
PHYSICAL REVIEW C 86, 067001 (2012)

Refinement of the n-α and p-α fish-bone potential
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The fish-bone potential of composite particles simulates the Pauli effect by nonlocal terms. We determined the
n-α and p-α fish-bone potential by fitting to the experimental phase shifts. We found that with a double Gaussian
parametrization of the local potential we can describe the n-α and p-α phase shifts simultaneously for all partial
waves.
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I. Introduction. In nature, we can hardly find true elementary
particles. Basically most of them are composite particles made
of even more elementary constituents. These constituents are
fermions. Fermions obey the Pauli principle; i.e., they cannot
occupy the same quantum state. On the other hand, when
we try to place two composite particles at the same location
we try to force the constituents to occupy the same quantum
state. The quantum system tries to prevent this and we observe
the phenomena of Pauli blocking.

The simplest way to model the Pauli blocking is to use
a local repulsive short-range potential. This suppresses the
wave function at short distances and reduces the probability
of finding the constituents there. Because the Pauli blocking
depends strongly on quantum numbers these types of potentials
exhibit a strong dependence on partial waves.

In fact, the Pauli blocking is a restriction on the Hilbert
space. For composite particles the available Hilbert space is
not the same as for structureless particles. Those states, which
are occupied by the constituents, are absent or suppressed in
the relative motion.

There are several models for composite particle interaction,
based on the cluster model, which, more or less, follow this
philosophy. Probably the most elaborated is the fish-bone
model by Schmid [1,2]. In the fish-bone potential the fully
Pauli forbidden states are removed from the Hilbert space.
This model also uses the concept of partly Pauli forbidden
states, whose contribution is suppressed. As a result, the fish-
bone potential is a combination of local and nonlocal terms.
The structure of nonlocality is determined by the internal
structure of the composite particles and the local potential
can be determined from a fitting procedure.

In the fish-bone model we put all the information about
the internal structure of the composite particles in their
mutual interaction and we hoped that we would achieve some
simplification in parameters. Unfortunately, this was only
partly true. In the case of the α-α fish-bone potential, the
parametrization of Ref. [3] provided a good description of
the two-body experimental phase shift, but it needed quite a
sizable three-body potential to get the correct binding energy
for the three-α system [4].

In a recent study we reexamined the α-α fish-bone potential
[5]. We fitted the fish-bone potential to the l = 0, l = 2, and
l = 4 experimental phase shifts, the l = 0 two-α resonant state,
and the low-energy three-α ground and excited states. We
found that a single Gaussian term in the local part of the

fish-bone potential provides a reasonably good description
of all these data. There is no need for any explicit angular
momentum dependence and there is no need for a three-body
potential. If the composite structure of the particles is properly
built into the nonlocality of the interaction, the fitted local part
of the potential becomes really simple.

The n-α and p-α fish-bone potentials have been determined
in Ref. [6]. For the local part of the potentials, the authors
adopted a Wood-Saxon shape with a spin-orbit term. Although
they observed an excellent fit to the experimental phase shifts,
the agreement was achieved by using independent parameters
for each partial wave and different strength parameters for the
spin-orbit term for partial waves 2P1/2 and 2P3/2.

However, some of the parameters are rather close to each
other. So, it may be possible to find a better parametrization
of these potentials which are, in the spirit of the fish-bone
model, simple and do not have explicit angular momentum
dependence. Maybe, the angular momentum dependence we
observe in nature comes entirely from the composite structure
of the α particles.

In Sec. II we outline the fish-bone optical model. In Sec. III
we specialize it to the n-α and p-α cases and present our
results. In Sec. IV we summarize and draw some conclusions.

