38 (5.238) 3.231 (−2.033)
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TABLE II. Cumulative contributions to the deuteron and trinucleons isoscalar magnetic moments in units of μN ,
corresponding to cutoffs � = 500 and 600 MeV obtained for the N3LO/N2LO and N3LO∗/N2LO∗ Hamiltonians; the
contributions in parentheses are relative to the AV18/UIX Hamiltonian. The experimental values for the deuteron and
trinucleons isoscalar magnetic moments are 0.8574μN and 0.4257μN , respectively.

� μd μS

500 600 500 600

LO 0.8543(0.8472) 0.8543(0.8472) 0.4222(0.4104) 0.4220(0.4104)
N2LO 0.8471(0.8400) 0.8474(0.8400) 0.4143(0.4027) 0.4155(0.4027)
N3LO(min) 0.8725(0.8739) 0.8806(0.8760) 0.4501(0.4455) 0.4611(0.4483)
N3LO(nm) 0.8548(0.8593) 0.8538(0.8626) 0.4247(0.4269) 0.4235(0.4313)
N3LO(OPE) 0.8574(0.8574) 0.8574(0.8574) 0.4257(0.4257) 0.4257(0.4257)

and it is clearly unacceptable. In particular, it makes the
contributions of the associated magnetic dipole operators
unnaturally large and, as shown in Table IV, totally spoils
the expected convergence pattern. This pathology is especially
severe in the case of the AV18/UIX Hamiltonian model.
In sets II and III dV

2 is assumed to be saturated by the �
resonance, i.e.,

dV
2 = 4 μγN� hA �2

9 mN (m� − mN )
, (4.2)

where m� − mN = 294 MeV, hA/Fπ = fπN�/mπ with
f 2

πN�/(4 π ) = 0.35 as obtained by equating the first-order
expression of the �-decay width to the experimental value, and
the transition magnetic moment μγN� = 3μN [21]—a similar
strategy has been implemented in a number of calculations,
based on the χEFT magnetic moment operator derived in
Ref. [4], of the np, nd, and n3He radiative captures and
magnetic moments of A = 2 and 3 nuclei [33]. On the other
hand, the LEC dV

1 multiplying the contact current is fitted to
reproduce either σnp in set II or μV in set III. Both alternatives
still lead to somewhat large values for this LEC, but we find the
degree of unnaturalness tolerable in this case. We observe that
there are no three-body currents at N3LO [22], and therefore it
is reasonable to fix the strength of this M1 operator by fitting
a three-nucleon observable such as μV .

Cumulative contributions to σnp and μV are listed in
Table IV. At N3LO, we have identified separately those due
only to loop currents labeled as N3LO(loop) and those from
loop + minimal contact currents labeled as N3LO(min). The
experimental values for σnp and μV are reproduced with set I,
row labeled N3LO(OPE, dV

2 -I), while only σnp or μV are
reproduced with set II or III, rows labeled N3LO(OPE, dV

2 -II)
or N3LO(OPE, dV

2 -III). Indeed, the N3LO(OPE, dV
2 -II or

III) results provide predictions for μV or σnp, respectively.
These predictions are within 3% for μV and 1% for σnp of

the experimental values, and they exhibit a weak cutoff and
Hamiltonian-model dependence.

In Ref. [22] the dS
i and dV

i were determined using the
same procedure adopted here for set I. However, the values
reported in that work are drastically different from those
obtained in the present one. These differences are due to
several factors: (i) in Ref. [22] the M1 operator derived from
Eq. (2.29) included an isovector loop correction proportional
to the LECs CS and CT , which turns out to vanish in a more
careful analysis of the relevant diagrams (the loop short-range
currents discussed in Appendix B); (ii) in Ref. [22] the values
for the LECs C1, . . . , C7 were taken from a chiral potential
obtained at Q2 (NLO) [5] rather than at Q4 (N3LO) [20]
as in the present case; and (iii) in Ref. [22] the minimal
contact current is the Fierz-transformed version of that given
in Eq. (2.20) (see the discussion in Appendix A). However, this
Fierz equivalence is spoiled by the regularization procedure,
i.e., by the inclusion of the same cutoff function C�(k) for both.
Hence the contribution of this current in the present work is
different from that obtained in Ref. [22].

B. Static properties and form factors of the deuteron

The deuteron root-mean-square charge radius and
quadrupole moment, obtained with the chiral and AV18 poten-
tials and cutoff parameters � = 500 and 600 MeV, are listed in
Table V. We denote the leading order (n = −3 in the notation
of Sec. II) term of Eq. (2.5) with LO, the n = −1 relativistic
correction of Eqs. (2.11) with N2LO, and the n = 0 terms of
Eqs. (2.12) and of Eqs. (2.13) and (2.14) with N3LO(OPE)
and N3LO(ν), respectively. The remaining charge operators
at N4LO (n = 1), being isovector, do not contribute to these
observables (and corresponding form factors). The N3LO or
N3LO∗ and AV18 potentials neglect retardation corrections in
their OPE component, which corresponds to setting ν = 1/2 in

TABLE III. Adimensional values of the isovector LECs corresponding to cutoffs � = 500 and 600 MeV obtained for the N3LO/N2LO
and N3LO∗/N2LO∗ Hamiltonians; the values in parentheses are relative to the AV18/UIX Hamiltonian. Note that dV

3 = dV
2 /4 in all cases; see

text for further explanations.

� dV
1 (I) dV

2 (I) dV
1 (II) dV

2 (II) dV
1 (III) dV

2 (III)

500 10.36(45.10) 17.42(35.57) −13.30(−9.339) 3.458 −7.981(−5.187) 3.458
600 41.84(257.5) 33.14(75.00) −22.31(−11.57) 4.980 −11.69(−1.025) 4.980
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TABLE IV. Cumulative contributions to the np radiative capture cross section in millibarns and trinucleon isovector magnetic
moments in units of μN , corresponding to cutoffs � = 500 and 600 MeV obtained for the N3LO/N2LO and N3LO∗/N2LO∗

Hamiltonians; the contributions in parentheses are relative to the AV18/UIX Hamiltonian. See text for further explanations. The
experimental values for the np cross section and trinucleon isovector magnetic moments are 332.6 ± 0.7 mb and −2.553 μN ,
respectively.

� σnp μV

500 600 500 600

LO 305.8(304.6) 304.6(304.6) −2.193(−2.159) −2.182(−2.159)
NLO 320.6(319.3) 318.9(320.9) −2.408(−2.382) −2.392(−2.413)
N2LO 319.2(317.7) 317.6(319.2) −2.384(−2.359) −2.370(−2.390)
N3LO(loop) 321.3(320.9) 320.5(322.4) −2.430(−2.418) −2.432(−2.448)
N3LO(min) 321.3(320.9) 320.5(322.4) −2.413(−2.406) −2.415(−2.437)
N3LO(nm, dV

1 -I) 315.2(287.4) 305.7(242.7) −2.297(−1.782) −2.142(−0.9029)
N3LO(OPE, dV

2 -I) 332.6(332.6) 332.6(332.6) −2.553(−2.553) −2.553(−2.553)
N3LO(nm, dV

1 -II) 329.1(328.1) 328.5(326.2) −2.562(−2.535) −2.561(−2.506)
N3LO(OPE, dV

2 -II) 332.6(332.6) 332.6(332.6) −2.612(−2.610) −2.622(−2.616)
N3LO(nm, dV

1 -III) 326.0(324.9) 324.7(322.7) −2.502(−2.478) −2.491(−2.443)
N3LO(OPE, dV

2 -III) 329.4(329.4) 328.8(329.1) −2.553(−2.553) −2.553(−2.553)

Eq. (2.15). Note that the isoscalar piece of the N3LO(ν) charge
operator scales as 1 − ν, and it contributes less than 0.5% of the
LO result for ν = 1/2. The N2LO and N3LO corrections to rd ,
which is well reproduced by theory, are negligible. The chiral
potential predictions for Qd are within 1% of the experimental
value, while the AV18 ones underestimate it by about 2%.
Variation of the cutoff in the 500–600 MeV range leads to
about 1% (negligible) changes in the N3LO or N3LO∗ (AV18)
results. The LO and N2LO charge operators do not include
the cutoff function and the AV18 results are independent of �.
This is not the case for the results corresponding to the N3LO
and N3LO∗ potentials because of their intrinsic � dependence.

The deuteron A(q) structure function and tensor polariza-
tion T20(q), obtained at LO and by including corrections up to
N3LO in the charge operator, are compared to data in Fig. 4,
top panels. In this figure (as well as in those that follow)
the momentum-transfer range goes up to q = 7.5 fm−1, much
beyond the �(3–4)mπ upper limit, where one would naively
expect this comparison to be meaningful, given that the present
theory retains up to TPE mechanisms. On the other hand, we
note that the next (nonvanishing) isoscalar contributions only
enter at N5LO (n = 2) [11], and they are therefore suppressed
by two powers of Q relative to those at N3LO.

