Core excitation in 14C and two-proton pickup

H. T. Fortune

Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania, 19104 (Received 13 August 2012; revised manuscript received 27 September 2012; published 7 December 2012)

In two-proton pickup from ${}^{14}C$, the calculated cross-section ratio for the first two 0^+ states of ${}^{12}Be$ depends on the configuration mixing in these two states and on the amount of core excitation in the ground state (g.s.) of 14 C. Using the 12 Be wave functions that are reasonably well known, I have calculated this ratio as a function of the core excitation in ${}^{14}C(g.s.)$. A measurement of this ratio should allow an independent determination of the 14 C mixing—previously estimated to be about 12%.

DOI: [10.1103/PhysRevC.86.067303](http://dx.doi.org/10.1103/PhysRevC.86.067303) PACS number(s): 21*.*60*.*Cs, 25*.*55*.*Hp, 25*.*70*.*Hi, 27*.*20*.*+n

Introduction. The ground state (g.s.) of 14 C contains some core excitation. The predominantly *p*-shell wave function has, in addition, an amplitude of 12C x *ν*(*sd*) 2. The intensity of this configuration has been estimated from an analysis of the ${}^{12}C(t,p)$ cross sections to the g.s. and excited 0^+ state (called $0^{+'}$ herein). In a two-state model, the $(sd)^2$ component in the g.s. is the same as the *p*-shell component in 0^+ . The result is 0.12(3) [\[1\]](#page-2-0). Of course, ¹⁴C has more than two 0^+ states. The appropriateness of a two-state model in this case is demonstrated by the obvious nonparticipation of the next (third) 0^+ state in 14 C, as can be seen clearly [\[2\]](#page-2-0) by the fact that it [the second $(sd)^2$ 0⁺ state] behaves nearly identically to the second 0^+ state in ¹⁶C, which has no *p*-shell state. (Their cross-section magnitudes and angular-distribution shapes are the same.)

In a theoretical calculation in connection with the analysis of ${}^{14}C(\pi, \pi')$ inelastic scattering, Hayes *et al.* [\[3\]](#page-2-0) obtained an estimate of 8% $(sd)^2$ in the ¹⁴C(g.s.) and 13% *p*-shell component in the excited 0^+ state. These are different because the shell-model calculation is not a two-state model, as was the other analysis mentioned above, where these two percentages were equal. These estimates are summarized in Table [I.](#page-1-0) Here I investigate the possibility of another experimental determination of this mixing.

In ¹²Be, the two 0^+ states (g.s. and 2.251(1) MeV [\[4\]](#page-2-0)) are thought to be linear combinations of two basis states—the normal *p*-shell ¹²Be(g.s.) and an intruder with two neutrons in the *sd* shell. It is now widely accepted from several different analyses $[5-9]$ that the latter is about 68% of the ¹²Be(g.s.). A calculation $[6]$ of the ¹²Be-¹²O Coulomb energy difference gave an s^2 parentage of 0.53(3) in the g.s. A simple $(sd)^2$ shell-model calculation [\[6\]](#page-2-0) gave a d^2/s^2 ratio of 0.22/0.78 and hence $0.68(4)$ for the $(sd)^2$ component [\[6\]](#page-2-0). A very recent measurement [\[10\]](#page-2-0) of the Gamow-Teller (GT) strengths of the two 0^+ states from the 1^+ g.s. of ^{12}B was made using the reaction ${}^{12}B({}^{7}Li, {}^{7}Be)$ in inverse kinematics. This experiment is the first to directly measure the *p*-shell component of the excited 0^+ state. Other investigations had inferred it from orthogonality with the g.s. or through destructive interference in (t, p) and $B(E2)$. These new results have clearly indicated that the commonly accepted wave functions are approximately correct: Their intensities of 0.25(5) and 0.60(5) for the *p*-shell component of the g.s. and excited 0^+ state, respectively, are to be compared to our 0.32(4) and 0.68(4). This uncertainty is from the combined shell-model and Coulomb-energy calculations [\[6\]](#page-2-0). However, considering the wide variety of processes (see Summary in Ref. [\[9\]](#page-2-0)) that have confronted these wave functions and the remarkable agreement between experiments and calculations, the actual uncertainty is probably smaller than this.

In two-proton pickup from ^{14}C , both components will contribute to the reaction, even though all the pickup will still be from the p shell, as demonstrated previously $[11]$. The pickup reaction amplitude to the excited 0^+ state will be destructive, causing a large decrease in the excited state/g.s. ratio from the value it would have for a pure *p*-shell ¹⁴C(g.s.). Because of the sensitivity of this destructive interference to the magnitudes and phases of these mixings, the excited state/g.s. ratio can provide a strong constraint on the small intruder admixture in ${}^{14}C(g.s.)$. If we take the ${}^{12}Be 0^+$ mixing to be the value mentioned above, we can estimate the excited state/g.s. cross-section ratio expected in two-proton pickup from ${}^{14}C(g.s.)$ as a function of the assumed core excitation in the latter.

