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Previous work on neutrino emission from proto-neutron stars which employed full solutions of the Boltzmann
equation showed that the average energies of emitted electron neutrinos and antineutrinos are closer to one
another than predicted by older, more approximate work. This in turn implied that the neutrino driven wind is
proton rich during its entire life, precluding r-process nucleosynthesis and the synthesis of Sr, Y, and Zr. This
work relied on charged-current neutrino interaction rates that are appropriate for a free nucleon gas. Here, it is
shown in detail that the inclusion of the nucleon potential energies and collisional broadening of the response
significantly alters this conclusion. Isovector interactions, which give rise to the nuclear symmetry energy, produce
a difference between the neutron and proton single-particle energies �U = Un − Up and alter the kinematics of
the charged-current reactions. In neutron-rich matter, and for a given neutrino/antineutrino energy, the rate for
νe + n → e− + p is enhanced while ν̄e + p → n + e+ is suppressed because the Q value for these reactions is
altered by ±�U , respectively. In the neutrino decoupling region, collisional broadening acts to enhance both
νe and ν̄e cross sections, and random-phase approximation (RPA) corrections decrease the νe cross section and
increase the ν̄e cross section, but mean field shifts have a larger effect. Therefore, electron neutrinos decouple at
lower temperature than when the nucleons are assumed to be free and have lower average energies. The change
is large enough to allow for a reasonable period of time when the neutrino driven wind is predicted to be neutron
rich. It is also shown that the electron fraction in the wind is influenced by the nuclear symmetry energy.
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I. INTRODUCTION

The neutrino opacity of dense matter encountered in
core-collapse supernova is of paramount importance to the
explosion mechanism, potential nucleosynthesis, supernova
neutrino detection, and to the evolution of the compact remnant
left behind. Matter degeneracy, strong and electromagnetic
correlations, and multiparticle excitations have all been shown
to be important, especially at supranuclear densities (e.g.,
Refs. [1–9]). Supernova and proto-neutron star (PNS) simula-
tions that employ some subset of these improvements to the
free gas neutrino interaction rates have found that these correc-
tions play a role in shaping the temporal and spectral aspects of
neutrino emission [4,10–12]. Much is still uncertain, especially
because of the approximations one must make regarding weak
interactions with the dense background medium. A specific
issue of importance is the difference between the average
energies of electron neutrinos and electron antineutrinos.
This difference is largely determined by the charged current
reactions νe + n → p + e− and ν̄e + p → n + e+ in neutron-
rich matter at densities ρ � 1012–1014 g/cm3.

Recently, one of the authors has shown that an accurate
treatment of mean field effects in simulations of PNS cooling
changes the predicted electron fraction in the neutrino driven
wind (NDW) [13] relative to simulations which do not account
for mean field potentials in nuclear matter [11,14,15]. This
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difference has significant consequences for the nucleosynthe-
sis expected in the NDW (e.g., Refs. [16–18]) and for neutrino
oscillations outside the neutrino sphere [19,20]. In this work,
we discuss generic aspects of strong interactions that lead to
a large asymmetry in the charged current reaction rates for
electron neutrinos and antineutrinos. We also demonstrate that
this difference manifests itself in potentially observable effects
on neutrino spectra from supernovae and that the difference
depends on the assumed density dependence of the nuclear
symmetry energy. The effect of multiparticle excitations
and correlations on the charged current response are also
explored.

Neutron-rich matter at densities and temperatures relevant
to the neutrino sphere of a PNS is characterized by degenerate
relativistic electrons and nonrelativistic partially degenerate
neutrons and protons. Beta equilibrium, with net electron
neutrino number Yνe

= 0, is a reasonably good approximation
for the material near the neutrino sphere because, by defini-
tion, this material can efficiently lose net electron neutrino
number. At these densities, effects due to strong interac-
tions modify the equation of state and the beta-equilibrium
abundances of neutron and protons. Simple models for the
nuclear equation of state predict that the nucleon potential
energy is

Un/p ≈ Vis(nn + np) ± Viv(nn − np), (1)

where Vis and Viv are the effective isoscalar and isovec-
tor potentials. Empirical properties of nuclear matter and
neutron-rich matter suggest that Vis × n0 ≈ −50 MeV and
Viv × n0 ≈ 20 MeV. The potential energy associated with
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n → p conversion in the medium is

�U = Un − Up ≈ 40 × (nn − np)

n0
MeV, (2)

where n0 = 0.16 nucleons/fm3 is the number density at
saturation. It will be shown that �U changes the kinematics
of charged current reactions, so that the Q value for the
reaction νe + n → e− + p is enhanced by �U while that for
ν̄e + p → e+ + n is reduced by the same amount. The effect
is similar to the enhancement due to the neutron-proton mass
difference, but is larger when the number density n > n0/20.

