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Fine structure in α decay of even-even trans-lead nuclei:
An insufficiently exploited spectroscopic tool
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The experimental values of both branching ratios and hindrance factors for the alpha decay of even-even
trans-lead nuclei, corresponding to the 2+

1 , 4+
1 , and 6+

1 excited states in the daughter nucleus, are examined within
the valence correlation scheme. Existing calculations do not reproduce certain conspicuous features of these data
in the deformed nuclei region, thus leaving open the question of what details of nuclear structure in this region
are responsible for these effects.
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Although it is one of the oldest observed nuclear structure
phenomena, alpha decay remains a very important experimen-
tal tool for the investigation of unstable nuclei, especially the
superheavy ones. The fine structure of the alpha decay was
experimentally observed by Salomon Rosenblum in 1929 [1],
and, soon after that, explained by Gamow [2] as due to the
population of the ground and excited states in the daughter
nucleus.

The population of the excited states in the residual nucleus
is usually much weaker than that of the ground state, mainly
due to the different Q values, reflecting the strong energy
dependence of the penetrability of the alpha particle through
the nuclear and Coulomb potential barrier. On the other hand,
the population intensity of the excited states also contains im-
portant information on their structure. However, the theoretical
calculation of the absolute values of the alpha-decay rates is
a problem that is not fully solved yet. The best studied alpha-
decay processes are those implying the unhindered transitions
(with L = 0), that have mostly been measured for the ground
state to ground state transition of even-even nuclei, whereas
the population of the excited states in the daughter nuclei (the
fine structure of α decay), especially for nonzero spin states,
has been much less studied. In this work we show that the
experimental fine structure data for the yrast 2+, 4+, and 6+
states in even-even trans-lead daughter nuclei are not fully
understood by the current theoretical models of alpha decay,
implying that certain details of the structure of these states are
neglected, or even not understood. To this end, we review the
systematics of the experimental data [3–5] on the α-decay fine
structure measured for the even-even trans-lead nuclei.

The quantities experimentally determined in alpha decay
are the Q values (related to the excitation energies of the
daughter nucleus states), the branching ratios Br,i (for excited
states denoted by i), and the half-life T1/2 of the alpha-decaying
state in the parent nucleus (in our case, the 0+ ground state).
For each state i one defines a partial half-life T1/2,i = T1/2/Br,i

and a partial width �i = h̄ ln 2/T1/2,i . One usually factorizes
the widths as �i = δ2

i Pi where δ2 is called reduced width [6]
and mainly contains the nuclear structure information, while
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P is the penetrability of the alpha particle through the barrier.
For comparison with theory one also defines the hindrance
factors (HFs) as

HFi = δgs
2

δi
2 = �gs

�i

Pi

Pgs

= Br,gs

Br,i

Pi

Pgs

Thus, for the even-even nuclei the hindrance factor defined
for the ground state to ground state transition is, by definition,
HFgs = 1. As ratios of reduced widths, the HFs also contain
information on the structure of the states implied in the
decay process. On the other hand, they are model dependent
quantities because they contain the penetrabilities that can
be calculated in various ways. One should also emphasize
that the structure information obtained from the alpha decay
(the reduced widths) can be compared to similar spectroscopic
information obtained from the analysis of the α-pickup (d, 6Li)
direct reaction. However, there are reported only a few such
experiments for nuclei in our set, and their results corroborated
with those from alpha decay [7–9]. An extension of such stud-
ies to other (strongly radioactive) targets of interest in the re-
gion discussed here is undoubtedly a very difficult task, leaving
the alpha decay as the main spectroscopic tool for these nuclei.

An examination of the HFs known for parent nuclei with
Z � 82 was recently presented by us [10]. Most of the nuclei
in our set, i.e., those with mass number larger than about 220,
present collective features. It is well known that for collective
nuclei many properties, such as level energies, deformations,
B(E2) values, etc., scale very well within the so-called valence
correlation scheme (VCS), that is, they present rather compact
trends when represented as a function of such quantities as
NpNn [11], or P = NpNn/(Np + Nn) [12], which represent
good measures of the strength of the residual neutron-proton
interaction, and of the ratio between the strengths of the
neutron-proton and pairing interactions, respectively. Here,
Np (Nn) represent the numbers of active protons (neutrons)
counted with respect to the nearest magic number. In Ref. [10]
it was argued that these VCS representations should be useful
for the HF values because these are quantities that depend
only on the nuclear structure. Indeed, it was found that the
VCS representations display much more compact trajectories
for the HF values, than, e.g., the usual representation as
a function of the mass number A [10]. The advantages of
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FIG. 1. Relative branching ratios and hindrance factors (as
calculated in Ref. [15]) for the 2+