The model. I use the subscript CK to denote pure *p*-shell states, as in Cohen and Kurath [\[12\]](#page-2-0). Wave functions are then

$$
{}^{14}\text{C(g.s.}) = u^{14}\text{C}_{\text{CK}} + v^{12}\text{C}_{\text{CK}}x(sd)^2_0,
$$

$$
{}^{12}\text{Be(g.s.}) = a^{10}\text{Be}_{\text{CK}}(g.s.)x(sd)^2_0 + b^{12}\text{Be}_{\text{CK}}(g.s.), \text{ and}
$$

$$
{}^{12}\text{Be(exc)} = -b^{10}\text{Be}_{\text{CK}}(g.s.)x(sd)^2_0 + a^{12}\text{Be}_{\text{CK}}(g.s.).
$$

The two-proton pickup amplitudes are

$$
A(\text{exc}) = uaA(^{14}\text{C}_{\text{CK}} \rightarrow {}^{12}\text{Be}_{\text{CK}}) - vbA(^{12}\text{C}_{\text{CK}} \rightarrow {}^{10}\text{Be}_{\text{CK}}),
$$

$$
A(\text{g.s.}) = ubA(^{14}\text{C}_{\text{CK}} \rightarrow {}^{12}\text{Be}_{\text{CK}}) + vaA(^{12}\text{C}_{\text{CK}} \rightarrow {}^{10}\text{Be}_{\text{CK}}).
$$

In both cases, the second term needs to be multiplied by a factor of $(\sqrt{5})/3$ for isospin uncoupling and recoupling. If we take the individual amplitudes from Cohen and Kurath [\[12\]](#page-2-0), then the squares of the *A*'s above are equal to their S_{mag} 's, where S_{mag} is the $L = 0$ two-nucleon cluster spectroscopic factor. These are listed in Table [II.](#page-1-0) The quantity D_{mag} is for $L = 2$. Then with $x = v/u$, $y = b/a$, and $r^2 = \sigma(\text{exc})/\sigma(\text{g.s.})$, we have

$$
r = (1.336 - 1.235xy)/(1.336y + 1.235x).
$$

Results. Using $a^2 = 0.68$ and $b^2 = 0.32$, the dependence of this ratio (r^2) on the ¹⁴C(g.s.) admixture is plotted as a solid curve vs v^2 in Fig. [1.](#page-1-0) The short-dashed curves above and below

TABLE I. Estimates of core excitation in ${}^{14}C(g.s.).$

Source	Core excitation	Reference
¹² C(<i>t,p</i>) ¹⁴ C	$12(3)\%$	Ш
${}^{14}O(p,t)$ ${}^{12}O$	$>6\%$	$[14]$, present work
Hayes et al. a	8%, 13%	[3]

^aThe first number is the $2 \hbar \omega$ mixture in the g.s.; the second number is the amount of $0 \hbar \omega$ in the first excited 0^+ state.

it correspond to the uncertainty caused by the uncertainties in $a²$ and $b²$. The vertical solid line surrounded by two dashed lines corresponds to the estimate of 12(3)% core excitation in $^{14}C(g.s.)$ from Ref. [\[1\]](#page-2-0). We thus see that a measurement of this ratio in two-nucleon pickup provides a sensitive test of the amount of core excitation in 14C.

With good isospin, the wave functions of ${}^{14}C$ and ${}^{14}O$ are equal, as are those for ¹²Be, ¹²O, and ¹²C (*T* = 2). With isospin conservation, the excited state/g.s. ratio will be the same in ^{14}C \rightarrow ¹²Be, ¹⁴O \rightarrow ¹²O, and ¹⁴C \rightarrow ¹²C(*T* = 2). In the reaction ¹⁴C(*p*,*t*), the 0⁺, *T* = 2 state at E_x = 27.595(3) MeV was clearly observed $[13]$, with an $L = 0$ angular distribution, as expected. This state is the double analog of the ground state $(g.s.)$ of ¹²Be. Another peak was observed [\[13\]](#page-2-0) at an excitation energy of 29.630(50)–2.035(50) MeV above the lowest 0^+ , $T = 2$ state. This peak probably contains both the first 2^+ $T = 2$ state and the second 0^+ $T = 2$ state—double analogs of the 12Be first two excited states.