The A(q) structure function is well reproduced by theory
up to q � 3 fm−1. At higher momentum transfers, the N3LO
results based on AV18 tend to overestimate the data—a feature

also seen in the conventional approach of Ref. [23]—while
those based on the chiral potentials still provide a good fit to
the data. The cutoff dependence is weak at low q but becomes
more pronounced as q increases.

Similar considerations hold for the T20(q) observable,
although in this case the N3LO results derived from the chiral
potentials overpredict the data for q � 3 fm−1, while those
from AV18 fit reasonably well the data up to q � 4.5 fm−1.
In contrast, the conventional approach [23] (also based on
AV18, of course) reproduces very well the measured T20 over
the whole q range. The OPE charge operator in that work
has the same structure as the present N3LO(OPE) one, but it
includes a much harder cutoff than adopted here. Furthermore,
the calculation of Ref. [23] also retains short-range (isoscalar)
mechanisms associated with ρ-meson exchange and γπρ
transition, which in χEFT are presumably subsumed in contact
operators at N5LO [11]. We note that in both A(q) and T20(q)
a small magnetic contribution, discussed separately below, is
accounted for.

The charge and quadrupole form factors extracted from the
unpolarized and tensor polarized deuteron data are compared
to results obtained in LO and by including corrections up
to N3LO in Fig. 4, bottom panels. The GC(q) and GQ(q)
form factors calculated with deuteron wave functions from the
chiral potentials are in qualitative agreement with predictions
obtained by Phillips [11] at the same chiral order (although the

TABLE V. Cumulative contributions to the deuteron root-mean-square charge radius and quadrupole moment corresponding
to cutoffs � = 500 and 600 MeV obtained with the N3LO and N3LO∗ Hamiltonians; results in parentheses are relative to the
AV18 Hamiltonian. The experimental values for rd and Qd are 1.9734(44) fm [34] and 0.2859(3) fm2 [35], respectively.

� rd (fm) Qd (fm2)

500 600 500 600

LO 1.976(1.969) 1.968(1.969) 0.2750(0.2697) 0.2711(0.2697)
N2LO 1.976(1.969) 1.968(1.969) 0.2731(0.2680) 0.2692(0.2680)
N3LO(OPE) 1.976(1.969) 1.968(1.969) 0.2863(0.2818) 0.2831(0.2814)
N3LO(ν = 1/2) 1.976(1.969) 1.968(1.969) 0.2851(0.2806) 0.2820(0.2802)
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FIG. 4. (Color online) The deuteron A(q) structure function and tensor polarization T20(q) (top panels) and charge and quadrupole form
factors GC(q) and GQ(q) (bottom panels), obtained at leading order (LO) and with inclusion of charge operators up to N3LO (TOT), compared
with experimental data from Refs. [36–57]. Predictions corresponding to ν = 1/2 and cutoffs � in the range 500–600 MeV are displayed by
the bands.

Q4 potentials used in that study are from Ref. [62] rather than
from Ref. [20] as in the present work). The spread in the N3LO
results due to cutoff variations observed here is similar to that
reported in Ref. [11] for both GC(q) and GQ(q). However,
the central values for these observables in the momentum-
transfer region q � 2.5 fm−1 reported in that work appear
to underestimate the data appreciably. This is not the case
here, particularly for GQ(q), for which the N3LO predictions
provide an excellent fit to the measured values (up to q �
6 fm−1). These differences likely arise from differences in the
deuteron wave functions obtained in Refs. [20,62] (see Fig. 16
in the 2011 review paper [20] for a comparison). Indeed, for
these same reasons, the AV18 results are in better agreement
with data for GC(q) in the diffraction region than the N3LO
or N3LO∗ results, while the reverse is true for GQ(q) at q � 3
fm−1. The AV18 deuteron wave function, particularly its D-
wave component, is markedly different from that of N3LO
or N3LO∗ (see again Fig. 16 in the Machleidt and Entem
review [20]).

The individual contributions corresponding to � =
500 MeV and the N3LO potential are listed in Tables VI
and VII for q values in the range 0.0–5.1 fm−1. The N2LO
(N3LO) charge operators are proportional to 1/m2

N (1/mN ),
and therefore they vanish in the static limit. The N3LO(OPE)
correction is the leading one for q � 1.5 fm−1, and it is
responsible for shifting the zero in the LO GC(q) to lower q.
However, this correction interferes constructively with the LO
contribution in the case of GQ(q). The ν-dependent retardation
correction N3LO(ν) is found to be negligible, which allows one

to conclude that violations of the unitary equivalence between
the OPE potential and associated charge operator is of little
numerical import (for ν = 0−1).

The deuteron magnetic moment is one of the two observ-
ables utilized to fix the LECs entering the isoscalar current

TABLE VI. Individual contributions to the monopole form
factor GC(q) corresponding to cutoff � = 500 MeV for the N3LO
Hamiltonian; ν = 1/2 and (−x) stands for 10−x .

q (fm−1) LO N2LO N3LO(OPE) N3LO(ν)

0.0 1.00 0.00 0.00 0.00
0.3 0.945 −0.340(−3) −0.211(−3) −0.600(−6)
0.6 0.792 −0.113(−2) −0.799(−3) −0.500(−6)
0.9 0.614 −0.196(−2) −0.165(−2) 0.530(−5)
1.2 0.452 −0.255(−2) −0.260(−2) 0.218(−4)
1.5 0.321 −0.280(−2) −0.349(−2) 0.515(−4)
1.8 0.220 −0.273(−2) −0.422(−2) 0.932(−4)
2.1 0.146 −0.242(−2) −0.470(−2) 0.143(−3)
2.4 0.920(−1) −0.197(−2) −0.493(−2) 0.195(−3)
2.7 0.547(−1) −0.145(−2) −0.493(−2) 0.245(−3)
3.0 0.295(−1) −0.923(−3) −0.474(−2) 0.287(−3)
3.3 0.131(−1) −0.448(−3) −0.441(−2) 0.319(−3)
3.6 0.295(−2) −0.518(−4) −0.400(−2) 0.339(−3)
3.9 −0.278(−2) 0.250(−3) −0.356(−2) 0.348(−3)
4.2 −0.556(−2) 0.453(−3) −0.311(−2) 0.346(−3)
4.5 −0.645(−2) 0.566(−3) −0.269(−2) 0.335(−3)
4.8 −0.621(−2) 0.602(−3) −0.230(−2) 0.318(−3)
5.1 −0.539(−2) 0.579(−3) −0.196(−2) 0.297(−3)
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TABLE VII. Individual contributions to the quadrupole form
factor GQ(q), normalized at q = 0 as in Eq. (3.4), corresponding
to cutoff � = 500 MeV for the N3LO Hamiltonian.

q (fm−1) LO N2LO N3LO(OPE) N3LO(ν)

0.0 24.8 −0.172 1.20 −0.108
0.3 23.5 −0.176 1.19 −0.986(−1)
0.6 19.7 −0.182 1.13 −0.968(−1)
0.9 15.3 −0.184 1.04 −0.936(−1)
1.2 11.4 −0.179 0.930 −0.890(−1)
1.5 8.29 −0.167 0.810 −0.829(−1)
1.8 5.92 −0.150 0.690 −0.757(−1)
2.1 4.18 −0.131 0.576 −0.677(−1)
2.4 2.92 −0.111 0.473 −0.596(−1)
2.7 2.03 −0.917(−1) 0.383 −0.515(−1)
3.0 1.39 −0.740(−1) 0.307 −0.440(−1)
3.3 0.947 −0.584(−1) 0.244 −0.371(−1)
3.6 0.635 −0.449(−1) 0.193 −0.310(−1)
3.9 0.418 −0.335(−1) 0.152 −0.257(−1)
4.2 0.268 −0.242(−1) 0.119 −0.212(−1)
4.5 0.167 −0.168(−1) 0.933(−1) −0.174(−1)
4.8 0.997(−1) −0.111(−1) 0.731(−1) −0.142(−1)
5.1 0.568(−1) −0.686(−2) 0.574(−1) −0.116(−1)

operators at N3LO, denoted as N3LO(nm) and N3LO(OPE)
in Sec. IV A and Table II. The structure function B(q)
and magnetic form factor GM (q), obtained with the AV18
and chiral potentials and currents at LO and by including
corrections up to N3LO, are compared to data in Fig. 5. There
is generally good agreement between theory and experiment
for q values up to �2 fm−1. At higher q values, the results
corresponding to the chiral (AV18) potential underpredict
(overpredict) the data significantly when the current includes
up to N3LO corrections. In particular, the diffraction seen in
the data at q � 6.5 fm−1 is absent in the AV18 calculations
and is shifted to lower q values in the N3LO or N3LO∗ ones.
There are large differences between the N3LO or N3LO∗
and AV18 results with the LO current, which simply reflect
differences in the S- and D-wave components of the deuteron
wave functions corresponding to these potentials. The cutoff
dependence is large for the chiral potentials, while it remains
quite modest for the AV18 potential over the whole momentum
transfer range. This is consistent with the rather different
sensitivity of the LECs dS

1 and dS
2 to variations of � in the

500–600 MeV range obtained with either the chiral potential or
AV18 (see Table I). There is a mismatch in the chiral counting
between the potentials of Ref. [20] at order Q4 and the present
current at order eQ. This becomes obvious when considering
current conservation, which for these potentials would require
accounting for terms up to order eQ3 in the current, well
beyond available derivations [5,7,8] at this time.