In Sec. II, charged-current neutrino opacities in an interact-
ing medium are discussed. We consider how mean fields affect
the response of the medium in detail and how this depends on
the properties of the nuclear equation of state. The effects
of nuclear correlations and multi-particle hole excitations are
also discussed. In Sec. III, the effect of variations of the
charged-current reaction rates on the properties of the emitted
neutrinos is studied.

II. THE CHARGED-CURRENT RESPONSE

The differential absorption rate for electron neutrinos by
the process νe + n → e− + p is given by

1

V

d2σ

d cos θdEe

= G2
F cos2 θc

4π2
peEe (1 − fe(Ee))

[
(1 + cos θ )Sτ (q0, q)

+ g2
A(3 − cos θ )Sστ (q0, q)

]
, (3)

where Sτ (q0, q) and Sστ (q0, q) are the response functions
associated with the Fermi and Gamow-Teller operators, τ+
and στ+, respectively. The energy transfer to the nuclear
medium is q0 = Eν − Ee, and the magnitude of the momentum
transfer to the medium is q2 = E2

ν + E2
e − 2EνEe cos θ . In a

noninteracting Fermi gas, the response functions Sτ (q0, q) =
Sστ (q0, q) = SF(q0, q) are given by

SF(q0, q) = 1

2π2

∫
d3p2δ(q0 + E2 − E4)f2(1 − f4), (4)

where the particle labeled 2 is the incoming nucleon and
the particle labeled 4 is the outgoing nucleon. When the
dispersion relation for nucleons is given by E(p) = M +
p2/2M—neglecting the neutron-proton mass difference for
simplicity—the integrals in Eq. (4) can be evaluated to obtain

SF(q0, q) = 2

1 − e−z
Im 
F, (5)

where z = (q0 + μ2 − μ4)/T and

Im 
F = M2T

2πq
ln

{
exp[(emin − μ2)/T ] + 1

exp[(emin − μ2)/T ] + exp[−z]

}
(6)

is the free particle-hole polarization function. μ2 and μ4 are the
chemical potentials of the incoming and outgoing nucleons, M
is the nucleon mass, and

emin = M

2q2

(
q0 − q2

2M

)2

. (7)

emin arises from the kinematic restrictions imposed by energy-
momentum transfer and the energy conserving delta function.
Physically, emin is the minimum energy of the nucleon in the
initial state that can accept momentum q and energy q0.

A. Frustrated kinematics

The differential cross section of νe absorption is the product
of the nucleon response times the available electron phase
space

peEe(1 − fe(Ee)) ≈ E2
e exp

(
Ee − μe

T

)
. (8)

Due to the high electron degeneracy, the lepton phase space in-
creases exponentially with the electron energy. To completely
overcome electron blocking requires Ee = Eνe

− q0 ≈ μe or
q0 ≈ −μe when Eνe

� μe. However, the Fermi gas response
function in Eq. (4) is peaked at q0 � q2/2M ≈ 0, reflecting
the fact that nucleons are heavy. At large |q0| � q ≈ μe

the response is exponentially suppressed due to kinematic
restrictions imposed by Eq. (7), which implies only neutrons
with energy

E2 > emin � M

2q2
q2

0 ≈ M

2
(9)

can participate in the reaction. For conditions in the PNS
decoupling region, and in the Fermi gas approximation, the
νe reaction proceeds at q0 ≈ 0 at the expense of large electron
blocking. Thus effects that can shift strength to more negative
q0 can increase the electron absorption rate exponentially.