1 and 4+
1 states of collective nuclei,

represented as a function of the VCS P factor.

the VCS representations are (i) compact patterns with small
scattering of the data points, that can be used to predict HF
values in nuclei where these are not measured; (ii) removal of
the isobaric ambiguities (in our set of nuclei there are a number
of doublets, or even triplets of nuclei having the same mass);
(iii) the evolution as a function of P is easily related to that
of the collectivity. For these representations, against NpNn or
P , the active numbers of nucleons have been counted in the
daughter nucleus, considering 82 and 126 as magic numbers
for protons, and 126 and 184 as magic numbers for neutrons. In
principle, in counting the valence nucleon numbers one could
consider possible important subshell closures. Thus, Z = 114
may be considered a magic number for protons. However, in
our set there are only three nuclei (with Z = 100 and 104) past
the midshell in this case, their positions shifting downwards
in P (e.g., in Fig. 2, data for the 2+

1 state), but this would
not change the present discussion because they remain still
close to the systematic pattern. For the neutrons, one could
also consider other subshell closures, such as N = 148 or
N = 164 [13]. The graphs analogous to those in Fig. 1 present
in these cases a considerable scattering of the data points,
without a clear systematic emerging. Therefore, for the present
discussion we keep the “classical” magic numbers for this
region, as also considered in Refs. [11,12].

The results presented in Ref. [10] will now be briefly
discussed in connection with the model dependence of the
HFs. In Ref. [10] we have used the adopted HF values listed in
the ENSDF database [3], which are calculated according to an
old recipe of Preston [14] (spherical case, with a rectangular
potential well). Another definition often encountered is that of
Rasmussen [6] (also spherical case, but using a more realistic
nuclear potential). Deformation dependent penetrabilities, best
suited for most of the nuclei in our set, were also recently
considered (see, for example, Refs. [15,16]). We verified that
hindrance factors determined by using different calculations
for the penetrabilities generally differ from each other just in
absolute value, but present similar evolutions. Figure 1 shows
a comparison between the P representations of both relative
branching ratios Br,gs/Br,i and HFs of Ref. [15] for the 2+
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FIG. 2. Experimental relative branching ratios for the first three
excited states of the ground state (quasi)band, as a function of the P

factor, where P = NpNn/(Np + Nn). Note the scale differences for
the three states.

and 4+ states of collective nuclei (P � 4.0). One can clearly
see that the HFs (quantities that are corrected for the barrier
penetrability) present much more compact trajectories in this
representation.

Because only HFs were examined in Ref. [10], and they
depend on how the penetrabilities are calculated, here we
examine also the branching ratios, more exactly the ratios
Br,gs/Br,i , which are purely experimental quantities. Figure 2
shows their evolution as a function of P . The following three
features highlighted in Ref. [10] by the examination of the
HF’s are equally pronounced and visible in the evolution of
the relative branching ratios from Fig. 2: (i) a practically
exponential increase observed for the 2+ state for the collective
nuclei (with P � 4.0); (ii) a marked maximum around P ≈
7.5 for the 4+ state; (iii) a decrease for the 6+ state, in the
range P ∼ 4.0–7.0, a variation practically out of phase with
that of the 4+ state, after which there is a hint of stagnation
or even slight increase. Because these outstanding features
appear also in Br,gs/Br,i , one can exclude that their occurrence
in HFi may be an artifact introduced by the calculated barrier
penetrabilities, and it is very likely that they are related to
nuclear structure. The following discussion will concentrate on
the present status of the understanding of these fine structure
data in the frame of various recent theoretical approaches.

Figure 3 presents a comparison of the data from Fig. 2 with
results of two types of theoretical calculations, both based on
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FIG. 3. (Color online) Comparison of experimental relative
branching ratios for the three excited states with theoretical model
calculations. CPPMDN: Coulomb and proximity potential model for
deformed nuclei [18]; UMADAC unified model for alpha decay and
alpha capture [17]. Calculated data from the tables of Refs. [17,18].

the semiclassical WKB method: a unified model for α decay
and α capture (UMADAC) [17], and a Coulomb and proximity
potential model for deformed nuclei (CPPMDN) [18] (results
given in the tables of the papers). Very similar results are
provided by other calculations, such as those based on the
generalized liquid drop model [19], or those based on the
Gamow theory with a square well potential barrier penetration
[20]. One can see that a reasonable description is obtained with
CPPMDN for the vibrational and transitional nuclei (P below
∼4.0), while for the rest of the nuclei, especially the well
deformed ones (with large P ), none of these calculations is
able to explain the three main experimental features mentioned
above.

