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We present results from a new ab initio method that uses the self-consistent Gorkov-Green’s function theory
to address truly open-shell systems. The formalism has been recently worked out up to second order and is
implemented here in nuclei on the basis of realistic nuclear forces. Benchmark calculations indicate that the
method is in agreement with other ab initio approaches in doubly closed shell 40Ca and 48Ca. We find good
convergence of the results with respect to the basis size in 44Ca and 74Ni and discuss quantities of experimental
interest including ground-state energies, pairing gaps, and particle addition and removal spectroscopy. These
results demonstrate that the Gorkov method is a valid alternative to multireference approaches for tackling
degenerate or near-degenerate quantum systems. In particular, it increases the number of mid-mass nuclei
accessible in an ab initio fashion from a few tens to a few hundred.
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Introduction. The reach of ab initio nuclear structure
calculations has been extended tremendously over the last
decade. Methods such as coupled-cluster (CC) [1], in-medium
similarity renormalization group (IMSRG) [2], or Dyson self-
consistent Green’s function [3] (Dyson-SCGF) have accessed
medium-mass nuclei up to A∼60 on the basis of realistic
two-nucleon (2N) and three-nucleon (3N) [4,5] forces. In their
current implementations, such methods are however limited to
doubly closed (sub)shell nuclei and their immediate neighbors
[6,7]. As one increases the nuclear mass, longer chains of
truly open shell nuclei connecting isolated doubly closed shell
ones emerge and cannot be accessed with existing approaches.
Many-body techniques that could tackle genuine (at least)
singly open shell systems would immediately extend the reach
of ab initio studies from a few tens to several hundreds of
mid-mass nuclei. It is the aim of the present work to propose
one manageable way to fill this gap.

Typically, open-shell systems can be dealt with via mul-
tireference schemes such as, e.g., multireference CC [8,9]
or configuration interaction techniques [2,10] that, however,
become quickly unfeasible for large model spaces. Keeping
the simplicity of a single reference method requires, in any of
these approaches, formulating the expansion scheme around
a reference state that can tackle Cooper pair instabilities, e.g.,
building the correlated state on top of a Bogoliubov vacuum
that already incorporates static pairing correlations. A single
reference can thus be retained at the price of breaking the sym-
metry associated with particle-number conservation. The
associated contamination of the results that arises in finite
systems eventually calls for the restoration of the broken sym-
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metry [11]. Recently, Bogoliubov-based many-body methods
have been imported to quantum chemistry to deal with near
degeneracies and nondynamical correlations and have proven
to be extremely powerful [12]. Further extension to calculate
affinities and ionization energies would require an electron
attachment and removal formalism such as the one employed
here.

The present work discusses initial applications of extending
Dyson-SCGF theory to the Bogoliubov algebra [13]; i.e.,
we carry out the ab initio Gorkov-SCGF formalism [14]
in finite nuclei. The results confirm that this approach is
computationally feasible. Thus, the method is applicable to
several isotopic and isotonic chains of interest—e.g., oxygen,
calcium, nickel, N = 20, and N = 28—that include several
isotopes previously not reachable by ab initio approaches.
Another specific benefit is to eventually provide a way to
understand microscopically and quantitatively the processes
responsible for the superfluid character of atomic nuclei [15].
The Gorkov-SCGF method could also be used to extend to
harmonic confining potentials calculations of homogeneous
ultracold Fermi gases throughout the BCS-BEC crossover
[16]. In the present application normal and anomalous self-
energies are calculated up to second order and on the basis
of 2N interactions only. This constitutes a Kadanoff-Baym
�-derivable approximation [17]; as such, the method involves
dressed propagators and is thus intrinsically nonperturbative.
In the short-term future, the objectives are to incorporate 3N in-
teractions into the framework and to generalize state-of-the-art
nth-order algebraic diagrammatic construction [ADC(n)] [18]
and Faddeev random-phase approximation [19,20] truncation
schemes to the Gorkov context.

Below, we present proof-of-principle calculations of sys-
tems in the calcium isotopic chain and benchmark them
to state-of-the-art CC and Dyson-SCGF methods for closed
shells. The open-shell 44Ca and 74Ni nuclei are then taken as
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specific examples to illustrate the binding energy convergence
with respect to the size of the harmonic oscillator basis
used to expand the many-body problem. Observables of
experimental interest including radii and pairing gaps, as well
as spectroscopy of adjacent isotopes, are discussed. Eventually,
the effective neutron shell structure [13,21,22] is displayed.