It is well known that the neutron-proton mass difference
�M = Mn − Mp increases the Q value for this reaction, and
a more general expression for S(q0, q) derived in Ref. [1]
includes this effect. The effect of �M can be understood by
noting that, at leading order, it only changes the argument of
the energy delta function in Eq. (4) and is subsumed by the
replacements q0 → (q0 + �M) and

emin → ẽmin ≈ M

2q2

(
q0 + �M − q2

2M

)2

. (10)

This shift changes the location of the peak of the response by
moving it to the region where Ee is larger and confirming
that it increases the Q value and the final state electron
energy by �M = Mn − Mp. From Eq. (8) we see that
the rate for νe absorption is increased by roughly a factor
(1 + �M/Ee)2 exp (�M/T ). By the same token, the Q value
for the reaction ν̄e + p → e+ + n is reduced by �M and this
acts to reduce the rate. In this case, the detailed balance factor
[1 − exp (−z)]−1 in the response function S(q0, q) is the source
of exponential suppression, simply indicating a paucity of high
energy protons in the plasma. For small q0 � μe, the detailed
balance factor is

−1

1 − exp (−z)
≈ exp

(
q0 − μe

T

)
, (11)

where we have used the fact that μn − μp = μe in beta
equilibrium. Since q0 → (q0 − �M) for the ν̄e process, �M

will suppress this rate exponentially. This is in line with
the expectation that �M increases the cross section for νe
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absorption and decreases it for ν̄e absorption. In the following
we show that the mean field energy shift, driven by the nuclear
symmetry energy, has a similar but substantially larger effect
in neutron-rich matter at densities ρ � 1012 g/cm3.

B. Mean field effects

Interactions in the medium alter the single-particle energies,
and nuclear mean field theories predict a nucleon dispersion
relation of the form

Ei(k) =
√

k2 + M∗2 + Ui ≡ K(k) + Ui, (12)

where M∗ is the nucleon effective mass and Ui is the mean
field energy shift. For neutron-rich conditions, the neutron
potential energy is larger due to the iso-vector nature of
the strong interactions. The difference �U = Un − Up is
directly related to the nuclear symmetry energy, which is
the difference between the energy per nucleon in neutron
matter and symmetric nuclear matter. Ab initio methods using
quantum Monte Carlo calculations reported in Refs. [21]
and [22], and chiral effective theory calculations of neutron
matter in Ref. [23], suggest that the symmetry energy at
subnuclear density is larger than predicted by many mean
field models currently employed in supernova and neutron
star studies (for a review see Ref. [24]). To highlight the
symmetry energy’s importance, we choose two models for the
dense matter equation of state: (i) the GM3 relativistic mean
field theory parameter set without hyperons [25] where the
symmetry energy is linear at low density; and (ii) the IU-FSU
parameter set [26] where the symmetry energy is nonlinear in
the density and large at subnuclear density.

The electron chemical potential (dashed lines) and neutron-
proton potential energy difference (solid lines) for these two
models are shown as a function of density in beta equilibrium
in Fig. 1. Here Yν = 0 for all densities and a temperature
of 8 MeV is assumed. At subnuclear densities, the IU-FSU
�U is always larger than the GM3 �U value due to the
larger subnuclear density symmetry energy in the former. The
electron chemical potential as a function of density, as well as
the equilibrium electron fraction, is shown in Fig. 1 for both
models. In beta equilibrium, models with a larger symmetry
energy predict a larger electron fraction for a given temperature
and density. Therefore, IU-FSU has a larger equilibrium μe

than GM3 and the reaction νe + n → e− + p will experience
relatively more final state blocking. However, as we show
below, the inclusion of �U in the reaction kinematics is needed
for consistency.

