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Equation of state and the nucleon optical potential with three-body forces

Syed Rafi,1 Manjari Sharma,1 Dipti Pachouri,1 W. Haider,1 and Y. K. Gambhir2,3

1Department of Physics, AMU, Aligarh, India
2Manipal University, Manipal 576104, Karnataka, India

3Department of Physics, IIT-Bombay, Powai, Mumbai 400076, India
(Received 6 September 2012; revised manuscript received 16 December 2012; published 14 January 2013)

We report microscopic calculations of the equation of state of symmetric nuclear matter and the nucleon-nucleus
optical potential in the Brueckner-Hartree-Fock approach. The calculations use several internucleon (NN)
potentials, such as the Hamada-Johnston, Urbana v14, Argonne v14, Argonne v18, Reid93, and Nijm II along
with and without two types of three-body forces (TBFs): the Urbana IX model and the phenomenological
density-dependent three-nucleon interaction model of Lagris and Pandharipande [Nucl. Phys. A 359, 349 (1981)]
and Friedman and Pandharipande [Nucl. Phys. A 361, 502 (1981)]. The inclusion of TBFs helps to reproduce the
saturation properties for symmetric nuclear matter rather well as expected. The proton-nucleus optical potential
has been calculated by folding the calculated reaction matrices (with and without three-body forces) over the
nucleon density distributions obtained from the relativistic mean-field theory. The results show that the inclusion
of TBFs reduces the strength of the central part of the optical potential in the nuclear interior and affects the
calculated spin-orbit potential only marginally. As a test of the calculated potential, we have analyzed proton
differential elastic scattering, analyzing power, and spin-rotation data from 40Ca and 208Pb at 65 and 200 MeV. It
is observed that the inclusion of TBFs improves the agreement with the experiment especially for the polarization
data.
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I. INTRODUCTION

The properties of symmetric nuclear matter (SNM) and pure
neutron matter are of great importance in the development of
the nuclear many-body problem with an application to nuclear
as well as astrophysics. Over the past several decades, different
approaches, e.g., the Brueckner-Hartree-Fock (BHF) [1],
variational [2,3], Monte Carlo technique [4,5], self-consistent
Green’s function method [6], etc., have been developed
to address the problem. The only input required in these
calculations is the realistic nucleon-nucleon interaction. As a
result of the importance of the equation of state (EOS), almost
all internucleon potentials have been tested for their prediction
of EOSs in different many-body theories. An appropriate
EOS must predict the correct saturation point for SNM and
must give symmetry energy compatible with phenomenology
and values of compressibility in agreement with empirical
estimates. It is now well established that no nonrelativistic
approach, which uses only two forces, is able to predict
the empirical values of the saturation properties of SNM.
The major discrepancy in the predicted EOS is at densities
around and higher than the saturation density. Furthermore,
in the BHF approach, it has been shown [7] that, with a
continuous choice, the hole-line expansion with only two-body
forces converges rapidly in lowest order, and hence, there
is no hope that the inclusion of higher-order terms would
improve the predictions of saturation properties. In view of
this, three-body forces (TBFs) have been proposed (included
mostly phenomenologically) as a savior [8–10]. The inclusion
of TBFs helps to achieve the nuclear saturation properties close
to their empirical estimates and the desired stiffer EOS.

In the present paper, we have used the BHF approach
to calculate the EOS for symmetric nuclear matter and the

proton-nucleus optical potential by using several two-body and
TBFs. Specifically, we have used the old hard-core Hamada-
Johnston (HJ) [11], the soft-core Urbana v14 (UV14) [12],
Argonne v14 (AV14) [13], Argonne v18 (AV18) [14], Reid93,
and Nijm II [15] internucleon potentials with and without
the three-nucleon force models (Urbana IX (UV IX) [4]
and the three-nucleon interaction (TNI) model [16,17]) in
BHF. The old HJ internucleon potential is used only to show
that the use of a hard-core interaction underestimates the
binding energy in agreement with the earlier results from Bethe
and others [18,19].

We find that no two-body interaction, considered in the
present paper, is able to reproduce the empirical saturation
property of SNM in agreement with earlier findings [8–10].
Our results show that the use of the UV IX and TNI models
of three-body forces with UV14, AV14, and AV18 brings the
saturation point closer to the empirical values. The results for
the EOS show that the major effect of TBFs is to reduce
attraction at higher densities. In view of this, the nuclear
potential for scattering from finite nuclei calculated in BHF
by using the folding model [20,21] is expected to be affected
in the nuclear interior due to the inclusion of three-body forces.
To investigate this, we have calculated the optical potential for
the scattering of 65- and 200-MeV protons from 40Ca and 208Pb
with and without TBFs along with AV18. We find that the use
of three-body forces reduces the central potential significantly
in the nuclear interior, whereas, there is a marginal effect on
the spin-orbit part of the calculated optical potential at both
low and high energies and for the two targets considered in
the present paper. Analysis of the elastic differential cross
section, polarization, and spin-rotation data, which use the
calculated potential with TBFs, shows marginal improvement
in agreement.

