
RAPID COMMUNICATIONS

PHYSICAL REVIEW C 87, 011301(R) (2013)

Prolate, oblate, and triaxial shape coexistence, and the lost magicity of N = 28 in 43S
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We report the low-lying spectrum and collective β and γ deformation of 43S as investigated by antisymmetrized
molecular dynamics. Our result successfully explains the observed data including an isomeric 7/2−

1 state and
illustrates the coexistence of the prolate-deformed ground band with a vanishing N = 28 shell gap, a triaxially
deformed isomeric state, and an oblate-deformed excited band at very low excitation energies.
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The erosion of the shell gap and the migration of neutron
magic numbers such as N = 8 [1] and 20 [2] far from stability
have been important and fascinating subjects in nuclear
structure physics [3]. The N = 28 shell closure in neutron-rich
Si and S isotopes has received considerable experimental
[4–13] and theoretical attention [14–23]. Experimental data
[5,6,8–11] indicate gradual quenching of the N = 28 shell
gap toward neutron-rich isotones and the onset of deformation
in N ≈ 28 S and Si isotopes. Unlike the case of smaller
magic numbers, the neutron single-particle levels f7/2 and
p3/2 that compose the N = 28 shell gap belong to the same
major shell in the absence of spin-orbit splitting, and their
angular momentum differs by 2. Therefore, we can expect that
quenching of the N = 28 shell gap induces strong quadrupole
correlations, which will lead to the coexistence of various
deformed states [24]. For example, observation of low-lying
states [25] and theoretical calculations [22,23] suggest shape
coexistence in 44S.

In the vicinity of 44S, 43S is of particular importance and
interest for the following reasons. First, 43S has an odd number
of neutrons. Thus, its low-lying spectrum provides direct
information on the neutron single-particle levels. Second, and
more importantly, it is believed to have a prolate-deformed
ground state and a very low-lying isomeric 7/2−

1 state at
319 keV, which has been interpreted in the shell model frame-
work as resulting from an inversion of the normal (νf7/2)−1

and deformed intruder (νp3/2)1 configurations [12]. More
recently, measurement of the electric quadrupole moment of
the 7/2−

1 state [26] has shown that it deviates from the pure
spherical (νf7/2)−1 configuration, suggesting possible shape
coexistence driven by quenching of the N = 28 shell gap
and the resulting strong quadrupole correlation. Therefore,
a theoretical calculation that can describe the quadrupole
collectivity in a large model space is essential for revealing
the nature of this shape coexistence far from stability.

In this Rapid Communication, we report triaxial deforma-
tion of the isomeric 7/2−

1 state and the shape coexistence of
prolate, triaxial, and oblate deformation of 43S at excitation
energies of less than 2 MeV. We apply the antisymmetrized
molecular dynamics (AMD), which has already been suc-
cessfully applied to the breaking of neutron magic number

N = 8 [27–29] and 20 [30–32], combined with the generator
coordinate method (GCM) using generator coordinates of the
quadrupole deformation parameters β and γ . We use the
Hamiltonian,

H = T − Tg + VN + VC, (1)

where T and Tg represent the kinetic energies of the nucleons
and the center-of-mass motion, respectively. The Gogny D1S
interaction [33] is used as the effective nucleon-nucleon inter-
action VN , and the Coulomb interaction VC is approximated
by a sum of 12 Gaussians. The variational wave function
�π is represented by a parity-projected Slater determinant
of deformed Gaussian wave packets [34]:

�π = P πA{ϕ1, ϕ2, . . . , ϕA}, ϕi(r) = φi(r)χiξi, (2)

φi(r) = exp

{
−

∑
σ=x,y,z

νσ

(
rσ − Ziσ√

νσ

)2
}

,

(3)
χi = aiχ↑ + biχ↓, ξi = {p or n},

where P π is the parity projector. Because we do not assume
any spatial and time-reversal symmetry, there is no difficulty
in AMD to describe of the odd-mass system. In this study
we discuss the negative-parity states which dominate the
low-lying states of 43S. Zi , ai , bi , and νσ are the parameters
variationally determined with a constraint on the nuclear
quadrupole deformation parameters β and γ . The constraint
is imposed on discrete sets of (β, γ ) on the triangular lattice
in the β-γ plane from β = 0 to 0.75 at intervals of 0.03.
A similar constraint on nuclear quadrupole deformation has
already been applied in studies of light nuclei by AMD [35,36].
After the variational calculation, we project eigenstates of the
total angular momentum from the variational results:

�Jπ
MK (β, γ ) = P J

MK�π (β, γ ). (4)

Here P J
MK is the angular momentum projector. In the fol-

lowing, we refer to the wave function �Jπ
MK (β, γ ) as the K

state. The calculation is completed by the GCM. The K states
�Jπ

MK (β, γ ) that have the same parity and angular momentum
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but different K values and deformations (β, γ ) are superposed:

�Jπ
α =

∑
i

J∑
K=−J

cKiα�Jπ
MK (βi, γi), (5)

where the quantum numbers except for the total angular
momentum and the parity are represented by α, and the
rotational motion with respect to any axis is taken into
account by the superposition of all possible values of K .
The coefficients cKiα are determined by solving the Hill-
Wheeler equation. We call this solution the triaxial GCM. To
investigate the effects of triaxial deformation, we also perform
a symmetry-restricted GCM calculation, the axial GCM, in
which the basis wave functions are limited to the states with
γ = 0◦ or 60◦. To discuss the fluctuation of the triaxial GCM
wave function in the β-γ plane, we use the overlap between
the triaxial GCM wave function and the K states:

OJπ
Kα(β, γ ) = ∣∣〈�Jπ

MK (β, γ )
∣∣�Jπ

α

〉∣∣2
, (6)

which we call the GCM overlap. We comment on the treatment
of the pairing correlation. By the variational calculation,
we obtain local energy minima with different particle-hole
configurations for every given value of β and γ . For example, at
the spherical limit, we obtain the local energy minimum with a
(νp3/2)−1(νf7/2)2 configuration as well as the energy minimum
with a (νf7/2)−1 configuration. All of those minima are also
included as the GCM basis, and hence, most of the important
configurations for the pairing correlation are included in the
present calculation, although the coupling with the continuum
is missing. As a successful example, readers are directed to
Ref. [31] in which the low-lying spectrum of 31Mg is predicted;
this spectrum has recently been confirmed by experiments [37].

Before discussing our results, it is helpful to review the
present experimental information on 43S. Figures 1(a) and 1(b)
show the observed spectra of the N = 27 isotones 47Ca
and 43S. The 2-MeV shell gap between 0f7/2 and 1p3/2

in the spectrum of 47Ca confirms a magicity of N = 28.
For 43S, five states including the ground state are reported.
The isomeric state at 319 keV is identified as 7/2− on the
basis of magnetic moment measurement [12], and a 3/2−
assignment of the ground state is suggested by the hindered
deexcitation from the isomeric state [12]. Thus, the order of
the 7/2−

1 and 3/2−
1 states is inverted. An interesting point is
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FIG. 1. (Color online) Observed and calculated low-lying spectra
of 47Ca and 43S, respectively. Panels (a) and (b) show the observed
spectra of 47Ca and 43S. Panels (c) and (d) show the 43S spectra
calculated using triaxial and axial GCM, respectively.

that another low-lying 7/2− state is suggested at 940 MeV
[8,13]. These two 7/2− states have quite different strengths
of the E2 transition probabilities to the ground state. The
transition from the 7/2−

1 state has a strongly hindered value,
B(E2 ↓) = 0.403 e2 fm4 [12], whereas the 940 keV state has a
large value, B(E2 ↓) = 87.5 e2 fm4 [7]. These measurements
and shell model calculations suggest the shape coexistence of
the intruder and normal states [11,12]. In particular, the ground
state and the 940-keV state constitute a prolate-deformed
ground band with a configuration of (νp3/2)1, and the isomeric
7/2−

1 state is a normal (νf7/2)−1 configuration. Moreover, a
recent measurement of the electric quadrupole moment [26]
revealed a deviation of the 7/2−

1 state from the pure spherical
state, which agrees with a shell model calculation using the
SDPF-U interaction. The other two excited states at 1.154 and
2.614 MeV are tentatively assigned to the 5/2− or 7/2− states
in Ref [13].