The AV18 results obtained here for B(q) are similar to
those reported in the conventional framework of Ref. [23]
(see curve labeled IA + ρπγ -NR in Fig. 5). In that work,
the current included the standard impulse-approximation (IA)
term—the LO current in χEFT—and the two-body term from
ρπγ transitions. The size, and in fact sign, of the ρπγ
contribution were found to depend on whether the current

FIG. 5. (Color online) The deuteron B(q) structure function (top
panel) and magnetic form factor GM (q) (bottom panel), obtained
at leading order (LO) and with inclusion of current operators
up to N3LO (TOT), compared with the experimental data from
Refs. [36,42,43,58–60]. Predictions corresponding to cutoffs � in
the range 500–600 MeV are displayed by the bands.

was derived by retaining the fully relativistic (R) structure of
the associated Feynman amplitude or only the leading-order
term in its nonrelativistic (NR) expansion—in this latter case,
it is essentially the N3LO(OPE) current of Eq. (2.24). Indeed,
the ρπγ contribution had the same (opposite) sign as the
IA when it was evaluated with the NR (R) current, and the
IA + ρπγ (NR) results overestimated the data by an amount
similar to that shown in Fig. 5.

Recently, a calculation of the deuteron magnetic structure,
based on the same χEFT utilized here, has appeared in the
literature [12]. It uses chiral potentials at order Q2 derived in
Ref. [62] and a different strategy from that adopted here for
constraining the two LECs in the isoscalar N3LO current. One
of them is still fixed by reproducing μd ; the other, however, is
determined by a fit to B(q) data up to q � 2 fm−1. Predictions
for this observable in q = 2–4 fm−1 seem to overestimate the
data at the highest q values (q � 3.5 fm−1), but they display
much less cutoff dependence than obtained here. This is clearly
due to the different way in which the LECs are constrained in
the two calculations.

Finally, in Table VIII we list the individual contributions
to GM (q) obtained with the N3LO potential and cutoff
� = 500 MeV. The notation is as follows: LO is the leading-
order (eQ−2) current of Eq. (2.4); N2LO is the relativistic
correction of order n = 0 (eQ0) in Eq. (2.10); and N3LO(min),
N3LO(nm), and N3LO(OPE) are the corrections of order
n = 1 (eQ) in Eqs. (2.20), (2.21), and (2.24), respectively. The
N3LO(min) and N3LO(nm) contributions from the minimal
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TABLE VIII. Individual contributions to the magnetic form factor GM (q), normalized at q = 0 as in Eq. (3.4),
corresponding to cutoff � = 500 MeV for the N3LO Hamiltonian; (−x) stands for 10−x .

q (fm−1) LO N2LO N3LO(min) N3LO(nm) N3LO(OPE)

0.0 1.71 −0.144(−1) 0.508(−1) −0.353(−1) 0.483(−2)
0.3 1.62 −0.150(−1) 0.508(−1) −0.353(−1) 0.480(−2)
0.6 1.36 −0.159(−1) 0.495(−1) −0.343(−1) 0.473(−2)
0.9 1.07 −0.166(−1) 0.474(−1) −0.329(−1) 0.461(−2)
1.2 0.807 −0.166(−1) 0.447(−1) −0.310(−1) 0.444(−2)
1.5 0.590 −0.159(−1) 0.416(−1) −0.289(−1) 0.423(−2)
1.8 0.422 −0.144(−1) 0.382(−1) −0.265(−1) 0.399(−2)
2.1 0.296 −0.125(−1) 0.347(−1) −0.241(−1) 0.372(−2)
2.4 0.202 −0.104(−1) 0.312(−1) −0.217(−1) 0.344(−2)
2.7 0.134 −0.818(−2) 0.279(−1) −0.194(−1) 0.315(−2)
3.0 0.860(−1) −0.608(−2) 0.248(−1) −0.172(−1) 0.286(−2)
3.3 0.522(−1) −0.418(−2) 0.219(−1) −0.152(−1) 0.258(−2)
3.6 0.291(−1) −0.254(−2) 0.193(−1) −0.134(−1) 0.231(−2)
3.9 0.138(−1) −0.120(−2) 0.169(−1) −0.117(−1) 0.206(−2)
4.2 0.415(−2) −0.159(−3) 0.148(−1) −0.103(−1) 0.183(−2)
4.5 −0.152(−2) 0.581(−3) 0.130(−1) −0.899(−2) 0.162(−2)
4.8 −0.444(−2) 0.105(−2) 0.113(−1) −0.785(−2) 0.143(−2)
5.1 −0.554(−2) 0.128(−2) 0.988(−2) −0.686(−2) 0.126(−2)

and nonminimal contact currents cancel to a large extent, and
their combined effect is comparable to the N3LO(OPE) con-
tribution. This interplay among different corrections, however,
depends strongly on � and the Hamiltonian model considered.

C. Static properties and form factors of the trinucleons

The notation for the various components of the charge
operator is the same as given at the beginning of Sec. IV B,
except that now the one-loop (isovector) corrections at N4LO
contribute too, since the 3He and 3H nuclei have predominantly
total isospin T = 1/2. As a matter of fact, the hyperspherical
harmonics wave functions utilized to represent their ground
states also include small T = 3/2 admixtures due to isospin-
symmetry-breaking terms induced by the electromagnetic and
strong interactions.

There are no unknown LECs entering the charge operator
up to N4LO, and the predicted root-mean-square charge
radii of 3He and 3H, obtained with the N3LO/N2LO and
AV18/UIX combinations of two- and three-nucleon potentials
and cutoffs in the 500–600 MeV range, are listed in Table IX.
Corrections at N2LO, N3LO, and N4LO are negligible—the
corresponding operators vanish at q = 0. The spread between
the N3LO/N2LO (� = 500 MeV) and N3LO∗/N2LO∗ (� =
600 MeV) results at LO is about 0.5%, which is much smaller,
particularly for 3H, than the experimental error. The predicted
radii for both Hamiltonian models are within 0.5% of the
current experimental central values.

The calculated charge form factors of 3He and 3H, and their
isoscalar and isovector combinations FS

C (q) and FV
C (q), nor-

malized, respectively, to 3/2 and 1/2 at q = 0, are compared to
data in Fig. 6. The agreement between theory and experiment is
excellent for q � 2.5 fm−1. At larger values of the momentum
transfer, there is a significant sensitivity to cutoff variations
in the results obtained with the chiral potentials. This cutoff

dependence is large at LO and is reduced, at least in 3He, when
corrections up to N4LO are included. These corrections have
sign opposite to that at LO and tend to shift the zeros in the
form factors to lower momentum transfers, bringing theory
closer to experiment in the diffraction region.

As already remarked, the chiral (and conventional) two-
nucleon potentials utilized in the present study ignore retar-
dation corrections in their OPE and TPE components, which
corresponds to the choice ν = 1/2 in the nonstatic pieces of the
corresponding potentials and accompanying charge operators
in Eqs. (2.13) and (2.37) [6]. Figure 7 is meant to illustrate
how inconsistencies between the potential and charge operator
impact predictions for the 3H form factor, by presenting results
obtained with the N3LO/N2LO Hamiltonian (ν = 1/2), cutoff
� = 500 MeV, and N3LO and N4LO corrections with ν = 0
and 1 in the charge operator. Their effect is negligible.

In Fig. 8, we show cumulatively the LO, N2LO, N3LO,
and N4LO contributions to the charge form factors of 3He and
3H. The N2LO contributions are smallest, while the N3LO

TABLE IX. Cumulative contributions in femtometers to the 3He
and 3H root-mean-square charge radii corresponding to ν = 1/2 and
cutoffs � = 500 and 600 MeV, obtained with the N3LO/N2LO and
N3LO∗/N2LO∗ Hamiltonians; results in parentheses are relative to
the AV18/UIX Hamiltonian. The experimental values for the 3He
and 3H charge radii are [60] 1.959 ± 0.030 and 1.755 ± 0.086 fm,
respectively.

