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We present a new, fast algorithm and computing code developed to efficiently calculate the two-body matrix
elements (TBMEs) of the neutrinoless double-beta decay transition operator, which are necessary for the shell
model calculation of the double-beta decay matrix elements in the closure approximation. The improvement
consists of a rearrangement of the expression of the TBMEs that allows us to do the radial integrals analytically,
and thus only the integration over the momentum remains to be performed numerically. This fast algorithm is an
important step forward in investigating quenching effects of the transition operator by considering their evolution
in increasingly larger shell model spaces.
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Neutrinoless double-beta (0νββ) decay is a beyond stan-
dard model (SM) process of major interest for understanding
neutrino properties. Indeed, its discovery would decide if
neutrinos are their own antiparticles [1], and would give a hint
regarding the scale of their absolute masses. The present status
of these investigations can be found in several more recent
reviews [2–5], which also contain therein a comprehensive
list of references in the domain. Of particular interest is
the effective neutrino mass, a parameter entering the 0νββ

decay half-lives, which depends on the neutrino masses,
neutrino oscillating parameters, and Majorana phases. Thus,
to extract information about neutrino properties one needs a
precise computation of the nuclear matrix elements (NMEs)
which also enter the half-lives formula. This problem still
represents a challenge in the theoretical study of the 0νββ

decay. Typical calculations of the NMEs are performed using
a bare transition operator [5]. This is almost always the
case even if one uses different approaches: proton-neutron
quasiparticle random phase approximation (pnQRPA) [6–10],
shell model (ShM) [11–14], interacting boson approximation
(IBA) [15], projected Hartree-Fock Bogoliubov (PHFB) [16]
and energy density functional (EDF) method [17], which are
the most common methods of calculation of these matrix
elements. This is equally true even if one uses an improved
transition operator that considers higher order effects in the
nucleon current (HOC) [18,19]. In principle the most reliable
of these approaches to perform calculations for the NMEs
(relevant for 0νββ decay) is the ShM, since it incorporates
all types of correlations and uses effective nucleon-nucleon
(NN) interactions which are checked with other spectroscopic
calculations for nuclei from the same region. However, it
has to face the problem of the large model spaces and the
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associated computational resources. Also, it is well known
that in ShM calculations of the two-neutrino (2νββ) matrix
elements the Gamow-Teller operator needs to be quenched,
to better describe the experimental data for beta decays
and charge-exchange reactions. Therefore, it is important to
know if the 0νββ transition operator has to be effectively
modified when used in relatively small model spaces. Work
in this direction was recently reported in Ref. [20] where an
effective operator was analyzed for the 0νββ decay of 82Se
in the jj44 model space consisting of the f5/2, p3/2, p1/2,
and g9/2 orbitals. For these calculations up to eight major
harmonic oscillator shells (MHOS) were used, which implies
that one needs all two-body matrix elements of the 0νββ

transition operator in these large spaces. In addition, there
were recent proposals [21,22] to investigate the modifications
of the transition operator in increasingly larger shell model
spaces for a fictitious 0νββ decay of a p-shell nucleus. The
calculations reported in Ref. [20] were performed using a bare
operator without higher order contributions in the nucleon
current. In these calculations the integral over momentum in
the transition operator can be analytically done, which makes
the calculation of its two-body matrix elements very fast. It is
however known that the effect of the higher order contribution
in the nucleon current is a reduction of the 0νββ matrix element
by 20%–30%. This reduction could be further amplified by
the equivalent effective operator. Therefore, it is important
to investigate this effect, which would require knowledge of
the two-body matrix elements of the bare transition operator
in a large number of MHOS, e.g., 8 to 12. In our previous
works [14,23], we started to develop an efficient nuclear ShM
approach to accurately calculate the NMEs for both 2νββ

and 0νββ decay modes. The approach used in Ref. [14] to
calculate the TBMEs of the transition operator that includes
higher order terms in the nucleon current needs to calculate
two-dimensional integrals, on the relative momentum and the
relative coordinate. This approach was sufficiently fast for
calculating the two-body matrix elements in a single major

067304-10556-2813/2012/86(6)/067304(4) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevC.86.067304


BRIEF REPORTS PHYSICAL REVIEW C 86, 067304 (2012)

shell, such as the pf shell. However, calculations of these
two-body matrix elements in 8–12 major shells would be
intractable with this approach.