014003-10556-2813/2013/87(1)/014003(7) ©2013 American Physical Society

http://dx.doi.org/10.1016/0375-9474(81)90241-4
http://dx.doi.org/10.1016/0375-9474(81)90649-7
http://dx.doi.org/10.1103/PhysRevC.87.014003


RAFI, SHARMA, PACHOURI, HAIDER, AND GAMBHIR PHYSICAL REVIEW C 87, 014003 (2013)

In Sec. II, we briefly present our method of calculation
by using BHF. Section III presents the results and discussion,
which concern the EOS, nuclear optical potential, and analysis
of experimental scattering data. The conclusions are given in
Sec. IV.

II. METHOD OF CALCULATION

The basic ingredient in BHF is the reaction matrix G, which
satisfies the following Bethe-Goldstone equation:

G[ω; ρ] = V +
∑

kakb

V
|kakb〉 Q 〈kakb|

ω − e(ka) − e(kb) + iε
G[ω; ρ], (1)

where V is the realistic NN interaction, ρ is the nuclear matter
density, ω is the starting energy, and e(k) is the single-particle
energy, which is a simple sum of kinetic and potential energies
U (k, ρ). We have used the continuous choice [7] for the
potential energy,

U (k; ρ) = Re
∑

k′�kF

〈kk′|G[e (k) + e(k′); ρ]|kk′〉a. (2)

The numerical details of the calculations and self-consistency
requirements are described in detail [21–23]. Once the single-
particle potential is calculated, one can easily calculate the
binding energy per nucleon for symmetric nuclear matter of
densityρ = 2

3π2 k
3
F : kF is the Fermi momentum of SNM,

E

A
= 3

5

k2
F

2m
+ 1

2ρ
Re

∑

k,k′�kF

〈kk′|G[e(k) + e(k′); ρ‖kk′〉a, (3)

where the suffix a denotes antisummarization. We have used
two models (UV IX and TNI) to study the effect of TBFs on
the EOS.

In the present paper, we follow the methods proposed by
Grangé et al. [8] and Lejeune et al. [24] in the BHF scheme to
reduce the TBFs to an effective two-body force by averaging
over the spin and isospin of the third particle and by folding
over the appropriate relative coordinates with the product of
the two-body correlation functions. The UV IX three-nucleon
potential has a long-range attractive two-pion exchange part
and an intermediate-range repulsive part. The final expressions
for the effective two-body force are given in Appendix C
of Ref. [25]. We have used the parameters for UV IX as
A = −0.0333 and U = 0.000 38 MeV with AV18 as given
in Ref. [10].

The TNI model [16,17] approximates the effect of three-
body forces by adding two density-dependent terms: a three-
nucleon repulsive (TNR) and a three-nucleon attractive (TNA)
term. The TNA is treated microscopically, whereas, the effect
of the TNR is added to the calculated EOS. This effective
force, expected to incorporate the TBF contributions, is added
to the nuclear Hamiltonian that contains the two-body realistic
interaction, and the calculations in BHF proceeds as with
a two-body force. The three parameters of the TNI model
were originally used [16] with UV14, and hence, we had
to marginally modify them for use with AV18 to obtain the
appropriate saturation properties of SNM. The parameters, as
defined in Ref. [16] and as used in the present paper, are

as follows: γ1 = 0.15 fm3, γ2 = −600 MeV fm6, and γ3 =
13.6 fm3.

To calculate the proton optical potential, we have followed
the well-established method [20–23,26] by first calculating
the radial effective interaction (reaction matrices), which is
then folded over point proton and neutron densities in 40Ca
and 208Pb. The relevant densities were obtained by relativistic
mean-field calculations [27]. The numerically calculated real
(imaginary) parts of the central V (E,r)(W (E,r)) and the spin
orbit VSO(E,r)(WSO(E,r)) components of the optical potential
were multiplied by scaling parameters λ and then were used
in a spherical optical model code to calculate the observables,

U (E, r) = λRV (E, r) + iλIW (E, r) + (
λR

SOVSO (E, r)

+ iλI
SOWSO (E, r)

)�σ · �L,

where �σ and �L were the Pauli spin matrices and the orbital
angular momentum of the incident proton.

The parameter λ’s were adjusted to minimize χ2/DF
(where DF stands for degrees of freedom).