Now we examine our results, beginning with Fig. 1(c).
The calculated low-lying states can be classified into three
groups, the prolate-deformed, triaxially deformed, and oblate-
deformed states, as explained below. The ground state is
the 3/2−

1 state, as suggested in Ref. [12]. It is followed by
the 1/2−

1 state at 80 keV, the 7/2−
2 state at 1.09 MeV, and

so forth, which constitute the prolate-deformed Kπ = 1/2−
rotational band with Coriolis decoupling. The first 7/2− state
is located at 410 keV with triaxial deformation. The 9/2−

1
state at 1.54 MeV has a triaxially deformed intrinsic structure
similar to that of the 7/2−

1 state. Finally, the 3/2−
2 state at

1.80 MeV is oblate deformed, followed by the 5/2−
2 and 7/2−

3
states located at 2.49 and 2.94 MeV, respectively. All these
low-lying states are deformed; and hence, all values of the
B(E2) connecting the states with similar deformations are not
small, as listed in Table I. However, the transitions between
states with different deformations are hindered; consequently,
the 7/2−

1 state is long-lived. As shown in Tables I and II, the
agreement of the observed excitation energies, B(E2) values,
and electromagnetic moments is quite satisfactory without the
use of any effective charges or quenching factors. Hence, we
can assign the calculated 7/2−

1 state to the observed isomeric
319-keV state and the 7/2−

2 state to the 940-keV state without
ambiguity. Note that the deviation of the 7/2−

1 state from a
pure spherical state suggested by the B(E2) strength and its
quadrupole moment is attributed to triaxial deformation, as
explained below.

The characteristics of the three groups can be understood
by considering the energy surfaces, the neutron single-particle
energies, and the GCM overlap. The negative-parity energy
surface before angular momentum projection [Fig. 2(a)] shows
that this nucleus is quite soft and flat against both β and γ

deformation at β < 0.3, which is in contrast to the shape-
coexisting nuclei with heavier masses such as Zr, Kr, and Pb
isotopes where the minima with different deformations are
well separated by the potential barrier [38]. In this region,
the N = 28 shell gap varies and even vanishes depending on
β and γ , which is confirmed by the neutron single-particle
energies in Fig. 3 calculated using the AMD + Hartree-Fock
method [39]. The N = 28 shell gap which is approximately
4 MeV at a spherical shape decreases rapidly as the prolate
deformation grows and the intruder orbit originating in the
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TABLE I. Calculated B(E2; Ji → Jf ) and B(M1; Ji → Jf )
strengths. Numbers in parentheses are the observed values [7,12].
B(E2) values smaller than 5 e2 fm4 are not shown, except for
the transition from the 7/2−

1 state to the 3/2−
1 state. In the first

column, p, t, and o denote prolate-deformed, triaxially deformed,
and oblate-deformed states, respectively.

Def. Ji Jf B(M1) (μ2
N ) B(E2) (e2 fm4)

p → p 3/2−
1 1/2−

1 0.17 90.1
5/2−

1 1/2−
1 – 91.7

5/2−
1 3/2−

1 0.05 24.6
7/2−

2 3/2−
1 – 100.6 (87.5)

7/2−
2 5/2−

1 0.18 14.3
9/2−

2 5/2−
1 – 132.4

9/2−
2 7/2−

2 0.05 7.8
11/2−

1 7/2−
2 – 108.9

11/2−
1 9/2−

2 0.08 15.4
t → t 9/2−

1 7/2−
1 0.48 115.9

11/2−
2 7/2−

1 – 22.1
11/2−

2 9/2−
1 0.53 87.6

o → o 5/2−
2 3/2−

2 0.34 109.8
7/2−

3 3/2−
2 – 39.9

7/2−
3 5/2−

2 0.54 68.2
t → p 7/2−

1 3/2−
1 – 0.1 (0.45)