In this paper we present a new, improved (fast, efficient)
ShM code which reduces substantially the computing time of
calculation of the TBMEs of the 0νββ decay transition oper-
ator, which are necessary to calculate the NMEs. To calculate
the TBMEs, normally two-dimensional integrations need to be
done, one in the coordinate space and one in momentum space.
The main improvement in this code is a rearrangement of the
expression of TBMEs that allows us to do the radial integrals
(the integrals in coordinate space) analytically when harmonic
oscillator (HO) single particle wave functions are used.
Therefore, only the integration over the momentum remains
to be performed numerically. We first compare our results
for NMEs with other similar results from literature performed
with both ShM and other methods. Then, we compare the CPU
times of our code with the CPU times of our previous code [14],
for the same calculations. We note that these times decrease
significantly. We get an estimation of an average CPU time per
TBME and note that the new code proves very promising for
more elaborate calculations in many MHOS.

The 0νββ decay (Z,A) → (Z + 2, A) + 2e− requires that
the neutrino and the antineutrino are identical and massive
particles. Considering that this decay occurs only by exchange
of light neutrinos between nucleons and in the presence of
left-handed weak interactions, the lifetime can be expressed as

(
T 0ν

1/2

)−1 = G0ν(E0, Z) | M0ν |2
( 〈mν〉

me

)2

. (1)

G0ν is the phase space factor depending on the energy decay
E0 and nuclear charge Z, and 〈mν〉 is the effective neutrino
mass parameter depending on the first row elements of the
neutrino mixing matrix Uei , Majorana phases eiαi , and the
absolute neutrino mass eigenstates mi (see, e.g., Ref. [5]).
The nuclear matrix elements are

M0ν = M0ν
GT −

(
gV

gA

)2

M0ν
F , (2)

where M0ν
GT and M0ν

F are the Gamow-Teller (GT) and the
Fermi (F) parts, respectively. Usually a tensor part appears
as well, but the numerical calculations have shown that its
contribution is small [14]; consequently, it will be neglected
in the following. The matrix elements can be expressed as the
sum of products of two-body transition densities (TBTD) and
matrix elements for two-particle states (TBMEs),

M0ν
α =

∑
jpjp′ jnjn′Jπ

TBTD(jpjp′ , jnjn′ ; Jπ )

×〈jpjp′ ; Jπ‖τ−1τ−2O
α
12‖jnjn′ ; Jπ 〉, (3)

The calculation of the matrix elements of the two-body
transition operators Oα

12 (α = GT, F) can be decomposed into
products of reduced matrix elements within two subspaces
spanned by the spin and relative wave functions of two-particle
states [14]. The most difficult step in the computation of
TBMEs is the radial part of these operators, which contains
the neutrino potentials. Neutrino potentials depend weakly
on the intermediate states, and are defined by integrals of

momentum carried by the virtual neutrino exchanged between
the two nucleons [19]:

Hα(r) = 2R

π

∫ ∞

0
j0(qr)

hα(q)

ω

1

ω + 〈E〉q
2dq

≡
∫ ∞

0
j0(qr)Vα(q)q2dq, (4)

where R = 1.2A1/3 fm, ω = √
q2 + m2

ν is the neutrino energy,
and j0(qr) is the spherical Bessel function. We use the closure
approximation in our calculations, and 〈E〉 represents the
average excitation energy of the states in the intermediate
odd-odd nucleus that contribute to the decay. The expressions
of hα (α = F, GT) [19] are the same as in Eqs. (8) and (9) of
Ref. [14], which include finite nucleon size (FNS) contribu-
tions and higher order terms in the nucleon currents (HOC).