Figure 4 shows the same type of comparison as that from
Fig. 3, with results of stationary coupled channels calculations
[15,21]. Again, while for the vibrational and transitional nuclei
[21] a rather good agreement is achieved, for the deformed
nuclei [15] the exponential increase for the 2+ state and the
maximum observed for the 4+ state are not accounted for. A
similar disagreement persists for the HF values calculated in
Ref. [15].

More recent coupled channels calculations of Ni and Ren
[22], that take into account couplings between up to five
channels, report an improvement in the description of the fine
structure data. The results, essentially contained in their Fig. 1,
show that there is still some underestimation of the branchings
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FIG. 4. (Color online) Same as Fig. 3 for the 2+ and 4+ states,
but for calculations performed with stationary coupled channels
calculations for vibrational and transitional [21], and deformed [15]
nuclei, respectively.

for the 2+ state, that increases with the mass number (or P , in
our case). For the 4+ and 6+ states, although good agreement
is obtained for some particular nuclei, the scattering of the
points is relatively large, and the striking maximum of the 4+
state data (Fig. 2) is not described.

All theoretical calculations discussed above do not consider
details of the structure of the nuclear states implied in the
decay. Only in the coupled channels calculations a rigid rotor
model was employed for the deformed nuclei. Therefore it
looks interesting to find out whether the observed α-decay
fine structure effects, especially those in the region of the
deformed nuclei, may be correlated with the evolution of
different structure indicators.

Some structure indicators, such as R(4/2) = E(4+
1 )/E(2+

1 ),
the moment of inertia (as deduced from the energy of the 2+

1
state), the β2 (quadrupole) and β4 (hexadecapole) deformation
parameters, were examined in Ref. [10]. Their evolution
indicates a region with a normal, smooth transition from
vibrational to strongly deformed nuclei [12] [e.g., R(4/2)
reaches values larger than 3.25 already at P ≈ 5.0, thereupon
smoothly increasing towards 3.33 with increasing P ], and does
not correlate with any of the fine structure evolutions of the
branching ratios in α decay.

The deformed nuclei (with P � 5.0) were also examined
within the variable moment of inertia (VMI) model [23], by
fitting their yrast levels with the formula (also known as the
Harris parametrization)

E = 1

2
ω2

(
J0 + 3

2
ω2J1

)
.

While J0 is almost equal to the moment of inertia derived
with the rotational model formula from the energy of the 2+

1
state, the J1 parameter has an interesting evolution, namely it
decreases with increasing P [10]. Within the VMI [23], the
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FIG. 5. (Color online) Correlation between the hindrance factors
of the 2+

1 state (as calculated in Ref. [15]) and the inverse of the J1

Harris parameter which is proportional (see text) with the rigidity
parameter. The linear fit to the data gives a correlation coefficient
r = 0.89.

inverse of J1 is twice the value of a stiffness parameter C that
measures the rigidity of the nucleus. Thus, with increasing P

the deformed nuclei become more rigid, that is, their behavior
becomes closer to that of a rigid rotor (in the sense that the
intrinsic structure of the nucleus changes little with increasing
excitation energy, or rotation).

The inset of Fig. 5 shows the steady increase with P of the
inverse of J1. Figure 5 also shows that the hindrance factors
of the 2+

1 states are rather well correlated with the stiffness
coefficient, as the relation between the two quantities is rather

linear, with a correlation coefficient close to 0.9. This indicates
that for a good description of the HF of the 2+

1 states one
should take into account a variable rigidity of the deformed
nuclei (those with P � 4.0). The evolution of HF(4+

1 ) with the
pronounced maximum at P ≈ 7.5, that is, within the region
of well deformed nuclei, could not be correlated with any of
these simple structure indicators.

To summarize, a reexamination of the experimental alpha-
decay fine structure quantities (both branching ratios and
hindrance factors) for the 2+, 4+, and 6+ yrast states in trans-
lead nuclei has been presented within the valence correlation
scheme, which appears a rather suitable representation espe-
cially for the hindrance factors. While the observed patterns
are roughly described by coupled channels calculations, some
striking details are not described by any of the current
theoretical calculations. One of these, namely the exponential
increase with P in the region of the deformed nuclei for the
HF of the 2+ state appears to be well correlated with the
variation of the nuclear rigidity in the same region. Another
outstanding effect, a pronounced maximum of both relative
branching ratios and hindrance factors for the 4+ state in the
same region of deformed nuclei, remains a very intriguing,
unexplained feature. Thus, it is clear that the alpha-decay
fine structure observables contain rather intricate information
on the structure of the excited states, that could be revealed
by employing more realistic nuclear structure models in the
calculations.
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[7] J. Jänecke, F. D. Becchetti, and D. Overway, Nucl. Phys. 343,

161 (1980).
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