To elucidate the effects of �U we set M∗ = M and note
that this assumption can easily be relaxed [1] and it does not
change the qualitative discussion below. Because in current
equation of state models the potential Ui is independent of
the momentum k, this form of the dispersion relation results
in a free Fermi gas distribution function with single-particle
energies K(k) for nucleons of species i, but with an effective
chemical potential μ̃i ≡ μi − Ui . This fact was emphasized in
Ref. [2], and used to show that it was unnecessary to explicitly
know the values of the nucleon potentials for a given nuclear
equation of state (which are often not easily available from
widely used nuclear equations of state in the core-collapse
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FIG. 1. (Color online) (a) The electron chemical potential
(dashed lines) and �U = Un − Up (solid lines) are shown as a
function of density for the two equation of state models (IUFSU:
red curves; GM3: black curves) in beta equilibrium for Yν = 0 and
T = 8 MeV. The grey band shows an approximate range of values for
inverse spin relaxation time calculated in Ref. [9] and is discussed in
connection with collisional broadening. (b) The equilibrium electron
fraction as a function of density for the two equations of state shown
in the top panel.

supernova community) when calculating the neutral-current
response of the nuclear medium. Clearly, if both μi and μ̃i

are known, then Ui can be easily obtained. This implies that
for a given temperature, density, and electron fraction, the
neutral-current response function is unchanged in the presence
of mean field effects, as the kinematics of the reaction are
unaffected by a constant offset in the nucleon single-particle
energies. In contrast, the kinematics of the charged current
reaction are affected by the difference between the neutron and
proton potentials and the charged-current response is altered
in the presence of mean field effects.

Inspecting the response function in Eq. (4) and the disper-
sion relation in Eq. (12), it is easily seen that the mean field
response is

SMF(q0, q) = 2

1 − e−z
Im 
MF, (13)

where

Im 
MF = M2T

2πq
ln

{
exp [(ẽmin − μ̃2) /T ] + 1

exp [(ẽmin − μ̃2) /T ] + exp [−z]

}

(14)

and

ẽmin = M

2q2
(q0 + U2 − U4 − q2/2M)2. (15)

This is obtained from the free gas response by the replacements

μi → μ̃i = μi − Ui, (16)
q0 → q̃0 = q0 + U2 − U4,
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FIG. 2. (Color online) Angle integrated differential cross sections
for a 12 MeV neutrino. The solid lines correspond to the reaction νe +
n → e− + p and the dashed lines correspond to ν̄e + p → e+ + n.
The black lines are calculations in which mean field effects have
been included, while the red lines are calculations in which the mean
field effects have been ignored. The green dotted line corresponds to
the available electron phase space, arbitrarily scaled. The assumed
background conditions are T = 8 MeV and nB = 0.02 fm−3. The
electron fraction is 0.027, which corresponds to beta equilibrium for
the given temperature, density, and the assumed nuclear interactions.
The nucleon potential difference is Un − Up = �U = 9 MeV. All
cross sections are for the same baryon density and electron fraction
(i.e., all assume the same μ̃ for the neutrons and protons).

and q → q. Therefore, we see that the potential difference
�U = ±(U2 − U4) affects reaction kinematics and cannot be
subsumed in the redefinition of the chemical potentials (to
yield the same individual number densities).

Because �U � εν and T for neutrino energies of interest in
the decoupling region, it introduces strong asymmetry between
the electron neutrino and antineutrino charged-current interac-
tions because the Q value for the reaction νe + n → e− + p is
increased by �U = Un − Up and for ν̄e + p → e+ + n it is
reduced by the same amount. Since �U < μe, this amount of
energy is often not enough to put the final-state electron above
the Fermi surface. However, it is enough to put the final-state
electron in a relatively less blocked portion of phase space
resulting in an exponential enhancement of the cross section
for νe. This is shown in Fig. 2, where the differential cross
section integrated over angle for charged-current absorption
is plotted as a function of the final lepton energy. The neutrino
energy is set to 12 MeV and the conditions of the medium are
T = 8 MeV, nB = 0.02 fm−3, and Ye = 0.027. The peak
of the differential cross section is shifted by about �U up
(down) in εe− (εe+ ) for electron (anti)neutrino capture. This
shift significantly increases the available phase space for
the final-state electron in νe + n → e− + p. The (arbitrarily
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FIG. 3. (Color online) (a) The total absorption inverse mean free
path as a function of incoming neutrino energy for electron neutrinos
(solid lines) and electron antineutrinos (dashed lines). The dot-dashed
line shows the effective bremsstrahlung inverse mean free path. In
both panels the black lines include mean field effects and the red
lines assume a free gas response function. (b) The ratio of the total
electron neutrino capture rate to the total electron antineutrino capture
rate. Beta equilibrium has been assumed and the temperature has been
fixed at 8 MeV.

scaled) phase space factor peEe(1 − fe) is also plotted and
the peak of 1/V dσ/dq0 approximately follows this relation.
As was argued in Sec. II A, the rate of ν̄e + p → e+ + n

should also be approximately proportional to this phase space
factor. This is seen in the Fig. 2.