To compute the radial matrix elements 〈nl|Hα|n′l′〉 we
use the (HO) wave functions ψnl(r) (depending on the HO
parameter ν) corrected by a factor [1 + f (r)], which takes
into account the short-range correlations (SRC) induced by
the nuclear interaction,

f (r) = −ce−ar2
(1 − br2), (5)

where a, b, and c are constants which have particular values in
different parametrizations [19,24]. Including HOC and FNS
effects, the radial matrix elements of the neutrino potentials
become

〈nl | Hα(r) | n′l′〉 =
∫ ∞

0
r2dr ψnl(r)ψn′l′ (r) [1 + f (r)]2

×
∫ ∞

0
q2dq Vα(q)j0(qr) , (6)

The calculation of the radial matrix elements (6) requires
the numerical computation of two integrals, one over the
coordinate space and the other over the momentum space:

Iα(μ; m) =
∫ ∞

0
q2dq Vα(q)

×
(

2

π

) 1
2

(2ν)
m+1

2

∫ ∞

0
dr e−μr2

rmj0(qr), (7)

where μ = ν, ν + a, ν + 2a, and m is an integer. However,
one can reduce the computation to only one integral by
rearranging the expression of the radial integral in coordinate
space as a sum of terms with the same power of r , and
perform analytically this integral taking advantage of some
mathematical recursion formulas:(

2

π

) 1
2

(2ν)
m+1

2

∫ ∞

0
dr e−μr2

rmj0(qr)

=
(

2ν

2μ

) m+1
2

(m − 1)!!

m
2 −1∑
k=0

(−1)k
(m

2 − 1

k

)

× e
− q2

4μ

(2k + 1)!!(2μ)k
q2k. (8)

Similar approaches to calculate TBMEs were reported in
Refs. [15,25,26].
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Finally, the radial matrix element can be expressed as a sum
of integrals over the momentum space:

〈nl | Hα(r) | n′l′〉 =
n+n′∑
s=0

Al+l′+2s(nl, n′l′)Kα(m), (9)

where Al+l′+2s are coefficients independent of r:

Al+l′+2s(nl, n′l′)=
[
n!(2l + 2n + 1)!!

2n

n′!(2l′ + 2n′ + 1)!!

2n′

]

×(−1)s
∑

k

1

k!(n − k)!(2l + 2k + 1)!!

× 1

k′!(n′ − k′)!(2l′ + 2k′ + 1)!!
,

(10)

with max(0, s − n′) � k � min(n, s), k + k′ = s. HereKα(m)
is a sum of six Iα(μ; m) integrals over momentum,

Kα(m) = 1√
2ν

[
Iα(ν; m) − 2cIα(ν + a; m)

+2c

(
b

2ν

)
Iα(ν + a; m + 2) + c2Iα(ν + 2a; m)

−2c2

(
b

2ν

)
Iα(ν + 2a; m + 2)

+c2

(
b

2ν

)2

Iα(ν + 2a; m + 4)

]
, (11)

where a, b, and c are the parameters entering Eq. (5).
We developed a new code for computing the TBMEs

necessary for the ShM calculations of the NME involved
in 0νββ decays, based on the formalism described above.
The new code has a flexible user interface, which allows the
selection of various nuclear effects. In order to obtain the
NMEs, the TBTD are calculated using the method described
in Ref. [14]. For 48Ca we used the GXPF1A [27] effective
interaction in the full pf model space, and for 82Se we used
JUN-45 [28] effective interactions in the jj44 model space.
Our code is also flexible for use with different SRC types such
as Miller-Spencer [24] and the coupled cluster model (CCM)
with Argonne V18 and CD-Bonn parametrizations [19]. A first
step was to compare the results obtained with our code with
results from the literature obtained with similar nuclear effects
and parametrizations. As one can see from Table I, our results

TABLE I. Comparison between the results of the present work and
other similar results from the references indicated. All calculations
include FNS, HOC, and SRC of Jastrow type with Miller-Spencer
parameters.