In an experimental tour-de-force, the ${}^{14}O(p,t)$ reaction was performed, in reverse kinematics [\[14\]](#page-2-0). Here, too, the g.s was clearly observed with an $L = 0$ angular distribution, but the 2^+ and $0^{+'}$ states were not resolved. A single excited-state peak was seen at $E_x = 1.8(4)$ MeV [\[14\]](#page-2-0). Resolution in that experiment was about 1 MeV. There is some difference of opinion $[15,16]$ as to whether these excited peaks in ¹²C and ¹²O are predominantly 0^+ or mostly 2^+ , or a more nearly equal combination of the two. In 12 O, the angular distributions of the excited peak and the g.s. were virtually identical, and the ratio of cross sections was σ (exc)/ σ (g.s.) ~ 0.86.

If the g.s. of ¹⁴C and ¹⁴O were pure *p* shell, the second 0^+ , $T = 2$ state in ¹²C and the excited 0⁺ state in ¹²O would be significantly stronger than the $A = 12$, $T = 2$ g.s. (by a factor of about 0.68*/*0.32) in both of the (*p,t*) reactions mentioned above. Yet, in both, the sum of the $0^{+'}$ and 2^{+} cross sections is less than that of the lower 0^+ (by a factor of about 0.8) to 0.9). Therefore, these reactions make it clear that ${}^{14}C(g.s.)$ must contain an (*sd*) ² admixture. The horizontal dashed line in Fig. 1 is the upper limit on r^2 from ¹⁴O(*p*,*t*). This limit clearly

TABLE II. Two-nucleon transfer strengths within the 1*p* shell [\[12\]](#page-2-0).

Initial state	Final state	S_{mag}	D_{mag}
${}^{14}C(g.s.)$	${}^{12}Be(g.s.)$	1.784	
${}^{14}C(g.s.)$	$^{12}Be(2^+)$		2.761
${}^{12}C(g.s.)$	10 Be(g.s.)	$2.747^{\rm a}$	
${}^{12}C(g.s.)$	${}^{10}Be(2^+)$		1.215^a

^aThese must be multiplied by a factor (5/9) from isospin uncoupling and recoupling for input into the present analysis.

FIG. 1. For two-proton pickup from ${}^{14}C$ to the first two 0^+ states of 12Be, the solid curve is a plot of the calculated cross-section ratio as a function of the assumed core excitation in ${}^{14}C(g.s.)$. The dashed lines surrounding it correspond to the uncertainty from uncertainties in the 12Be amplitudes. The vertical line, and the surrounding dashed lines, indicate the estimate of 12(3)% from Ref. [\[1\]](#page-2-0). The horizontal dashed line is the limit from ${}^{14}O(p,t)$ (Ref. [\[14\]](#page-2-0) and present work).

eliminates any v^2 less than about 0.06 and therefore requires some core excitation in 14C.

A good measurement of this ratio in either ${}^{14}C(p,t) {}^{12}C(T =$ 2) or $^{14}O(p,t)^{12}O$ probably requires better resolution than is obtainable in either case. Good resolution might not even resolve the two states because of the natural width expected for the second $0^+, T = 2$ state. However, in ¹²Be the two states are well separated (by 144 keV [\[4\]](#page-2-0)), and they have no natural width. Thus, the best reaction to measure this ratio is probably two-proton pickup from ${}^{14}C$ to form ${}^{12}Be$. Two previous such experiments gave conflicting results. Neither of them resolved the 2⁺ and 0^{+'} states. In the reaction [\[17\]](#page-2-0) ¹⁴C(¹⁴C, ¹²Be^{*})¹⁶O, the summed yield to the two states was about 31% of that for the g.s. Resolution for the g.s. was 180(20) keV, and the doublet width was 240(30) keV. In the reaction $[18]$ ¹⁴C(¹¹B, 13 N) 12 Be, the 1⁻ state was also not resolved, and the ratio of all three states to the g.s. was close to unity. However, in Ref. [\[17\]](#page-2-0), the 1⁻ state in ¹²Be was only about 6% of the g.s. In a $(^{12}C,$ ¹⁴O) or (¹⁴C, ¹⁶O) reaction, the nuclear structure requires $L =$ 0 at the projectile/ejectile vertex and hence a single *L* value at the target/residual vertex (also $L = 0$ for 0^+ states). This is not the case for the $(^{11}B, ^{13}N)$ reaction, where other values of *L* can contribute. This difference might be responsible for the conflicting results in the two reactions mentioned above.