III. RESULTS AND DISCUSSION

Figure 1 shows our BHF results of the EOS for SNM. The
figure reveals that, with only two-body internucleon potentials,
the HJ underestimates, whereas, AV18, UV14, AV14, Reid93,
and Nijm II overestimate the nuclear matter energy per nucleon
at higher saturation densities. Thus, with only two-body forces,
the nonrelativistic BHF fails to obtain either the magnitude or
the density near the empirical estimates (shown as rectangles)
of the saturation property, thus, our results reconfirm the
Coester et al. band [28]. The numerical values of saturation
density ρ and binding energies per nucleon (−E/A), obtained
in the present paper, are given in Table I.

To improve upon the predictions of the saturation property,
we have used two types of TBFs along with the two-body force.
Specifically, we use the Urbana IX [4] and the TNI [16,17]
models of three-body forces along with UV14, AV14, and

Density

FIG. 1. (Color online) Energy per nucleon as a function of density
for SNM by using only the two-body force (see text for details).
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TABLE I. Saturation properties of nuclear matter obtained from
different potentials.

ρ0(fm−3) −E/A(MeV)

Empirical values 0.17 ± 0.01 16 ± 1
HJ 0.148 12.4
Reid93 0.28 18.43
Nijm II 0.28 18.78
UV14 0.148 19.01
UV14 + UV IX 0.178 14.62
UV14 + TNI 0.157 16.6
AV14 0.228 17.52
AV14 + UV IX 0.185 16.047
AV14 + TNI 0.158 16.004
AV18 0.228 17.013
AV18 + UV IX 0.185 15.38
AV18 + TNI 0.158 16.50

AV18 internucleon potentials. The empirical estimates of the
binding energy are shown as the rectangular box in Fig. 2.

The resulting EOS with TBFs are shown in Fig. 2. We note
that the inclusion of TBFs yields nuclear saturation very close
to the empirical estimates (see also Table I).

Microscopic calculation of the nucleon optical potential is
also directly related through the folding model to the mean
field in nuclear matter and, hence, the EOS. However, only
two-body forces have been extensively used to calculate the
nucleon optical potential for analyzing [29–32] the nucleon-
nucleus scattering data except in a recent paper by Furumoto
et al. [21]. The authors [21] have used the extended soft-core
two-body force and only the phenomenological three-body
force (TNI) models of Lagris and Pandharipande [16] and
Friedman and Pandharipande [17]. It was found that the major
effect of including the three-body forces is a reduction in the
strengths of the central potential in the interior of the target.
The authors [21] claim that the inclusion of TBFs improves
the agreement with the experiment for the analyzing power

Density

FIG. 2. (Color online) Energy per nucleon as a function of density
for symmetric nuclear matter with the three-body force (UV IX and
TNI models).
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FIG. 3. (Color online) (a) Calculated real and imaginary central
and spin-orbit parts of the optical potential for p-40Ca at 65 MeV by
using the three-body force: AV18 + UV IX (red curve with stars) and
AV18 + TNI (blue curve with circles). The solid line is the result that
uses AV18 (only the two-body force). (b) The same as for (a) but at
200 MeV.

data. The calculated imaginary central potential was rescaled
by 0.7 to obtain agreement with the experimental data.
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FIG. 4. (Color online) Calculated real and imaginary central parts
of the optical potential for p-208Pb at 65 and 200 MeV by using
the three-body force: AV18 + UV IX (red curve with stars) and
AV18 + TNI (blue curve with circles). The solid line is the result
that uses AV18 (only the two-body force).

In the present paper, we report the calculation of the
nucleon-nucleus optical potential by using the Argonne v18
two-nucleon interaction with both the Urbana IX [4] and
the TNI [16,17] models of the three-body force. Three types
of G matrices calculated by using only the two-body force
AV18, AV18 + UV IX, and AV18 + TNI, are folded over
the nucleon-density distributions to generate the central and
spin-orbit parts of the nucleon-nucleus optical potential. Both
the real and the imaginary parts of the calculated central and
spin-orbit potentials for p-40Ca scattering at 65 and 200 MeV

. .

FIG. 5. (Color online) Differential cross section and analyzing
power for p-40Ca (left panel for 65 MeV and right panel for 200
MeV). Experimental data are taken from Refs. [33,34].

are shown in Figs. 3(a) and 3(b), respectively. It is observed
that the strength of the central real and imaginary potentials for
p-40Ca are appreciably reduced for distances r < 5 fm for both
UV IX and TNI models of the TBFs, a result in agreement with
the findings of Ref. [21]. However, there is a negligible TBF
effect on the calculated spin-orbit potential. Figure 4 shows
the corresponding results for p-208Pb both at 65 MeV and at
200 MeV. These are similar to those for p-40Ca. Since the effect
of including the three-body forces on the calculated spin-orbit
potential is marginal, we do not show those results for p-208Pb.