II. The fish-bone model for composite particle interaction.
The fish-bone model has been derived from the resonating
group model. In the resonating group model the total wave
function is an antisymmetrized product of the cluster |�〉 and
the intercluster |χ〉 relative states:

|�〉 = |{A�χ}〉. (1)

The state |�〉 describes the internal properties of the clusters,
including the spin and isospin structure. The unknown relative
motion state |χ〉 is determined from the variational ansatz

〈�δχ |A(H − E)A|�χ〉 = 0. (2)

This results in a rather complicated equation for |χ〉, which is
possible to solve only by using strong approximations on |�〉
and on the interaction of the particles. In a typical example
|�〉 describes fermions in harmonic oscillator potential wells
located at some distance apart and |χ〉 is the relative motion of
the oscillator wells. It is easy to see that if |χ〉 is expressed in
terms of harmonic oscillator states, some of the lowest states
in the relative motion space are not allowed due to the Pauli
principle.

067001-10556-2813/2012/86(6)/067001(3) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevC.86.067001


BRIEF REPORTS PHYSICAL REVIEW C 86, 067001 (2012)

The fish-bone model is a model for the relative motion
|χ〉 [1]. It is defined by an effective Hamiltonian,

hp = h0
p + vp −

∑
i,j

|up,i〉〈up,i |
(
h0

p + vp − εp,i

)
× |up,j 〉M̄p,ij 〈up,j |, (3)

where p refers to the angular momentum channel, h0
p is

the kinetic energy operator, and vp is a local potential. Our
knowledge about the internal structure |�〉 and our knowledge
about the Pauli principle are incorporated in the last term. The
states |up,i〉 are eigenstates of the norm operator,

〈��r|A|�up,i〉 = (1 − ηp,i)〈�r|up,i〉, (4)

where �r is the center-of-mass distance of the two clusters.
If the relative motion is forbidden by the Pauli principle,
then 〈��r|A|�up,i〉 = 0 and ηp,i = 1. The ηp,i eigenvalues
are ordered such that |ηp,i | � |ηp,i+1|. The matrix M̄ is then
given by

M̄p,ij =
⎧⎨
⎩

1 − 1−ηp,i

[(1−η̄p,i )(1−η̄p,i )]1/2 , if i � j,

1 − 1−ηp,j

[(1−η̄p,j )(1−η̄p,i )]1/2 , if i > j,
(5)

where η̄p,i = 0 if ηp,i = 1 and η̄p,i = ηp,i otherwise. If the
system has only one Pauli-forbidden state, the matrix M̄ , which
exhibits a fish-bone-like structure, is given by

M̄p =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 . . .

1 0 1 −
√

1−ηp,2

1−ηp,3
1 −

√
1−ηp,2

1−ηp,4
. . .

1 1 −
√

1−ηp,2

1−ηp,3
0 1 −

√
1−ηp,2

1−ηp,4
. . .

1 1 −
√

1−ηp,2

1−ηp,3
1 −

√
1−ηp,2

1−ηp,4
0 . . .

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(6)

We can see that in the Hamiltonian (3) some matrix
elements of h0

p + vp are eliminated or partly suppressed by
the fish-bone term. If a state |up,i〉 is fully Pauli forbidden,
then the corresponding elements of h0

p + vp are removed from
hp. Consequently, |up,i〉 becomes a solution of the Schrödinger
equation at zero energy. Or, if we take εp,i nonzero in hp, for
Pauli forbidden states only, the corresponding |up,i〉 become
solutions at ε energy. In the fish-bone model we take ε as a
large positive number. Then the states at physically accessible
energies become orthogonal to the Pauli-forbidden states. If the
Pauli-forbidden state is like a ground-state harmonic oscillator
wave function, i.e., it is without any node, then the physical
state has to be orthogonal to the Pauli forbidden state and
must have a node. So, the fish-bone model simulates the Pauli
blocking by a node in the wave function at short distances.

III. The fish-bone model for the n-α and p-α interactions.
We adopt a model that in the α particles the nucleons are in 0s

states in a harmonic oscillator well of width parameter a. The
norm kernel eigenvalues |up,i〉 are also harmonic oscillator
states with the same width parameter [7]. The eigenvalues are
given by the recursion relation ηl,i+1 = ηl,i/16, where ηl,0 =
(−1/4)l and l denotes the orbital angular momentum of the
relative motion. So, we have only one fully Pauli-forbidden

state in the 2S1/2 channel. The other states are partly Pauli
forbidden. We used the experimental phase shift compilation
from Ref. [8].