In Fig. 3, the inverse mean free path (λ−1 = σ/V ) is shown
as a function of neutrino energy for the same conditions
considered in Fig. 2. At low energies the electron neutrino
mean free path is reduced when mean fields are correctly
incorporated, but at larger neutrino energies the presence
of mean fields becomes less important and the mean free
paths with and without mean fields approach each other
asymptotically. The electron antineutrino mean free path is
reduced relative to the free gas result, and the presence
of a threshold at the potential difference �U is evident
in the mean field calculation. The effective bremsstrahlung
mean free path is also plotted. This is calculated assuming
the secondary neutrinos are in thermal equilibrium with the
background, which is a good approximation for electron
antineutrino destruction. For electron antineutrinos at low
energies, bremsstrahlung dominates the capture rate. Mean
field effects push the energy region were bremsstrahlung
is dominant to larger neutrino energies. This suggests that
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varying the assumed bremsstrahlung rate will also affect the
spectrum of the electron antineutrinos. In the bottom panel, the
ratio of the electron antineutrino mean free path to the electron
neutrino mean free path is shown as a function of energy with
and without the affect of mean fields. The large asymmetry
induced between electron neutrino and antineutrino charged
current interactions when mean fields are properly included is
plainly visible.

The formalism of Ref. [1] includes this effect, and was
used to calculate the neutrino interaction rates employed in
the models presented in Ref. [12] and in Sec. III of this work.
However, the formulas in Refs. [27] and [3] for charged-current
rates neglect the potential energy difference in the nucleon
kinematics. In Ref. [3], a procedure is advocated for including
mean fields in which the effective chemical potential μ̃i of
each species is calculated from the given number density and
temperature by inverting the free Fermi gas relation; then the
response is assumed to be the free gas response but with the
effective chemical potentials in place of the actual chemical
potentials. This prescription is incorrect because while it
accounts for the location of the Fermi surface of the nucleons it
fails to account for the presence of a potential energy difference
between incoming and outgoing nucleon states. This amounts
to assuming μ → μ̃, so that in Eq. (4) q̃0 → q0 and the
response becomes the noninteracting response for the given
density and electron fraction. When the potential energies
of the incoming and outgoing nucleons states are equal, as
in symmetric matter or for neutral-current reactions, this
prescription results in the correct expression, but in asymmetric
matter and for charged current reactions it is in error. To obtain
the correct expression for the mean field polarization function
from the free gas results of Ref. [3] it is necessary to make
both replacements given in Eq. (16).

C. Correlations and collisional broadening

In addition to the mean field energy shift, interactions
correlate and scatter nucleons in the medium. The excitation of
two or more nucleons by processes such as νe + n + n → n +
p + e− and νe + n + p → p + p + e− alter the kinematics
of the charged current reaction. Typically, these two-particle
reactions introduce modest corrections to the single-particle
response when the quasiparticle lifetime is large. However,
they can dominate when (i) energy-momentum requirements
are not fulfilled by the single-particle reaction; (ii) final-
state Pauli blocking requires large energy and momentum
transfer; (iii) or both. Such circumstances are encountered
in neutron star cooling, where the reaction n → e− + p +
ν̄e is kinematically forbidden at the Fermi surface under
extreme degeneracy unless the proton fractions xp � 10%
[28,29]. Instead, the two-particle reaction n + n → e− + p +
ν̄e, called the modified URCA reaction, is the main source
of neutrino production [30]. At temperatures encountered in
PNS cooling, energy-momentum restrictions do not forbid the
single-particle interactions, but they do strongly frustrate them
due to final-state blocking.