Method. Results displayed in the present work strictly
rely on the formalism detailed in Ref. [13]. Given the
intrinsic Hamiltonian Hint ≡ T + V − TCM , Gorkov-SCGF
theory targets the ground state |�0〉 of the grand-canonical-like
potential � ≡ Hint − μA, where μ is the chemical potential
and A is the particle-number operator, having the number A =
〈�0|A|�0〉 of particles on average.1 The complete one-body
information contained in |�0〉 is embodied in a set of four
Green’s functions2 Ggg′

(ω) known as Gorkov propagators [14].
Their matrix elements read in the Lehmann representation as

G11
ab(ω) =

∑
k

{
Uk

a Uk∗
b

ω − ωk + iη
+ V̄ k∗

a V̄ k
b

ω + ωk − iη

}
, (1a)

G12
ab(ω) =

∑
k

{
Uk

a V k∗
b

ω − ωk + iη
+ V̄ k∗

a Ū k
b

ω + ωk − iη

}
, (1b)

G21
ab(ω) =

∑
k

{
V k

a Uk∗
b

ω − ωk + iη
+ Ū k∗

a V̄ k
b

ω + ωk − iη

}
, (1c)

G22
ab(ω) =

∑
k

{
V k

a V k∗
b

ω − ωk + iη
+ Ū k∗

a Ū k
b

ω + ωk − iη

}
. (1d)

The poles of the propagators are given by ωk ≡ �k − �0,
where the index k refers to normalized eigenstates of � that
fulfill

� |�k〉 = �k |�k〉. (2)

The residue of Ggg′
(ω) associated with pole ωk relates to the

probability amplitude Uk (Vk) to reach state |�k〉 by adding
(removing) a nucleon to (from) |�0〉 on a single-particle state.3

Self-consistent, i.e., dressed, propagators are solutions of
Gorkov’s equation of motion(

T + �11(ω) − μ 1 �12(ω)

�21(ω) −T + �22(ω) + μ 1

)∣∣∣∣
ωk

(
U

V

)
k

= ωk

(
U

V

)
k

, (3)

whose output is the set of (U, V)k and ωk . Equation (3) reads
as an eigenvalue problem in which the normal [�11(ω) and

1Any consideration associated with A = N + Z applies in fact
separately to the number of protons, Z, and to the number of
neutrons, N .

2Vectors and matrices defined on the one-body Hilbert space H1 are
denoted as bold quantities throughout the paper.

3The component of vector Uk associated with a single-particle state
a is denoted by Uk

a . Correspondingly, the component associated with
the time-reversed state ā (up to a phase ηa) is denoted by Ū k

a [13].

�22(ω)] and anomalous [�12(ω) and �21(ω)] irreducible self-
energies act as energy-dependent potentials. Eventually, the
total binding energy of the A-body system is computed via the
Koltun-Galitskii sum rule [23]:

EA
0 = 1

4πi

∫
C↑

dω TrH1 [G11(ω)[T + (μ + ω) 1]]. (4)

Separation energies between the A-body ground state and
eigenstates of A ± 1 systems are related to the poles ωk through

E±
k ≡ μ ± ωk = ±[〈�k|Hint|�k〉 − 〈�0|Hint|�0〉]

∓μ[〈�k|A|�k〉 − (A ± 1)], (5)

where the error associated with the difference between the
average number of particles in state |�k〉 and the targeted
particle number A ± 1 is taken care of by the last term
of Eq. (5). Spectroscopic factors associated with the direct
addition and removal of a nucleon are defined as

SF+
k ≡ TrH1 [UkU†

k] and SF−
k ≡ TrH1

[
V∗

kVT
k

]
. (6)

In open-shell nuclei, the odd-even staggering of nuclear masses
is a fingerprint of pairing correlations and offers, through
finite odd-even mass difference formulas, the possibility to
extract the pairing gap. The most commonly used [24] three-
point-mass difference formula 	(3)

n (A) equates the pairing gap
with the Fermi gap in the one-nucleon addition and removal
spectra E±

k , e.g., 	(3)
n (A) ≡ (−1)A[E+

0 − E−
0 ]/2. One-body

observables such as mass or charge radii can be easily com-
puted from G11(ω) [13]. Moreover, effective single-particle
energies (ESPEs) introduced by Baranger as centroids ecent

a of
one-nucleon addition and removal spectra E±

k can be naturally
computed in the present context [13]. Last, but not least, the
normal self-energy �11(ω) is identified with the microscopic
nucleon-nucleus optical potential [25,26], allowing for the
computation of scattering states [27].