t → o 7/2−
1 3/2−

2 – 13.4
7/2−

1 5/2−
2 0.02 8.9

9/2−
1 5/2−

2 – 13.3

spherical p3/2 level appears around β = 0.2. At large prolate
deformation (β > 0.3), the N = 28 shell gap is completely
lost. In the triaxially deformed region, the order of the orbits
originating in the spherical f7/2 and p3/2 levels is reversed, and
for β = 0.3, the reversal occurs around γ = 20◦. On the oblate
side, the intruder orbit stays much higher than f7/2 and the N =
28 magicity is maintained well. Therefore, at large prolate
deformation the intruding (νp3/2)1 configuration dominates,
whereas the normal (νf7/2)−1 configuration dominates the
oblate side, and both normal and intruder configurations
coexist in the triaxial region. This behavior of the neutron
single-particle levels qualitatively agrees with that of 44S [17].

FIG. 2. (Color online) (a) Negative-parity energy surface in the
β-γ plane obtained by variation after parity projection. The red line
shows the deformation path along which the neutron single-particle
energies are shown in Fig. 3. (b)–(f) Energy surfaces and GCM
overlaps. Contours show the energy surface at intervals of 1 MeV
for the K state which has the largest overlap with each state. Color
plots show the GCM overlap with the K state.

We examine the nature of the low-lying states by referring
to the GCM overlap (Fig. 2) and the behavior of the N =
28 shell gap (Fig. 3). The ground state is dominated by the
Kπ = ±1/2− states; the contour in Fig. 2(b) shows its energy
surface. The GCM overlap between the ground state and the
Kπ = 1/2− state, shown by the color plot in Fig. 2(b), is
concentrated in the prolate-deformed region with β > 0.2 and
γ < 20◦, which means that the intruder (νp3/2)1 configuration
is dominant. The 7/2−

2 state [Fig. 2(c)] has a quite similar
nature; i.e., Kπ = ±1/2 states are the dominant component of
this state and the GCM overlap is concentrated in the prolate
side. This shows that the ground state and the 7/2−

2 state belong
to the same rotational band and explains the origin of the large
B(E2) between them. Other states with prolate deformation,
such as the 1/2−

1 and 5/2−
1 states also dominated by the Kπ =

±1/2− states, their GCM overlap have maxima in the prolate-
deformed region as listed in Table II. The electromagnetic
properties of these band members (Tables I and II) also support
the “particle plus rotor” nature. To experimentally confirm the

TABLE II. Calculated excitation energies, deformation parameters, and electromagnetic moments. Numbers in parentheses are the observed
values [12,13,26]. The deformation parameters are the averaged value weighted by the squared GCM amplitude |cKia |2 in Eq. (5).

Def. J π Ex (MeV) β γ (deg.) Q (e fm2) μ (μN )

p 3/2−
1 0.0 0.32 6 −13.2 −0.60

1/2−
1 0.08 0.30 6 – 0.71

7/2−
2 1.09 0.30 8 −22.0 −0.24

5/2−
1 1.32 0.29 7 −20.1 1.45

11/2−
1 3.07 0.26 8 −25.4 0.41

9/2−
2 3.29 0.30 8 −21.4 1.26

t 7/2−
1 0.41(0.319) 0.24 23 26.1 (23) −1.08(−1.11)

9/2−
1 1.54 0.28 27 7.28 −0.19

11/2−
1 3.52 0.21 21 −5.35 0.41

o 3/2−
2 1.80 0.13 56 12.1 −0.82

5/2−
2 2.49 0.16 53 −7.0 0.14

7/2−
3 2.94 0.15 51 −11.1 0.39
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FIG. 3. (Color online) Neutron single-particle energies as a
function of the quadrupole deformation parameters β and γ along
the fan-shaped path shown in Fig. 2(a). The blue (red) line indicates
an orbit originating in the spherical f7/2 (p3/2) orbit. Lines (with open
and solid circles) show unoccupied levels (levels occupied by one and
two neutrons).