The excitation of two-particle states in neutral current
reactions has been included in a unified approach described
in Ref. [7] and incorporated into the total response function

by introducing a finite quasiparticle lifetime τ . This naturally
leads to collisional broadening allowing the response to access
multiparticle kinematics, and alters both the overall shape and
magnitude of the response function [5,7]. Here, as a first step,
we adapt the general structure of the response function from
Ref. [7] to show that two-particle excitations play an important
role in the charged-current process. We include a finite τ

through the following ansatz for the imaginary part of the
polarization function:

Im 
� = −2π

∫
d3p

(2π )3

T z[f4(εp+q) − f2(εp)]

�εp+q + μ̂ − �U
L(�), (17)

L(�) = 1

π

�

(q̃0 − �εp+q)2 + �2
, (18)

which is obtained by replacing the energy delta function in the
Fermi gas particle-hole polarization function [see Eqs. (4) and
(6)] by a Lorentzian with a width � = 1/τ . Here, as before z =
(q0 + μ̂)/T and �εp+q = εp+q − εp. The Lorentzian form
is obtained in the relaxation time approximation discussed
in Ref. [7], and is valid when |q0|τ � 1. The quasiparticle
lifetime τ is a function of the quasiparticle momentum, q, q0,
and the ambient conditions. Its magnitude and functional form
at long wavelength are constrained by conservation laws. For
the vector response, τ → ∞ in the limit q → 0 due to vector
current conservation. However, because spin is not conserved
by strong tensor and spin-orbit interactions, the nucleon spin
fluctuates even at q → 0, and the associated spin relaxation
time τσ is finite [5]. Since the spin response dominates the
charged-current reaction, in what follows we shall use Eq. (18)
only to modify the spin part of the charged-current response.
We, however, note that the multiparticle response in the vector
channel warrants further study since the typical momentum
transfer q � μe is not negligible.

For the spin relaxation time τσ we use results calculated
in Ref. [9] which indicate that it decreases rapidly with both
density and temperature. The typical range of values of 1/τσ

obtained from Ref. [9] but including a 50% variation over
their quoted values is shown in Fig. 1 for conditions in
the neutrino sphere region. Using these values as a guide
we study the effects of collisional broadening on the νe

and ν̄e cross sections. The differential cross section for the
axial portion of the process νe + n → p + e− is shown in
Fig. 4 for T = 8 MeV, nB = 0.02 fm−3, and Ye = 0.027.
The initial neutrino energy is Eνe

= 12 MeV. As before
the differential cross-section is plotted as function of the
outgoing electron energy. The result with � → 0 recovers
the single-particle response with the mean field energy shift
included. Representative values of � = 1, 2, and 4 MeV are
chosen to approximately reflect the findings of Ref. [9] for
these ambient conditions. The collisional broadening seen in
Fig. 4 is quite significant. It increases the the axial portion
of the cross section by approximately 20%, 44%, and 80%,
for � = 1, 2, and 4 MeV, respectively. Together, the mean
field energy shift and collisional broadening push strength to
regions where electron final-state blocking is smaller, resulting
in an overall increase in the electron neutrino absorption
rate.
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TABLE I. 1/λ in m−1 for matter in beta equilibrium at T = 8 MeV and various densities, and Eνe
= Eν̄e

= 12 MeV. The entries in the
table follow the notation a (b) = a × 10b. In the last two columns, � is considered to be density dependent and the values used are taken from
Fig. 1.

Density (fm−3) 1/λ (m−1) No MF MF (� = 0) RPA (� = 0) MF (� > 0) RPA (� > 0)

nB = 0.020 1/λνe
5.9 (−4) 5.2 (−3) 2.1 (−3) 7.5 (−3) 3.9 (−3)

1/λν̄e
3.5 (−4) 2.7 (−5) 6.5 (−5) 4.5 (−5) 6.0 (−5)

nB = 0.006 1/λνe
7.7 (−4) 1.6 (−3) 1.2 (−3) 1.8 (−3) 1.3 (−3)

1/λν̄e
2.4 (−4) 1.4 (−4) 2.0 (−4) 1.4 (−4) 1.5 (−4)

nB = 0.002 1/λνe
5.3 (−4) 6.5 (−4) 5.9 (−4) 6.8 (−4) 6.1 (−4)

1/λν̄e
1.5 (−4) 1.3 (−4) 1.4 (−4) 1.3 (−4) 1.3 (−4)