� 3He 3H

500 600 500 600

LO 1.966(1.950) 1.958(1.950) 1.762(1.743) 1.750(1.743)
N2LO 1.966(1.950) 1.958(1.950) 1.762(1.743) 1.750(1.743)
N3LO 1.966(1.950) 1.958(1.950) 1.762(1.743) 1.750(1.743)
N4LO 1.966(1.950) 1.958(1.950) 1.762(1.743) 1.750(1.743)
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FIG. 6. (Color online) The 3He and 3H charge form factors (top panels) and their isoscalar and isovector combinations (bottom panels),
obtained at leading order (LO) and with inclusion of charge operators up to N4LO (TOT), compared with experimental data [61]. Predictions
corresponding to ν = 1/2 and cutoffs � in the range 500–600 MeV are displayed by the bands.

and N4LO ones turn out to be comparable. This is illustrated
explicitly in Tables X and XI, where we list the individual
contributions of the various terms entering at each order.
In these tables, we denote with N3LO(OPE) and N3LO(ν)
the operators in Eqs. (2.12) and in Eqs. (2.13) and (2.14),
respectively, and we denote with N4LO(cd), N4LO(ef; ν),
and N4LO(ij) those in Eqs. (2.35) and (2.36), Eqs. (2.37)
and (2.38), and Eqs. (2.39) and (2.40). Among the corrections
at N3LO the OPE term—column N3LO(OPE)—illustrated by
panel (a) in Fig. 1 is dominant, while among those at N4LO the
TPE terms—columns N4LO(ef; ν) and N4LO(ij)—illustrated
by panels (e) and (f) and (i) and (j) in Fig. 3 are dominant. The
N3LO(OPE) and N4LO(ef; ν) and N4LO(ij) contributions are
of similar magnitude; indeed there is no hint of suppression

FIG. 7. (Color online) The 3H charge form factor obtained with
the N3LO/N2LO Hamiltonian, cutoff � = 500 MeV, and charge
operators up to N4LO corresponding to ν = 0, 1/2, and 1.

in going from N3LO to N4LO, as one would have naively
expected on the basis of power counting.

FIG. 8. (Color online) Cumulative contributions to the 3He and
3H charge form factors, obtained with the N3LO/N2LO Hamiltonian,
cutoff � = 500 MeV, and ν = 1/2, from the components of the
charge operator order by order.
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TABLE X. Individual contributions to the 3He charge form factor, obtained with the N3LO/N2LO Hamiltonian, cutoff � = 500 MeV, and
ν = 1/2; (−x) stands for 10−x .

q (fm−1) LO N2LO N3LO(OPE) N3LO(ν) N4LO(cd) N4LO(ef; ν) N4LO(ij)

0.0 1.00 0.00 0.00 0.00 0.00 0.00 0.00
0.2 0.983 −0.561(−3) −0.152(−3) 0.100(−4) −0.477(−5) 0.904(−4) 0.301(−4)
0.6 0.807 −0.406(−2) −0.125(−2) 0.870(−4) 0.108(−3) 0.785(−4) 0.346(−3)
1.0 0.562 −0.760(−2) −0.289(−2) 0.205(−3) 0.296(−3) 0.126(−4) 0.835(−3)
1.4 0.342 −0.876(−2) −0.434(−2) 0.324(−3) 0.503(−3) −0.134(−3) 0.132(−2)
1.8 0.185 −0.758(−2) −0.513(−2) 0.409(−3) 0.680(−3) −0.347(−3) 0.167(−2)
2.2 0.892(−1) −0.525(−2) −0.516(−2) 0.447(−3) 0.796(−3) −0.585(−3) 0.184(−2)
2.6 0.366(−1) −0.288(−2) −0.463(−2) 0.433(−3) 0.841(−3) −0.796(−3) 0.184(−2)
3.0 0.111(−1) −0.107(−2) −0.380(−2) 0.385(−3) 0.821(−3) −0.938(−3) 0.170(−2)
3.4 0.623(−3) −0.969(−5) −0.292(−2) 0.315(−3) 0.750(−3) −0.989(−3) 0.148(−2)
3.8 −0.258(−2) 0.488(−3) −0.213(−2) 0.241(−3) 0.644(−3) −0.949(−3) 0.122(−2)
4.2 −0.276(−2) 0.577(−3) −0.148(−2) 0.174(−3) 0.522(−3) −0.831(−3) 0.957(−3)
4.6 −0.200(−2) 0.476(−3) −0.994(−3) 0.117(−3) 0.395(−3) −0.660(−3) 0.702(−3)
5.0 −0.119(−2) 0.318(−3) −0.642(−3) 0.730(−4) 0.274(−3) −0.469(−3) 0.476(−3)

The 3He contributions in Table X have been divided by the
number of protons Z = 2 in order to have the form factor
normalized to one at q = 0. The N4LO charge operators
are isovector and, if 3He and 3H were pure T = 1/2 states,
then 2 × N4LO(3He) = −N4LO(3H). That this equality is
not exactly satisfied reflects the fact that the present 3He
and 3H wave functions are not simply the charge mirror of
each other—that is, (

∏
i τi,x)|3He〉 �= |3H〉, where τi,x is the x

component of nucleon i isospin operator.
Moving on to the magnetic structure of the trinucleons, we

note that the isoscalar combination μS of 3He and 3H magnetic
moments is used to fix one of the two (isoscalar) LECs
entering the current at N3LO. Both the isovector combination
μV and the np radiative capture cross section σnp are used
to fix the isovector LECs in set I of the N3LO currents,
while in sets II and III one of these LECs is fixed by �
dominance, and the other is determined by reproducing σnp

(μV ) in set II (III) (see Tables II and IV). By construction, then,

the 3He and 3H magnetic moments are exactly reproduced
in sets I and III, while in set II they are calculated to be,
respectively, −2.186 (−2.196)μN and 3.038 (3.048)μN with
the N3LO/N2LO (N3LO∗/N2LO∗) Hamiltonian and � = 500
(600) MeV, and similar results are obtained with the AV18/UIX
Hamiltonian. These should be compared to the experimental
values of −2.127μN and 2.979μN .

The 3He and 3H magnetic radii corresponding to sets I–III
are given in Table XII. The predicted values are consistent
with experiment, although the measurements have rather large
errors (10% for 3H). Their spread as � varies in the 500–
600 MeV range is at the 1% level or less. A recent quantum
Monte Carlo study [63], using wave functions derived from
conventional two- and three-nucleon potentials (the AV18 and
Illinois 7 model [64]) and set III of χEFT currents, has led
to predictions for magnetic moments and transitions in nuclei
with A � 9 in excellent agreement with the measured values.
Therefore in the following, unless stated otherwise, we adopt

TABLE XI. Individual contributions to the 3H charge form factor, obtained with the N3LO/N2LO Hamiltonian, cutoff � = 500 MeV, and
ν = 1/2; (−x) stands for 10−x .

q (fm−1) LO N2LO N3LO(OPE) N3LO(ν) N4LO(cd) N4LO(ef; ν) N4LO(ij)

0.0 1.00 0.00 0.00 0.00 0.00 0.00 0.00
0.2 0.991 0.647(−3) −0.185(−3) 0.110(−4) 0.103(−4) −0.190(−3) −0.633(−4)
0.6 0.844 0.462(−2) −0.152(−2) 0.880(−4) −0.229(−3) −0.136(−3) −0.729(−3)
1.0 0.621 0.844(−2) −0.356(−2) 0.245(−3) −0.628(−3) 0.459(−4) −0.176(−2)
1.4 0.402 0.940(−2) −0.543(−2) 0.462(−3) −0.107(−2) 0.396(−3) −0.278(−2)
1.8 0.231 0.784(−2) −0.653(−2) 0.686(−3) −0.144(−2) 0.874(−3) −0.352(−2)
2.2 0.118 0.520(−2) −0.671(−2) 0.858(−3) −0.169(−2) 0.138(−2) −0.389(−2)
2.6 0.517(−1) 0.270(−2) −0.615(−2) 0.944(−3) −0.179(−2) 0.182(−2) −0.389(−2)
3.0 0.174(−1) 0.903(−3) −0.519(−2) 0.940(−3) −0.174(−2) 0.210(−2) −0.361(−2)
3.4 0.204(−2) −0.972(−4) −0.411(−2) 0.867(−3) −0.159(−2) 0.218(−2) −0.314(−2)
3.8 −0.328(−2) −0.483(−3) −0.310(−2) 0.615(−3) −0.136(−2) 0.206(−2) −0.259(−2)
4.2 −0.403(−2) −0.508(−3) −0.225(−2) 0.543(−3) −0.110(−2) 0.178(−2) −0.201(−2)
4.6 −0.313(−2) −0.383(−3) −0.159(−2) 0.483(−3) −0.825(−3) 0.139(−2) −0.147(−2)
5.0 −0.196(−2) −0.232(−3) −0.108(−2) 0.364(−3) −0.565(−3) 0.942(−3) −0.985(−3)
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TABLE XII. Cumulative contributions in femtometers to the
3He and 3H root-mean-square magnetic radii corresponding to
cutoffs � = 500 and 600 MeV, obtained with the N3LO/N2LO and
N3LO∗/N2LO∗ Hamiltonians; results in parentheses are relative to the
AV18/UIX Hamiltonian. Predictions corresponding to sets I, II, and II
of isovector LECs dV

1 and dV
2 in Table III are listed. The experimental

values for the 3He and 3H magnetic radii are [60] 1.965 ± 0.153 and
1.840 ± 0.181 fm, respectively.