Proceeding to actual Gorkov-SCGF calculations, we retain
both first- and second-order diagrams in the expansion of
the four self-energies �gg′

(ω) [13]. At first order in vac-
uum interactions, Eq. (3) reduces to an ab initio Hartree-
Fock-Bogoliubov (HFB) problem with static, i.e., energy-
independent, normal and anomalous self-energies accounting
for Hartree-Fock and Bogoliubov diagrams, respectively. The
HFB solution is used as a reference state to generate second-
order diagrams. In the present application, self-consistency
is limited to the static part [28] �gg′

(∞) of the self-energy.
This constitutes the so-called sc0 approximation that grasps
the dominant fraction of self-consistency effects at a tractable
numerical cost [20]. All technical aspects will be reported in
a forthcoming publication.

Results. Figure 1 displays the binding energies of calcium
isotopes and compares them to single-reference CC and
Dyson-SCGF for closed-shell 40Ca and 48Ca. Calculations
are performed in a fixed model space of eight harmonic
oscillator shells, Nmax = max (2n + l) = 7, and oscillator
energy h̄ω = 12 MeV. A G-matrix [29] interaction based on
the realistic Argonne AV18 potential [30] and fixed starting
energy ωst = −40 MeV is used. Already at second order in the
self-energy, Gorkov-SCGF can provide comparable accuracy
to CC singles and doubles (CCSD). Higher order corrections
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FIG. 1. (Color online) Binding energy of Ca isotopes from (sc0)
second-order Gorkov-SCGF obtained in a fixed model space of eight
shells. Gorkov propagators are calculated for even A (filled symbols)
while odd-A results (open symbols) are computed according to the
prescription of Ref. [24].

introduced by triples [
-CCSD(T)] [9] are closely reproduced
by Dyson-SCGF in the ADC(3) approximation [18] after
including doubles corrections to its coupling amplitudes
[ADC(3)-D] [3]. Since the extension of Gorkov’s formalism
to ADC(3) schemes is within computational reach, this gives
confidence that Gorkov-SCGF calculations can be improved
to the desired accuracy. Note that earlier calculations with
second-order self-energies already gave quantitative results,
although these were limited to small model spaces and
closed-shell systems [31,32]. The findings shown in Fig. 1
demonstrate the feasibility of first-principle calculations along
full isotopic chains and constitute the main result of the present
work.

Let us now go to larger model spaces and discuss the two
examples of mid-shell 44Ca and 74Ni. In the following, calcu-
lations are performed with a next-to-next-to-next-to-leading-
order (N3LO) 2N chiral interaction [33] complemented by
the Coulomb force and evolved using free-space similarity
renormalization group (SRG) [34] to λ = 2.0 fm−1. Figure 2
displays the binding energy of 74Ni as a function of the
harmonic oscillator spacing h̄ω and for an increasing size,
Nmax, of the single-particle model space. The convergence
pattern obtained here on the basis of a soft 2N interaction is

FIG. 2. (Color online) Binding energy 74Ni as a function of the
harmonic oscillator spacing h̄ω and for an increasing size Nmax of
the single-particle model space. Results are from (sc0) second-order
Gorkov-SCGF calculations. The insert show an enlargement of the
most converged results.

TABLE I. Binding energy, neutron pairing gap, and matter root-
mean-square radius. Results are from second-order (sc0) Gorkov-
SCGF calculations and are extrapolated to infinite oscillator basis size
using the method of Ref. [35]. The extrapolation error is indicated
only when it is bigger than the last digit shown.

EA
0 (MeV) 	(3)

n (A) (MeV) rrms (fm)

44Ca − 669.6(1) 1.16 2.48
74Ni − 1269.7(2) 1.17(1) 2.75

similar to those generated for doubly closed shell nuclei with
currently available ab initio methods. Overall, convergence
is well attained for Nmax = 13. In 44Ca, going from Nmax =
11 to Nmax = 13 lowers the minima by just a few keV.
Also, the binding energy calculated for Nmax = 13 varies
by less than 200 keV over a wide range of h̄ω values.
In 74Ni, going from Nmax = 11 to Nmax = 13 yields an
additional 600 keV, while scanning a large range of oscil-
lator frequencies only changes the binding energy by about
1 MeV.

Table I gives examples of observables of interest in
the ground state of 44Ca and 74Ni. The values quoted are
extrapolated to infinite oscillator basis size using the method
proposed in Ref. [35]. Note that the present results nicely
demonstrate the feasibility of Gorkov-SCGF in the medium-
mass region but are not expected to reproduce the experiment.
Issues related to overbinding of SRG-evolved 2N interactions
are known to be resolved by including 3N forces [4,5,36] and
this is also confirmed by preliminary work in which 3N forces
are approximately added to Gorkov-SCGF [37]. For example,
3N forces raise the radius of 44Ca to 2.94 fm (closer to the
experimental value of 3.52 fm) and the neutron f7/2-d3/2 shell
gap is reduced to 7.2 MeV, in agreement with the data-driven
predictions of Ref. [38].