M0ν 48Ca 82Se

Present work 0.57 2.47
[14] (2010 ShM) 0.57
[12] (2008 ISM) 0.59 2.11
[13] (2009 ISM) 0.61 2.18
[9] (2007 QRPA) 2.77

FIG. 1. (Color online) CPU times for the computation of the
TBMEs.

are in good agreement with previous ones, provided that the
same nuclear nuclear effects are included in the calculations.

We have also analyzed the performance of our code in
getting improved computing speed. In Fig. 1 we show the
single-core CPU times needed to compute the TBMEs.

In the case of 48Ca, there are 94 TBMEs requiring a total
of 6.29 s of CPU time on our test machine equipped with
Intel Xeon X5560 CPUs. This translates into an average of
6.7 × 10−2 s for each individual TBME. When computing the
product of wave functions, the dependence on the n and l

quantum numbers of the nucleon orbits is reflected in the CPU
times, as one can see in the difference between the average
CPU time per TBME of 48Ca and those of 82Se. 82Se has
required a total of 6.30 s for the computation of its 65 TBMEs,
thus needing an average time of 9.7 × 10−2 s for each TBME.
Even then, we can still calculate TBMEs for 82Se almost as
fast as for the simpler case of the 48Ca nucleus. Figure 1 also
shows the contribution of the SRC and FNS + HOC effects
to the total computation time for the TBMEs. “Bare” means
that neither SRC nor FNS + HOC effects were considered.
With our new method and code, we obtain an improvement in
speed by a factor of about 30, as compared to the code used in
Ref. [14], where more than 3 min were needed instead of 6.3 s.
The performance of the new code makes us confident that it
is now possible to rapidly, accurately, and efficiently compute
TBMEs for many nuclear shells. This task is very challenging
for the TBME code of Ref. [14]. For example, if one wants
to investigate the effective transition operator in only eight
MHOS [20], one needs to calculate about 434 000 TBMEs
(GT plus F). The actual average time per TBME is about
1.7 s, but as remarked above, is increasing with the raise of
the angular momenta of the single-particle orbits involved.
Using a conservative estimate of about 10 s per TBME, one
could conclude that one needs about 50 days of single-threaded
processing power to calculate all necessary TBMEs. This time
could be reduced by a factor of, say, 500 if the calculation of
the TBMEs is distributed via a load-balancing algorithm [29],
when using 1000 cores with 50% efficiency. However, this
reduction might not be sufficient if nine or ten MHOS need to
be used. The new algorithm presented here could be extremely
useful in reducing the calculation time by another factor of
about 30.
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In summary, we developed a fast, efficient code for
computing the TBMEs, which are part of the NMEs necessary
for the analysis of the 0νββ decays. The improvement consists
of a faster computation of the radial matrix elements using
correlated HO wave functions. Their computation normally
requires the numerical evaluation of two-dimensional inte-
grals, one over the coordinate space and the other over the
momentum space. By rearranging the expressions of the
radial matrix elements, the radial integrals can be performed
analytically over the coordinate space, thus the computation
reduces to summing up a small number of integrals over
momentum. We checked our code by comparing the values
of the NMEs for 48Ca and 82Se calculated with our new code
with similar results from literature, and we found a quite
good agreement. Further, we estimated the CPU times for one
single core needed to compute the TBMEs with our code and
compare them with the similar CPU times obtained with our
previous code requiring two-dimensional integrals. We find a
significant reduction of the computational time, by a factor

of about 30. We also estimated the average CPU time per
single TBME in the cases 48Ca and 82Se and found very small
values. This achievement makes us confident that it is now
possible to rapidly, accurately, and efficiently compute TBMEs
for many major harmonic oscillator shells, which were very
time consuming in our earlier approach. The calculation of the
TBMEs in eight MHOS could be done in about 1–2 days using
the present single-threaded code. Extension to more than eight
MHOS would require the parallelization of the code using a
load-balancing algorithm. These TBMEs can be further used
to investigate the effective transition operator needed for 0νββ

decay analyses.
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