� 3He 3H

500 600 500 600

LO 2.098(2.092) 2.090(2.092) 1.924(1.918) 1.914(1.918)
NLO 1.990(1.981) 1.983(1.974) 1.854(1.847) 1.845(1.841)
N2LO 1.998(1.992) 1.989(1.984) 1.865(1.859) 1.855(1.854)
N3LO(I) 1.924(1.931) 1.910(1.972) 1.808(1.800) 1.796(1.819)
N3LO(II) 1.901(1.890) 1.883(1.896) 1.789(1.774) 1.773(1.778)
N3LO(III) 1.927(1.915) 1.913(1.924) 1.808(1.792) 1.794(1.797)

set III of isovector LECs. We disregard set I for the reasons
already explained in Sec. IV A.

The magnetic form factors of 3He and 3H and their isoscalar
and isovector combinations FS

M (q) and FV
M (q), normalized,

respectively, as μS and μV at q = 0, at LO and with inclusion
of corrections up to N3LO in the current, are displayed
in Fig. 9. As is well known from studies based on the
conventional meson-exchange framework (see the review [16]
and references therein), two-body currents are crucial for
“filling in” the zeros obtained in the LO calculation due

to the interference between the S- and D-state components
in the ground states of these nuclei. For q � 2 fm−1 there
is excellent agreement between the present χEFT predic-
tions and experiment. However, as the momentum transfer
increases, even after making allowance for the significant
cutoff dependence, theory tends to underestimate the data; in
particular it predicts the zeros in both form factors occurring
at significantly lower values of q than observed. Thus, the
first diffraction region remains problematic for the present
theory, confirming earlier conclusions derived from studies in
the conventional framework [65,66].

Figure 10 illustrates the sensitivity of the N3LO predictions
on the different ways in which the isovector LECs are
constrained in sets I, II, and III. The set I results are strongly
at variance with data. Set II leads to two-body current
contributions larger than in set III and consequently, in contrast
to set III, the corresponding form factors reproduce the data
in the diffraction region. However, the cutoff variation of the
results is considerably larger than for set III, as reflected in the
change of the LEC dV

1 for � = 500–600 MeV in Table III.
Furthermore, set II overestimates μV by about 3%.

Figure 11 exhibits cumulatively the LO, NLO, N2LO, and
N3LO contributions to the 3He and 3H magnetic form factors,
obtained with the N3LO/N2LO Hamiltonian and cutoff � =
500 MeV. Tables XIII and XIV list the individual components
of these contributions at selected values of q. The notation
is as follows: with LO we denote the one-body current in
Eq. (2.4), with NLO the OPE currents in Eq. (2.7), with N2LO
the relativistic correction to the one-body current in Eq. (2.10),

µ

FIG. 9. (Color online) The 3He and 3H magnetic form factors (top panels) and their isoscalar and isovector combinations (bottom panels),
obtained at leading order (LO) and with inclusion of current operators up to N3LO (TOT) corresponding to the LEC’s dS

1 and dS
2 in Table I

and to set III of isovector LEC’s dV
1 and dV

2 in Table III, compared with experimental data [61]. Predictions relative to cutoffs � in the range
500–600 MeV are displayed by the bands.
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FIG. 10. (Color online) The 3He and 3H magnetic form factors,
obtained at leading order (LO) and with inclusion of current operators
up to N3LO (TOT) corresponding to sets I, II, and III of isovector
LECs dV

1 and dV
2 in Table III, compared with experimental data

[61]. Predictions, relative to the N3LO/N2LO Hamiltonian and
corresponding to cutoffs � = 500–600 MeV, are displayed by the
bands.

with N3LO(loop) the one-loop current in Eq. (2.29); with
N3LO(min) the “minimal” contact current in Eq. (2.20), with
N3LO(nm) the “nonminimal” contact current in Eq. (2.21),
and finally with N3LO(OPE) the OPE currents at N3LO given
in Eqs. (2.22) and (2.24). The NLO and N3LO(loop) are purely
isovector, while the remaining operators have both isoscalar
and isovector terms. As in the case of the charge form factors,
the expected suppression of the NnLO corrections as (q/�χ )n,
where we have taken Q ∼ q as the “low-momentum” scale and

FIG. 11. (Color online) Cumulative contributions to the 3He
and 3H magnetic form factors, obtained with the N3LO/N2LO
Hamiltonian and cutoff � = 500 MeV, from the components of the
current operator order by order. Set III is adopted for the isovector
LECs dV

1 and dV
2 in Table III.

�χ = 700–800 MeV as the chiral-symmetry-breaking scale,
does not appear to be satisfied (not even at the smallest q
values).

V. CONCLUSIONS

In the first part of this study (Sec. II and Appendices A
and B), we have clarified the origin of some of the differences
in the N3LO and N4LO corrections to the current and
charge operators, reported in Refs. [5,6,8]. In contrast to the
authors of Ref. [8], we have not yet provided a complete

TABLE XIII. Individual contributions to the 3He magnetic form factor, obtained with the N3LO/N2LO Hamiltonian, cutoff � = 500 MeV,
and set III of isovector LECs; (−x) stands for 10−x .

q (fm−1) LO NLO N2LO N3LO(L) N3LO(min) N3LO(nm) N3LO(OPE)

0.2 −1.72 −0.196 0.162(−1) −0.385(−1) 0.511(−1) −0.109 −0.488(−1)
0.6 −1.37 −0.184 0.160(−1) −0.358(−1) 0.478(−1) −0.101 −0.414(−1)
1.0 −0.898 −0.160 0.142(−1) −0.310(−1) 0.421(−1) −0.877(−1) −0.293(−1)
1.4 −0.495 −0.128 0.105(−1) −0.253(−1) 0.352(−1) −0.716(−1) −0.164(−1)
1.8 −0.228 −0.934(−1) 0.595(−2) −0.196(−1) 0.280(−1) −0.554(−1) −0.584(−2)
2.2 −0.794(−1) −0.632(−1) 0.189(−2) −0.145(−1) 0.214(−1) −0.410(−1) 0.106(−2)
2.6 −0.964(−2) −0.402(−1) −0.912(−3) −0.103(−1) 0.159(−1) −0.292(−1) 0.448(−2)
3.0 0.158(−1) −0.241(−1) −0.234(−2) −0.709(−2) 0.114(−1) −0.201(−1) 0.542(−2)
3.4 0.199(−1) −0.138(−1) −0.266(−2) −0.473(−2) 0.796(−2) −0.134(−1) 0.496(−2)
3.8 0.159(−1) −0.756(−2) −0.231(−2) −0.306(−2) 0.543(−2) −0.869(−2) 0.392(−2)
4.2 0.103(−1) −0.396(−2) −0.170(−2) −0.191(−2) 0.360(−2) −0.543(−2) 0.281(−2)
4.6 0.576(−2) −0.198(−2) −0.108(−2) −0.115(−3) 0.231(−2) −0.326(−2) 0.185(−2)
5.0 0.272(−2) −0.929(−3) −0.584(−3) −0.658(−3) 0.143(−2) −0.186(−2) 0.113(−2)
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TABLE XIV. Individual contributions to the 3H magnetic form factor, obtained with the N3LO/N2LO Hamiltonian, cutoff � = 500 MeV,
and set III of isovector LECs; (−x) stands for 10−x .

q (fm−1) LO NLO N2LO N3LO(L) N3LO(min) N3LO(nm) N3LO(OPE)