TABLE II. Normalization constants obtained from a best fit at 65- (200)-MeV proton scattering from p-40Ca and
p-208Pb. χ 2

X/DF; X = σ ,pol,Q,tot represents the differential cross section, analyzing power, spin rotation, and total
cross section for the experimental data analyzed.

AV18 AV18 + UV IX AV18 + TNI

p + 40Ca χ 2
σ /DF 7.41 (70.59) 7.89 (21.39) 3.61 (38.8)

χ 2
pol/DF 53.52 (15.85) 36.15 (10.98) 25.49 (12.48)

χ 2
Q/DF 39.76 (24.81) 26.25 (29.56) 30.98 (22.35)

χ 2
tot/DF 32.55 (40.15) 22.79 (18.41) 19.42 (25.09)

σR (mb) (689.4) (536.79) (679.7) (502.7) (677.8) (500.7)
p + 208Pb χ 2

σ /DF 26.94 (37.61) 22.03 (23.4) 15.04 (21.24)
χ 2

pol/DF 16.48 (46.45) 20.17 (24.77) 9.51 (19.8)
χ 2

Q/DF 36.27 (13.06) 28.63 (9.03) 13.83 (7.78)
χ 2

tot/DF 29.73 (92.39) 14.83 (64.97) 26.75 (66.96)
σR (mb) (2014.5) (1769.0) (1926.2) (1684.0) (1891.9) (1699.5)
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To test the optical potential from the three G matrices (with
and without three-body forces), we have used these calculated
potentials to analyze the proton-scattering data from 40Ca and
208Pb at 65 and 200 MeV. The choice of the energies was
dictated by the availability of the complete set of accurate
experimental data: differential cross section, analyzing power,
and spin rotation.

To obtain agreement with the experimental data, we
have minimized χ2/DF by rescaling the central part of the
calculated potential. Specifically, we have to multiply the
calculated imaginary potential by 0.7 (at 65 MeV) for both
targets. Although, at 200 MeV, the central real (imaginary)
potential had to be rescaled by 1.2 (0.7). All other λ’s are
kept at unity. Thus, we have varied only two parameters. This
rescaling is a standard practice [29–32] in the application of
the microscopic optical potential to analyze the experimental
data.

Figures 5 and 6 show our results for the differential cross
section and analyzing power for p-40Ca and p-208Pb. The black
solid curve is the results using AV18 only, the blue curve
with circles represents the results for AV18 + UV IX, and
the red curve with stars represents AV18 + TNI interactions,
respectively. Figure 7 shows the results for the spin-rotation
function for both 40 Ca and 208Pb at 65 and 200 MeV.

To demonstrate the extent of improvement, in Table II, we
show the value of χ2/DF and the scaling parameters used for
the calculated potential. We note that the use of TBFs (both
TNI and UV IX) gives marginally better results at both energies
for targets considered in the present paper. Furthermore, the

. .

FIG. 6. (Color online) Same as for Fig. 5 but for p-208Pb.
Experimental data are taken from Refs. [33,34].

. .

FIG. 7. (Color online) Best fit obtained for the spin-rotation
function (left panel for p-40Ca and 208Pb, both at 65 MeV, right
panel for p-40Ca and 208Pb, both at 200 MeV). Experimental data are
taken from Refs. [33–35].

results clearly show that the quality of agreement with TBFs
is much better than that obtained by using only the two-body
force.

To further test the calculated potentials, in Fig. 8, we
show our predictions of the proton reaction cross section for

Experimental data

FIG. 8. (Color online) Calculated reaction cross section shown
for p-40Ca and p-208Pb scatterings in the energy region of 30 MeV
� E � 300 MeV, which uses the G matrices from AV18 (black solid
line), AV18 + UV IX (red dashed line), and AV18 + TNI (blue dotted
line). Experimental data (solid circle) are taken from Refs. [35–39].
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both 40Ca and 208Pb in the energy region of 30 MeV � E �
300 MeV with and without three-body forces. The results show
that the agreement with experiment is satisfactory.

IV. CONCLUSIONS

We have used six two internucleon potentials in BHF
to calculate the EOS of SNM. Our results reconfirm the
earlier findings that no two-nucleon interaction is able to
reproduce the empirical saturation properties of nuclear matter.
In view of this, we used two types of three-body forces
with UV14, AV14, and AV18 internucleon potentials to
obtain appropriate saturation properties. Furthermore, we have
calculated the proton-nucleus optical potential by using AV18,
which included two types of three-body forces and used
it to analyze the scattering data from 40Ca and 208Pb at
65 and 200 MeV. The agreement with experimental data is

satisfactory. Our results show that the inclusion of three-body
forces reduces the strength of the central potentials in the
nuclear interior, whereas, the effect on the spin-orbit part of
the calculated potential is marginal.
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