Figure 3 displays one-neutron addition and removal spectral
strength distributions (SSDs) in 44Ca. Results are shown over
a large range of final states in 43Ca and 45Ca characterized by
spectroscopic factors as small as 0.2%. One observes a frag-
mentation of the spectroscopic strength that is characteristic of
correlated many-body systems. Overall the pattern is similar
to the one found in doubly magic nuclei [3]. Close to the
Fermi energy, however, one notices a feature that is unique to
open-shell nuclei; i.e., the 7/2− strength is equally fragmented
into addition and removal channels, which results in the fact
that both 43Ca and 45Ca ground states have angular momentum
and parity Jπ = 7/2−. This reflects static pairing correlations
that manifest themselves as a result of emerging degeneracies
in the ground state of open-shell nuclei. It is the main strength
of Gorkov-SCGF theory to explicitly handle such degeneracies
and the resulting pairing correlations.

The right column in the upper panel of Fig. 4 shows an
enlargement of Fig. 3 around the Fermi energy for states
with spectroscopic factors larger than 10%. The left column
provides the same quantities for first-order (i.e., HFB) calcu-
lations. The center column displays effective single-neutron
energies. The same information is provided for 74Ni in the
lower panel of Fig. 4. The main fragmentation of the strength is
absent from first-order calculations; i.e., it is due to dynamical
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FIG. 3. (Color online) One-neutron addition and removal spectral
strength distributions in 44Ca obtained from second-order (sc0)
Gorkov-SCGF calculations. For each final state in 43Ca (left to the
dashed line) and in 45Ca (right to the dashed line), the spectroscopic
factor is plotted as a function of its separation energy to the
ground state of 44Ca. Energies above 0 MeV correspond to n + 44Ca
scattering states [27]. Final states with different J π values are
separated for clarity. Results correspond to the minimum energy at
Nmax = 13 and h̄ω = 22 MeV. Although center-of-mass motion is
subtracted by using Hint, the variation of that correction going from
A to A ± 1 is neglected. The associated error is small in medium-mass
nuclei.

correlations that come in at second and higher orders and
that are qualitatively the same as for closed-shell nuclei. In
contrast, the fragmentation of the strength in the vicinity of
the Fermi energy into two peaks of (essentially) equal strength
is qualitatively accounted for at first order and thus relates
predominantly to static pairing correlations.

One observes that the position of the dominant peak of a
given Jπ value is significantly modified by second-order ef-
fects such that the corresponding spectrum is more compressed
than at first order. Further compression is expected from
addition of 3N forces and coupling to collective fluctuations
as in ADC(3).

Effective single-particle energies recollect the fragmented
strength [13,21,22] from both one-nucleon addition and re-
moval channels. Many-body correlations are largely screened
out from ESPEs, which picture the averaged single-nucleon
dynamics inside the correlated system. Two different features
are identifiable in the ESPE spectrum ecent

a when compared
to observable one-nucleon addition and removal spectra E±

k .
The ESPE ecent

1f7/2
(ecent

1g9/2
) located at the Fermi energy recollects

the strength of the two equally important 7/2− (9/2+) states.
Other ESPEs recollect the strength of a low-lying dominant
peak and of a highly fragmented strength distributed at higher
excitation energies such that they move away from the Fermi
energy to closely match first-order, i.e., HFB, peaks. This is

FIG. 4. (Color online) Left: One-neutron addition and removal
spectral strength distribution obtained from first-order (HFB)
Gorkov-SCGF calculations. Right: Same as left panel for second-
order (sc0) calculations. Center: Baranger ESPEs reconstructed from
second-order (sc0) Gorkov-SCGF calculations. Upper panel: 44Ca.
Lower panel: 74Ni.

consistent with the fact that ESPEs inform on the averaged,
mean-field-like, one-nucleon dynamics.

Conclusions. We have presented calculations of medium-
mass (truly) open-shell nuclei from first principles. Such
calculations are based on the implementation of self-consistent
Gorkov-Green’s function theory on the basis of realistic
nuclear interactions that was recently suggested in Ref. [13].
Taking 44Ca and 74Ni as test cases, we have demonstrated
the good convergence with respect to the basis size and
discussed the possibility of extracting several quantities of
experimental interest including ground-state energies, pairing
gaps, and particle addition and removal spectroscopy. Com-
parison with other ab initio calculations for closed shells
40Ca and 48Ca shows that the method is capable of high
accuracy upon extension to the state-of-the-art Dyson-SCGF
technique and incorporation of three-nucleon interactions.
Work in this direction is in progress. The present results
open a path to increase the reach of ab initio theory
in the mid-mass region tremendously. This will allow, in
the near future, to perform systematic studies over long
isotopic and isotonic chains, up to nickel and to N = 28
or 32.
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