0.2 2.56 0.199 −0.325(−1) 0.413(−1) 0.178(−1) 0.659(−1) 0.517(−1)
0.6 2.11 0.188 −0.319(−1) 0.380(−1) 0.163(−1) 0.612(−1) 0.439(−1)
1.0 1.47 0.164 −0.290(−1) 0.333(−1) 0.138(−1) 0.530(−1) 0.312(−1)
1.4 0.894 0.131 −0.232(−1) 0.272(−1) 0.107(−1) 0.432(−1) 0.176(−1)
1.8 0.477 0.964(−1) −0.159(−1) 0.211(−1) 0.763(−2) 0.334(−1) 0.627(−2)
2.2 0.221 0.656(−1) −0.894(−2) 0.156(−1) 0.502(−2) 0.247(−1) −0.119(−2)
2.6 0.834(−1) 0.418(−1) −0.354(−2) 0.111(−1) 0.299(−2) 0.176(−1) −0.450(−2)
3.0 0.188(−1) 0.252(−1) 0.117(−3) 0.764(−2) 0.155(−2) 0.122(−1) −0.615(−2)
3.4 −0.591(−2) 0.145(−1) 0.156(−2) 0.508(−2) 0.607(−3) 0.815(−2) −0.576(−2)
3.8 −0.117(−1) 0.796(−2) 0.201(−2) 0.327(−2) 0.353(−4) 0.531(−2) −0.469(−2)
4.2 −0.101(−1) 0.419(−2) 0.177(−2) 0.203(−2) −0.275(−3) 0.337(−2) −0.350(−2)
4.6 −0.666(−2) 0.210(−2) 0.128(−2) 0.121(−2) −0.415(−3) 0.207(−2) −0.243(−2)
5.0 −0.365(−2) 0.993(−3) 0.777(−3) 0.681(−3) −0.451(−3) 0.124(−2) −0.159(−2)

derivation of the contributions associated with loop corrections
to tree-level (OPE) current and charge operators (although
some were discussed in Ref. [5]); in particular, we have not
carried out a full-fledged renormalization of these operators
in our formalism. However, as pointed out in Sec. II A, the
renormalized OPE current in Eq. (4.28) of Ref. [8] leads
to the same magnetic moment operator obtained from the
currents in Eqs. (2.7), (2.22), and (2.24) of the present work,
with the understanding, of course, that the LECs entering
these equations are assumed to have been renormalized. There
remain differences in the pion-loop corrections to the short-
range charge operator, Eq. (5.5) of Ref. [8] and Eqs. (2.39)
and (2.40), the latter presumably due to the different ways
in which noniterative pieces of reducible contributions are
isolated in the two formalisms. The authors of Refs. [7,8] use
TOPT in combination with the unitary transformation method
[67] to decouple, in the Hilbert space of pions and nucleons,
the states consisting of nucleons only from those including, in
addition, pions. In contrast, we construct a potential such that,
when iterated in the Lippmann-Schwinger equation, leads to a
T -matrix matching, order by order in the power counting, the
χEFT amplitude calculated in TOPT [6,68].

In the second part of this study, we have provided predic-
tions for the static properties, including charge and magnetic
radii and magnetic moments, and elastic form factors of the
deuteron and trinucleons. The wave functions describing these
nuclei were derived from either χEFT or conventional two-
and three-nucleon potentials. The matrix elements of the χEFT
charge and current operators were evaluated in momentum
space with Monte Carlo methods.

The χEFT calculations (based on the N3LO potential)
and the hybrid ones (based on AV18) reproduce very well
the observed electromagnetic structure of the deuteron for
momentum transfers q up to 2–3 fm−1. In some cases,
as in the A(q) structure function, the agreement between
the experimental and χEFT calculated values extends up to
q � 6 fm−1, a much higher momentum transfer than one
would naively expect the present expansion to be valid for.
On the other hand, the measured B(q) structure function is
significantly underpredicted (overpredicted) for q � 3 fm−1 in

the χEFT (hybrid) calculations. The χEFT results, in contrast
to the hybrid ones, have a rather large cutoff dependence. This
cutoff dependence originates, in the hybrid calculations, solely
from that in the N3LO current, while in the χEFT calculation
it also reflects the � dependence intrinsic to the potential (the
N3LO potential for � = 500 MeV or the N3LO∗ potential for
� = 600 MeV).

The calculated 3He and 3H charge form factors are in
excellent agreement with data up to q � 3 fm−1. However,
the observed positions of the zeros are not generally well
reproduced by theory, and the measured 3He (3H) form factor
in the region of the secondary maximum at q � 4 fm−1

is underestimated (overestimated) in both χEFT and hybrid
calculations. A glance at the FS

C (q) and FV
C (q) values in Fig. 6

suggests that two-body isovector contributions to the charge
operator should be considerably larger (in magnitude) than
presently calculated, in order to shift the zero in FV

C (q) to
smaller q.

The isovector currents at N3LO depend on two LECs (dV
1

and dV
2 ), which have been fixed in one of three different

ways: by reproducing the experimental np radiative capture
cross section σnp and isovector magnetic moment μV of the
trinucleons simultaneously (set I) or by using � dominance
to constrain dV

2 and by determining dV
1 so as to fit either σnp

(set II) or μV (set III). Set I is not seriously considered for
the reasons explained in Sec. IV A. The 3He and 3H magnetic
form factors calculated with N3LO currents corresponding to
set III, while in excellent agreement with data for q � 3 fm−1,
underpredict them at higher momentum transfers. On the other
hand, set II N3LO currents in the χEFT calculations (based
on the N3LO/N2LO and N3LO∗/N2LO∗ Hamiltonians) would
lead to significantly better agreement with data over the whole
range of momentum transfers (see Fig. 10), but they would
overestimate the observed μV by �3%.

ACKNOWLEDGMENTS

R.S. would like to thank the T-2 group in the Theoretical
Division at Los Alamos National Laboratory, and especially
J. Carlson and S. Gandolfi, for the support and warm hospitality

014006-18



ELECTROMAGNETIC STRUCTURE OF A = 2 AND 3 . . . PHYSICAL REVIEW C 87, 014006 (2013)

extended to him during a sabbatical visit in the Fall 2012,
during which part of this work was completed. The work of
R.S. is supported by the US Department of Energy, Office of
Nuclear Physics, under Contract No. DE-AC05-06OR23177.
The calculations were made possible by grants of computing
time from the National Energy Research Scientific Computing
Center.

APPENDIX A: MINIMAL CONTACT CURRENTS

In this Appendix, we show the equivalence between the
minimal contact current in Eq. (3.11) of Ref. [5] and that
given in Eq. (2.20) in terms of the known low-energy constants
C1, . . . , C7. One way to achieve this is to start from the
Lagrangian given in Eq. (2.13) of Ref. [69] (where additional
terms with fixed coefficients proportional to 1/m2

N have been
ignored),

L = − 1
2CS OS − 1

2CT OT − 1
2C1(O1 + 2 O2)

+ 1
8C2(2 O2 + O3) − 1

2C3(O9 + 2 O12)

− 1
8C4(O9 + O14) + 1

4C5(O6 − O5)

− 1
2C6(O7 + 2 O10) − 1

16C7(O7 + O8 + 2 O13), (A1)

where the operators Oi are the standard set in Table I of
Ref. [69], and then to gauge the gradients as ∇N → ∇N −
i e eN A N to obtain

j(1)
a,min = C2

4
(τ1,z − τ2,z)(K1 − K2)

+ C4

4
(τ1,z − τ2,z) σ 1 · σ 2 (K1 − K2)

− i C5

4
(σ 1 + σ 2) × (e1 k1 + e2 k2)

+ C7

8
(τ1,z − τ2,z) [σ 1 · (K1 − K2) σ 2

+ σ 2 · (K1 − K2) σ 1]. (A2)

Because of the antisymmetry of two-nucleon states, we have

j(1)
a,min = −P τ P σ P space j(1)

a,min, (A3)

where P space, P σ , and P τ are, respectively, the space, spin, and
isospin exchange operators. By making use of the identities

P space(K1 − K2) = −(k1 − k2)/2, (A4)

P σ σ 1 · σ 2 = (3 − σ 1 · σ 2)/2, (A5)

P τ (τ1,z − τ2,z) = i (τ 1 × τ 2)z, (A6)

P σ P space[σ 1 · (K1 − K2) σ 2 + σ 2 · (K1 − K2) σ 1]

= − 1
2 [(k1 − k2)(1 − σ 1 · σ 2) + σ 1 · (k1 − k2) σ 2

+ σ 2 · (k1 − k2) σ 1], (A7)

Eq. (2.20) in the text follows.
An alternative way to proceed is to express the original set

of LECs C ′
1, . . . , C

′
14 entering Eq. (3.11) of Ref. [5] in terms

of the twelve independent LECs C1, . . . , C7, C
∗
1 , . . . , C∗

5 (in
the notation of Ref. [5]), and then to set the C∗

i = 0, that is,
to ignore the currents induced by these terms, since they are

suppressed by 1/m2
N . Substituting

C ′
1 = 1

2C1, C ′
2 = C1 − 1

4C2, C ′
3 = − 1

8C2,

C ′
4 + C ′

6 = − 1
4C5, C ′

5 + C ′
6 = 0,

C ′
7 + 1

2C ′
11 = 1

2C6 + 1
16C7, C ′

8 − 1
2C ′

11 = 1
16C7, (A8)

C ′
9 = 1

2C3 + 1
8C4, C ′

10 + C ′
11 = C6, C ′

12 = C3,

C ′
13 = 1

8C7, C ′
14 = 1

8C4

into Eq. (3.11) of Ref. [5], we find

Eq. (3.11) of Ref.[1]

= Eq. (A2) − i e C ′
4 (e1 + e2)(σ 1 + σ 2) × q, (A9)

and the difference can be absorbed into a redefinition of C ′
15,

since (τ z
1 + τ z

2 )(σ 1 + σ 2) × q = 0 after antisymmetrization.
Notice also that, in view of the identity O4 + O5 = O6 + O15

(which was derived in Ref. [69], and, apart from O15, of
no relevance there), among the operators of the subleading
contact Lagrangian, the operator O6 is redundant, and indeed
the dependence on the associated LEC C ′

6 cancels in the
observables.