The fish-bone model results in a Coulomb-like potential
with nonlocal terms. We solved the equations by using the
method of Ref. [9]. In this method the problem is written in
a Lippmann-Schwinger integral equation form and the short-
range terms are expanded in a Coulomb-Sturmian basis. For
the ε parameter of the fish-bone model, which aims to remove
the Pauli-forbidden states, we took ε = 60 000 MeV. In this
range of ε, the dependence of the results was beyond the fifth
significant digit.

The proton and neutron are spin-1/2 particles and the proton
has a charge. Therefore we seek the local part of the potential
as a sum of a smeared Coulomb, a central, and a spin-orbit
term,

v(r) = Ze2

r
erf

(√
2a

3
r

)
+ V (r)

+ [j (j + 1) − s(s + 1) − l(l + 1)]
vso

r

d

dr
V (r), (7)

where s is the spin, l is the orbital angular momentum, j is the
total angular momentum, and Z = 0 for the n-α system and
Z = 2 for the p-α system.

We took the harmonic oscillator width parameter a and the
spin-orbit coupling term vso as fitting parameters and tried out
several forms for V (r). We achieved an excellent fit to the
phase shift values with a double Gaussian potential:

V (r) = v1 exp(−α1r
2) + v2 exp(−α2r

2). (8)

The best fit parameters are a = 0.216 fm−2, v1 =
−125.241 MeV, α1 = 0.3756 fm−2, v2 = 93.625 MeV, α2 =
0.8449 fm−2, and vso = −0.2592. Our results for the n-α and
p-α scattering are given in Figs. 1 and 2, respectively, and
V (r) is shown in Fig. 3.

We can see that the 2S1/2 phase shifts start at 180◦, although
neither the n-α nor the p-α system has any bound state. This
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FIG. 1. (Color online) Fit to the experimental 2S1/2, 2P1/2, 2P3/2,
2D3/2, and 2D5/2 n-α phase shifts.
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FIG. 2. (Color online) Fit to the experimental 2S1/2, 2P1/2, 2P3/2,
2D3/2, and 2D5/2 p-α phase shifts.

seems to be in contradiction to the Levinson theorem, which
connects the zero-energy phase shift to the number of bound
states. The bound state, which is required by the low-energy
behavior of the 2S1/2 phase shift, is forbidden by the Pauli
principle. Although the Pauli-forbidden states are absent from
the spectrum, their effects are clearly visible in the phase shift.

IV. Summary and conclusion. In this work we proposed a
new parametrization for the n-α and p-α fish-bone potentials.
We determined the parameters of the potential by fitting to the
experimental phase shifts. We found that if we incorporate our
knowledge on the charge, the spin, and the composite structure
into the form of the potential, then the potential to be fitted
is really very simple. With the same set of parameters, six
parameters altogether, and without any angular momentum
dependence in V , we achieved a very good description for the
n-α and p-α low-energy scattering data for all the relevant
partial waves. In a forthcoming work we will study this
potential in the α-α-n and α-α-p systems.
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FIG. 3. (Color online) The local potential V (r) of Eq. (8).

Here we assumed a 0s cluster model for the α particle.
This assumption is certainly not valid at higher energies when
the α particle is broken up into its constituents. However,
the model certainly has relevance at low energies below the
α disintegration threshold. It could be very interesting for
studying astrophysical processes that generally occur at very
low energies.

We believe that the fish-bone model itself deserves further
attention. We can see that the fish-bone model really provides
a good account of the composite structure of the constituents
and of the Pauli principle. Then the local potential, which is
to be determined by a fitting procedure, becomes very simple.
We can also conclude that the strong angular dependence of
the potentials may be mainly due to inadequate treatment of
the internal structure of the composite particles. The fish-bone
model uses the concept of partly Pauli forbidden states as
well. So, it can model the Pauli effect even if there is no
complete Pauli blocking, like in the case of nucleon-nucleon
interaction.
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