prolate-deformed Kπ = 1/2− ground band, the identification
of the 1/2−

1 state predicted at 80 keV is essential.
The isomeric 7/2−

1 state has different characteristics and
mainly consists of Kπ = ±7/2− states. Figure 2 (d) shows the
energy surface of the Kπ = 7/2− state and its GCM overlap
with the 7/2−

1 states. Both the energy surface and the GCM
overlap show triaxial deformation of this state, indicating that
both normal (νf7/2)−1 and intruder (νp1/2)1 configurations
contribute to it because of the enhanced quadrupole correlation
triggered by the quenching of the N = 28 shell gap. This result
explains the hindered B(E2) between this isomeric state and
the ground state, because the K quantum numbers in these
states differ by more than 2 (Kπ = ±1/2− states dominate the
ground band, while Kπ = ±7/2− states dominate the 7/2−

1
state), and their deformations also differ. The 9/2−

1 and 11/2−
2

states have the same characteristics as the 7/2−
1 state [see

Fig. 2(e) for the 9/2− state]. They are also dominated by the
Kπ = ±7/2− states and the GCM overlaps are concentrated
in the triaxially deformed region. An interesting and important
point is that the B(E2) between the 7/2−

1 , 9/2−
1 , and 11/2−

2
states are large enough such that the 7/2−

1 state cannot be
interpreted as spherical, which is also discussed in Ref. [26].
We also note that the B(M1) values connecting the triaxially
deformed states (Table II) are larger than those of the ground
band and the shell model prediction [12]. Different from
the ground band, the proton orbital angular momentum part
contributes to the M1 matrix element and it has the same sign

as the neutron spin part. Those enhanced B(E2) and B(M1)
are further evidence for the deviation of the 7/2−

1 state from a
spherical shape and its triaxial deformation.

Finally, the energy surface and GCM overlap of the
3/2−

2 state are shown in Fig. 2(f). This state exhibits oblate
deformation with β < 0.3 and γ ≈ 60◦ and is dominated
by the Kπ = ±3/2− state. The 5/2−

2 and 7/2−
3 states are

also dominated by the Kπ = ±3/2− state and are classified
as oblate states. In these oblate-deformed states, the normal
(νf7/2)−1 configuration dominates and the N = 28 shell gap
remains large. However, the fact that B(E2) is large and the
quadrupole moment is not small again indicates deviation from
the spherical shape, which will also be important information
for experimentally identifying shape coexistence. Similar to
the triaxially deformed states, B(M1) values connecting the
oblate-deformed states are also enhanced, which is again due
to the contribution from the proton orbital angular momentum
part. Thus, the coexistence of the prolate-deformed, triax-
ially deformed, and oblate-deformed states below 2 MeV
is predicted. The importance of triaxial deformation of the
7/2−

1 state is also confirmed by the axial GCM [Fig. 1(d)].
Although the properties of the prolate-deformed band are
qualitatively the same as those obtained by the triaxial GCM,
the axial GCM fails to reproduce the excitation energy and
the quadrupole moment of the 7/2−

1 state (Ex = 2.1 MeV and
Q = 6.7 e2 fm2).

To summarize, we investigated the low-lying spectrum of
43S by AMD. The coexistence of prolate-deformed, triaxially
deformed, and oblate-deformed states owing to the strong
quadrupole correlations triggered by quenching of the N = 28
shell gap is predicted. The ground band is a prolate-deformed
rotational band with a broken N = 28 magicity. On the other
hand, the isomeric 7/2−

1 state at 319 MeV is interpreted
as a triaxial state with a mixture of normal and intruder
configurations. An oblate band with a normal configuration
starting at the 3/2−

2 state at 1.8 MeV is predicted. The calcu-
lated prolate-deformed ground state and triaxially deformed
7/2−

1 state plausibly explain the available data. Experimental
information on the 1/2−

1 state, B(E2; 9/2−
1 → 7/2−

1 ), and
the identification of the oblate band will be important for
establishing the coexistence of the various deformed states
driven by the quenching of the N = 28 shell gap.
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