APPENDIX B: ONE-LOOP SHORT-RANGE
CURRENT AND CHARGE OPERATORS

In this Appendix, we discuss the contributions associated
with panels (h)–(k) in Fig. 2 for the current operator and (g)–(j)
in Fig. 3 for the charge operator. We begin with the current
operator. The contributions of diagrams (h) and (j) in Fig. 2
vanish, while the contribution of diagrams of type (i) was
obtained as (with conventions for q integrations and δ functions
being the same as in Ref. [5])

j(1)
i = 2 i

e g2
A CT

F 2
π

(τ 1 × τ 2)z

∫
q1,q2

δ(q1 + q2 − q)

×D(ω1, ω2) (q1 − q2) σ 1 · q2 σ 2 · q1, (B1)

where

D(ω1, ω2) = ω2
1 + ω1ω2 + ω2

2

ω3
1ω

3
2(ω1 + ω2)

. (B2)

Before analyzing diagram (k), we need to consider the
leading and next-to-leading contributions to the single-nucleon
diagrams shown in Fig. 12. For simplicity, we define the
vertices

V1 = i
gA

Fπ

σ · q1 τa, V2 = i
gA

Fπ

σ · q2 τb, (B3)

2

p

p

p

(a) (b) (c)

1

q

FIG. 12. Time-ordered diagrams illustrating one of the classes of
loop corrections to the single-nucleon current. Nucleons, pions, and
photons are denoted by solid, dashed, and wavy lines, respectively.
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Vγ = −i e εabz (q1 − q2). (B4)

Then the current reads

jγππ = V1V2Vγ

4 ω1ω2

[
1

Ei − ω1 − E

1

Ei − ω1 − ω2 − E

+ 1

Ei − ω1 − E

1

Ei − ωγ − ω2 − E

+ 1

Ei − ωγ − ω1 − ω2 − E′
1

Ei − ωγ − ω2 − E

]
,

(B5)

where Ei = E + ωγ and E is the energy of the intermedi-
ate nucleon of momentum p. After expanding the energy
denominators as in Eq. (2.18) to include linear terms in the
nucleon kinetic energies, we find, up to next-to-leading order
included,

jγππ = V1V2Vγ

4

[
2

ω2
1ω

2
2

+ D′(ω1, ω2) (E′ − E)

+D(ω1, ω2)(E − E) + Dγ (ω1, ω2) ωγ

]
, (B6)

where

D(ω1, ω2) = 2 ω1 + ω2

ω2
1ω

3
2(ω1 + ω2)

, (B7)

D′(ω1, ω2) = ω1 + 2 ω2

ω3
1ω

2
2(ω1 + ω2)

, (B8)

Dγ (ω1, ω2) = − ω1 − ω2

ω2
1ω

2
2 (ω1 + ω2)2

, (B9)

and

D ⇀↽ D′ with q1 ⇀↽ q2, D + D′ = 2 D. (B10)

E1

E1

class C

E1

E1

2
q

1

class B

class A

FIG. 13. Set of time-ordered diagrams for the contribution illus-
trated by the single diagram (k) in Fig. 2. The notation is the same as
in Fig. 12.

We now proceed to analyze the contributions of diagrams of
type (k) in Fig. 2. To this end, we show in Fig. 13 the complete
set of time-ordered diagrams of the same topology as (k),
which we have separated for convenience into the three classes
A, B, and C. Class A consists only of irreducible diagrams,
which at order n = 1 or eQ, i.e., in the static limit, lead to

class A = − 1
2 Vγ V1VCTV2D(ω1, ω2)

= − 1
4Vγ V1VCTV2[D(ω1, ω2) + D′(ω1, ω2)],

(B11)

where the vertices V1, V2, and Vγ are defined as above (with
the spin and isospin matrices now referring to nucleon 1), and

VCT = CS + CT σ 1 · σ 2. (B12)

On the other hand, to order eQ included, class B gives

class B = Vγ VCTV1V2

4 ω1ω2

1

Ei − E
′
1 − E2

[
1

ω1(ω1 + ω2)

(
1 + E1 + ωγ − E1

ω1
+ ωγ

ω1 + ω2

)
+ 1

ω1ω2

(
1 + E1 + ωγ − E1

ω1

+E1 − E1

ω2

)
+ 1

ω2(ω1 + ω2)

(
1 + Ei − E

′
1 − E2

ω1 + ω2
− ωγ

ω1 + ω2
+ E1 − E1

ω2

)]
− Vγ VCTV1V2

4 ω1ω2

1

ω2(ω1 + ω2)2
,

(B13)

where we have used energy conservation between the initial and final states, E1 + E2 + ωγ = E′
1 + E′

2. We now note that the
irreducible contribution from the last diagram (in class B) is canceled by the second term in the next to last line of the above
equation, so that we are left with

class B = Vγ VCTV1V2

4

1

Ei − E
′
1 − E2

[
2

ω2
1ω

2
2

+ ωγ Dγ (ω1, ω2) + (E1 − E1) D(ω1, ω2) + (E1 + ωγ − E1) D′(ω1, ω2)

]

= VCT
1

Ei − E
′
1 − E2

jγππ + Vγ VCTV1V2

4
D′(ω1, ω2), (B14)
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since E1 + ωγ − E1 = (Ei − E
′
1 − E2) + (E

′
1 − E1) and Vγ

commutes with each of the remaining vertices. The first term
represents an iteration, while the recoil-corrected class B
contribution is simply given by Vγ VCTV1V2 D′(ω1, ω2)/4. A
similar analysis for class C leads to the recoil-corrected class
C contribution given by Vγ V1V2VCT D(ω1, ω2)/4. Therefore
combining the contributions from classes A, B, and C, we find

j(1)
k = 1

4Vγ V1 [V2, VCT] D(ω1, ω2)

+ 1
4 [VCT, V1] V2 Vγ D′(ω1, ω2), (B15)

or explicitly

j(1)
k = 2 i

e g2
A CT

F 2
π

τ1z

∫
q1,q2

δ(q1 + q2 − q) D(ω1, ω2)

× (q1 − q2) σ 2 · q2 × q1 + 1 ⇀↽ 2. (B16)

The currents j(1)
i and j(1)

k obtained here are in agreement with
those in Eq. (5.2) of Ref. [8], except for an overall factor of 2.
Ultimately, this difference has no impact, since

j(1)
i + j1)

k ∝ (τ 1 × τ 2)z (σ 1 × σ 2) × q

+ (
2 τ1z σ 2 + 2 τ2z σ 1

) × q = 0, (B17)

which vanishes due to antisymmetry of the two-nucleon states.
In Ref. [5] we had not considered the next-to-leading order

contributions to the single-nucleon γππ vertex when deriving
the one-loop correction to the OPE current shown in Fig. 14
(see Appendix E of Ref. [5]). As a consequence we had failed
to isolate the correct noniterative piece, which had led, in
particular, to a non-Hermitian operator. We find that this term
is now given by

j(1)
OPE,loop = ie

g4
A

F 4
π

(τ 1 × τ 2)z
σ 2 · k2

ω2
k2

∫
p

p
[

2
ω2

+ + ω2
− + ω+ω−

ω3+ω3−(ω+ + ω−)

× (σ 1 · q k2 · p − σ 1 · p k2 · q)

− ω+ − ω−
ω3+ω3−

σ 1 · k2 (q2 − p2)

]
+ 1 ⇀↽ 2, (B18)

where ω± = √
(q ± p)2 + 4 m2

π .
Next, we turn our attention to the charge operator. In Ref. [6]

we showed that the contributions of diagrams (g) and (h) in
Fig. 3 vanish. However, in light of the previous considerations,
those due to diagrams (i) and (j) given there need to be revised.
Indeed, an analysis similar to that carried out above leads
to the single-nucleon charge operator (see Fig. 12), up to

FIG. 14. One-loop correction to the OPE current (with only one
among the possible time orderings being shown). The notation is the
same as in Fig. 12.

next-to-leading order included,

ργππ = V1V2Ṽγ

4

[
4

ω1 ω2 (ω1 + ω2)
+ D̃′(ω1, ω2) (E′ − E)

+ D̃(ω1, ω2)(E − E) + D̃γ (ω1, ω2) ωγ

]
(B19)

and to a contribution for diagram (j) (see Fig. 13) which reads

ρ
(1)
j = −2

e g2
A CT

F 2
π

τ1z

∫
q1,q2

δ(q1 + q2 − q) D̃(ω1, ω2)

× σ 1 · [q1 × (σ 2 × q2)] + 1 ⇀↽ 2. (B20)

We have defined Ṽγ = −i e εabz , and

D̃(ω1, ω2) = 3 ω1 + ω2

ω2
1 ω2

2 (ω1 + ω2)
, (B21)