We need a good resolution two-proton pickup experiment on ¹⁴C, i.e., ¹⁴C(¹³C, ¹⁵O), ¹⁴C(¹²C, ¹⁴O), or ¹⁴C(¹⁴C, ¹⁶O). The ${}^{13}C(^{12}C, {}^{14}O)$ reaction [\[19\]](#page-2-0) has been done, with angular distributions that were well characterized by distorted-wave calculations. So, ${}^{14}C(^{12}C, {}^{14}O)$ might be the best choice.

The first 2^+ state of 12 Be is dominated by the intruder (*sd*) 2 ² configuration [\[5\]](#page-2-0), with a small amount (∼20%) of the 2^{+} *p*-shell state [\[6\]](#page-2-0). Thus, a bonus of such a two-proton pickup experiment would be the determination of the normal-intruder mixing in the first 2^+ state.

- [1] H. T. Fortune and G. S. Stephans, [Phys. Rev. C](http://dx.doi.org/10.1103/PhysRevC.25.1) **25**, 1 (1982).
- [2] H. T. Fortune, M. E. Cobern, S. Mordechai, G. E. Moore, S. Lafrance, and R. Middleton, [Phys. Rev. Lett.](http://dx.doi.org/10.1103/PhysRevLett.40.1236) **40**, 1236 (1978).
- [3] A. C. Hayes, S. Chakravarti, D. Dehnhard, P. J. Ellis, D. B. Holtkamp, L.-P. Lung, S. J. Seestrom-Morris, Helmut Baer, C. L. Morris, S. J. Greene, and C. J. Harvey, [Phys. Rev. C](http://dx.doi.org/10.1103/PhysRevC.37.1554) **37**, 1554 [\(1988\).](http://dx.doi.org/10.1103/PhysRevC.37.1554)
- [4] S. Shimoura *et al.*, [Phys. Lett. B](http://dx.doi.org/10.1016/j.physletb.2007.08.053) **654**, 87 (2007).
- [5] H. T. Fortune, G.-B. Liu, and D. E. Alburger, [Phys. Rev. C](http://dx.doi.org/10.1103/PhysRevC.50.1355) **50**, [1355 \(1994\).](http://dx.doi.org/10.1103/PhysRevC.50.1355)
- [6] R. Sherr and H. T. Fortune, Phys. Rev. C **60**[, 064323 \(1999\).](http://dx.doi.org/10.1103/PhysRevC.60.064323)
- [7] A. Navin *et al.*, [Phys. Rev. Lett.](http://dx.doi.org/10.1103/PhysRevLett.85.266) **85**, 266 (2000).
- BRIEF REPORTS PHYSICAL REVIEW C **86**, 067303 (2012)
	- [8] T. Suzuki and T. Otsuka, Phys. Rev. C **56**[, 847 \(1997\).](http://dx.doi.org/10.1103/PhysRevC.56.847)
	- [9] H. T. Fortune and R. Sherr, Phys. Rev. C **85**[, 051303 \(2012\).](http://dx.doi.org/10.1103/PhysRevC.85.051303)
	- [10] R. Meharchand *et al.*, Phys. Rev. Lett. **108**[, 122501 \(2012\).](http://dx.doi.org/10.1103/PhysRevLett.108.122501)
	- [11] H. T. Fortune and R. Sherr, Phys. Rev. C **74**[, 024301 \(2006\).](http://dx.doi.org/10.1103/PhysRevC.74.024301)
	- [12] S. Cohen and D. Kurath, [Nucl. Phys. A](http://dx.doi.org/10.1016/0375-9474(70)90300-3) **141**, 145 (1970).
	- [13] D. Ashery *et al.*, Phys. Rev. C **13**[, 1345 \(1976\).](http://dx.doi.org/10.1103/PhysRevC.13.1345)
	- [14] D. Suzuki *et al.*, Phys. Rev. Lett. **103**[, 152503 \(2009\).](http://dx.doi.org/10.1103/PhysRevLett.103.152503)
	- [15] F. C. Barker, J. Phys. G **36**[, 038001 \(2009\).](http://dx.doi.org/10.1088/0954-3899/36/3/038001)
	- [16] H. T. Fortune and R. Sherr, J. Phys. G **36**[, 038002 \(2009\).](http://dx.doi.org/10.1088/0954-3899/36/3/038002)
	- [17] M. Bernas, J. C. Peng, and N. Stein, [Phys. Lett. B](http://dx.doi.org/10.1016/0370-2693(82)90023-5) **116**, 7 (1982).
	- [18] A. V. Belozyorov *et al.*, [Nucl. Phys. A](http://dx.doi.org/10.1016/S0375-9474(98)00217-6) **636**, 419 (1998).
	- [19] H. G. Bohlen *et al.*, [Nucl. Phys. A](http://dx.doi.org/10.1016/j.nuclphysa.2004.01.063) **734**, 345 (2004).