D̃′(ω1, ω2) = ω1 + 3 ω2

ω2
1 ω2

2 (ω1 + ω2)
, (B22)

D̃γ (ω1, ω2) = ω1 − ω2

ω2
1 ω2

2 (ω1 + ω2)2
, (B23)

with

D̃ ⇀↽ D̃′ with q1 ⇀↽ q2, D̃ + D̃′ = 4

ω2
1 ω2

2

. (B24)

We now revise the derivation of the charge operator of type
(i) illustrated in Fig. 3. The associated time-ordered diagrams
are represented in Fig. 15, and they have been separated into
three classes. In Ref. [6], the expression reported in Eq. (53)
has been obtained by accounting for the recoil-corrected class
A diagrams only, i.e.,

class A = 1

2 ω4
1

[V1VCTV ′
1V

′
γ + V ′

γ V1VCTV ′
1

−V1VCTV ′
γ V ′

1 − V1V
′
γ VCTV ′

1]

= e
2 g2

A

3 F 2
π

τ1,z (3 CS − CT σ 1 · σ 2)
∫

q1

q2
1

ω4
1

, (B25)

E1

E1
E1

E1

E1 E1 E1

E1 E1

class B

class C

class A

q
1

(a) (b) (c) (d)

FIG. 15. Set of time-ordered diagrams for the contribution illus-
trated by the single diagram (i) in Fig. 3. The notation is the same as
in Fig. 12.
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p

p

p

1
p

p q

p

p

p

(a) (b)

FIG. 16. Diagrams for the single-nucleon contributions. The
notation is the same as in Fig. 12.

where V1 and VCT are given in Eqs. (B3) and (B12),
respectively, and V ′

1 and V ′
γ are defined as

V ′
1 = −V1, V ′

γ = e

2
(1 + τ1,z). (B26)

Classes B and C involve only reducible diagrams. First, we
analyze the single-nucleon contributions entering the reducible
diagrams, represented in Fig. 16. We account for leading, next-
to-leading, and next-to-next-to-leading order corrections in the
expansion of the energy denominators. The contributions MN

and ργ , associated with panels (a) and (b), respectively, read

MN = −V1 V ′
1

2 ω2
1

[
1 + E − E

ω1
+ (E − E)2

ω2
1

]
, (B27)

ργ = V1 V ′
γ V ′

1

2 ω3
1

(
1 + E′ − E

′

ω1
+ E − E

ω1

)
, (B28)

where the energies are as indicated in Fig. 16, and energy
conservation (E + ωγ = E′) has been used. In terms of these,
the contributions of diagram (a) and (b) in class B are given by

Ba = MN

1

Ei − E′
1 − E′

2

VCT
1

Ei − Ẽ1 − E2
V ′

γ , (B29)

Bb = MN

1

Ei − E′
1 − E′

2

V ′
γ

1

Ei − Ẽ′
1 − E′

2 − ωγ

VCT,

(B30)

where we have identified and isolated the nucleon self-energy
terms (to be reabsorbed by mass counterterms). Evaluation of
panel (c) leads to

Bc = V1 V ′
γ V ′

1

2 ω3
1

[
1 + E′

1 − E
′
1

ω1
+ Ẽ′

1 − E1

ω1

]

× 1

Ei − Ẽ′
1 − E′

2 − ωγ

VCT + V1 V ′
γ V ′

1VCT

2 ω4
1

= ργ

1

Ei − Ẽ′
1 − E′

2 − ωγ

VCT + V1 V ′
γ V ′

1VCT

2 ω4
1

, (B31)

where the first term represents an iteration with ργ and the
contact interaction, and the second term is the recoil correction
contributing to the two-nucleon charge operator. Finally, the
contribution of panel (d), in which, in contrast to panels (a) and
(b), the self-energy insertion is between the photon absorption
and contact interaction, is expressed as

Bd = −V ′
γ

1

Ei − Ẽ′
1 − E′

2 − ωγ

V1 V ′
1

2 ω2
1

[
1 + Ẽ′

1 − E1

ω1
+ (Ẽ′

1 − E1)2

ω2
1

]
1

Ei − Ẽ′
1 − E′

2 − ωγ

VCT

− V ′
γ V1 V ′

1

2 ω3
1

(
1 + 2

Ẽ′
1 − E1

ω1

)
1

Ei − Ẽ′
1 − E′

2 − ωγ

VCT − V ′
γ V1 V ′

1VCT

2 ω4
1

= V ′
γ

1

Ei − Ẽ′
1 − E′

2 − ωγ

MN

1

Ei − Ẽ′
1 − E′

2 − ωγ

VCT + ρ̃γ

1

Ei − Ẽ′
1 − E′

2 − ωγ

VCT − V ′
γ V1 V ′

1VCT

2 ω4
1

, (B32)

where the last term is a two-nucleon term, and we interpret ρ̃γ as a further correction to the single-nucleon γN vertex. However,
the analysis and proper interpretation of these types of corrections are beyond the scope of the present work.

After a similar analysis of the class C diagrams is carried out, we find that the complete B + C contribution reads

classes B + C = 1

2 ω4
1

[V1V
′
γ V ′

1VCT − V ′
γ V1 V ′

1VCT + VCTV1V
′
γ V ′

1 − VCTV1V
′

1V
′
γ ]

= −e
2 g2

A

F 2
π

τ1,z (CS + CT σ 1 · σ 2)
∫

q1

q2
1

ω4
1

, (B33)

which combined with Eq. (B25) leads to the type (i) charge operator in Fig. 3,

ρ(1)
i = −e

8 g2
A CT

3 F 2
π

τ1,z σ 1 · σ 2

∫
q1

q2
1

ω4
1

+ 1 ⇀↽ 2. (B34)

APPENDIX C: LOOP INTEGRATIONS

In this Appendix, we outline the derivation of the two-body charge operators at one loop listed in Sec. II B.
For the sake of illustration, we consider the contribution of panel (f) in Fig. 3, given by (in the notation of
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Ref. [6])

ρ
(1)
f = −e

2 g4
A

F 4
π

∫
q1,q2,q3

δ(q2 + q3 − k2)δ(q1 − q2 − k1)δ(q1 + q3 − q)
1

ω2
1 ω2

2 ω2
3

[2 τ1,z (q2 · q1 q2 · q3

− σ 1 · q2 × q1 σ 2 · q3 × q2) − (τ 1 × τ 2)z q1 · q2 σ 2 · q3 × q2] + 1 ⇀↽ 2, (C1)

which can conveniently be written as

ρ
(1)
f = −e

2 g4
A

F 4
π

∫
p

N (q, k, p)

ω2
q/2+p ω2

q/2−p ω2
p−k

+ 1 ⇀↽ 2, (C2)

with

N (q, k, p) = 2 τ1,z[(p − k) · (q/2 + p)(p − k) · (q/2 − p) − σ 1 · (p − k) × (q/2 + p) σ 2 · (q/2 − p) × (p − k)]

− (τ 1 × τ 2)z (q/2 + p) · (p − k) σ 2 · (q/2 − p) × (p − k) (C3)

and the momentum k defined as in Eq. (2.2). We now use standard techniques [70] to express the product of energy denominators
in the following way:

1

ω2
q/2+p ω2

q/2−p ω2
p−k

= 2
∫ 1

0
dz1

∫ 1−z1

0
dz2

{ [
(q/2 + p)2 + m2

π

]
z1 + [

(q/2 − p)2 + m2
π

]
z2 + [

(p − k)2 + m2
π

]
(1 − z1 − z2)

}−3
, (C4)

which, in terms of

p′ = p + (z1 − z2) q/2 − (1 − z1 − z2) k, (C5)

simply reads

1

ω2
q/2+p ω2

q/2−p ω2
p−k

= 2
∫ 1

0
dz1

∫ 1−z1

0
dz2 [p′2 + λ2(z1, z2)]−3, (C6)

where

λ2(z1, z2) = (z1 + z2)q2/4 − [(z1 − z2)q/2 − (1 − z1 − z2) k]2 + (1 − z1 − z2) k2 + m2
π . (C7)

After these manipulations, the charge operator can finally be written as

ρ
(1)
f = −e

4 g4
A

F 4
π

∫ 1

0
dx x

∫ 1/2

−1/2
dy

∫
p′

N ′(q, k, p′)[p′ 2 + λ2(x, y)]−3 + 1 ⇀↽ 2, (C8)

where the function N ′ is obtained from N by expressing p in terms of p′ via Eq. (C5). We have also changed variables in the
parametric integrals by introducing [70]

x = z1 + z2, x y = (z1 − z2)/2, (C9)

such that ∫ 1

0
dz1

∫ 1−z1

0
dz2 −→

∫ 1

0
dx x

∫ 1/2

−1/2
dy. (C10)

The function N ′ is a polynomial in p′, and the p′ integrations are carried out in dimensional regularization (see Appendix A of
Ref. [5]). They are finite and lead to the charge operator given in Eq. (2.38).
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