While mean field effects reduce the ν̄e cross section,
collisional broadening will tend to increase it by accessing
kinematics where −q0 is larger. This is shown in the inset
of Fig. 4 where the ν̄e cross section for the same ambient
conditions and for Eν̄e

= 12 MeV is plotted as a function of
the positron energy E+

e = Eν − q0. The units are arbitrary and
the plots only serve to illustrate the relative effect of multipair
excitations. We choose the same values of � as for the νe

case. Here broadening due to multipair excitations has a more
significant effect than for νe absorption. However, despite this
enhancement, the response that includes the mean field energy
shift and collisional broadening is still much smaller than the
free gas response.

In addition to multipair processes, weak charge screening
in the medium can also affect the charged-current response.
Screening due to correlations has been investigated in the
random-phase approximation (RPA), where specific long-
range correlations are included by summing single-pair “bub-
ble” or particle-hole diagrams. Additionally, this approach
ensures consistency between the response functions and the
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FIG. 4. (Color online) The axial portion of the νe (main panel) and
ν̄e (inset) absorption cross sections including collisional broadening.
This shifts a significant fraction of the response to larger Ee where
there is larger lepton phase space available. The ambient conditions
and neutrino energy are the same as those in Fig. 2. The dashed lines
show the RPA response, including both mean fields and collisional
broadening. The dotted line in the inset panel shows the free gas
response.

underlying equation of state in the long wavelength limit.
For charged currents, calculations reported in Refs. [3] and
[4] indicate that the suppression is density and temperature
dependent. It can be as large as a factor of 2 at supranuclear
density, but at densities of relevance to the neutrino sphere
where ρ � 1013 g/cm3 the corrections are ≈20%. More
importantly, the suppression found in Refs. [3] and [4] for the
charged-current rate is a weak function of reaction kinematics
and can viewed as an overall shift of the response in Fig. 2,
aside from regions were significant strength is shifted to
collective modes. The energy and momentum restrictions
discussed previously apply also to the RPA response, and it
is important to include the mean field energy shifts in the
calculation of the particle-hole diagrams. They were included
in Ref. [4] but omitted in Ref. [3].

To include correlations between particle-hole (p-h) excita-
tions due to residual interactions in the spin-isospin channel
using the RPA, we employ a constant interaction (independent
of momentum and density) in the spin-independent and
spin-dependent particle-hole channels given by V

ph
τ = 2 fm−2

and V
ph
στ = 1.1 fm−2, respectively. The residual interaction

in the spin-independent channel is consistent with the un-
derlying equation of state. The residual interaction in the
spin-dependent particle-hole channel is retrieved from analysis
of the Gamow-Teller transition in finite nuclei [31]. The RPA
response functions for this simple form of the p-h interaction
are then given by

Sτ (q0, q) = 2

1 − e−z
Im

[

MF

1 − V
ph
τ 
MF

]
, (19)

Sστ (q0, q) = 2

1 − e−z
Im

[

�

1 − V
ph
στ 
�

]
, (20)

and the real and imaginary parts of the polarization functions
satisfy the Kramers-Kronig relation,

Re 
(q0, q) = −P
π

∫
dω

Im 
(ω, q)

ω − q0
. (21)

RPA correlations also act to redistribute the strength of the
response. The RPA response is shown in Fig. 4. The Gamow-
Teller resonance is clearly visible in the curves that do not
include large amounts of collisional broadening. The extent to
which this affects the inverse mean free paths can be gauged
from the results presented in Table I.
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While collisional broadening tends to increase both νe and
ν̄e cross sections, RPA correlations decrease the νe cross sec-
tion and enhance the cross section for ν̄e. Given the simplicity
of our model for the p-h interaction, these results only serve
to capture the qualitative aspects of the role of correlations.
They nonetheless demonstrate that changes expected are small
compared to corrections arising due to a proper treatment
of mean field effects in the reaction kinematics. Hence,
in the following discussion of PNS evolution and neutrino
spectra, we set aside these effects due to RPA correlations and
collisional broadening, and calculate the neutrino interactions
only including the mean field energy shifts calculated as
described in Ref. [1].

III. PROTO-NEUTRON STAR EVOLUTION

To illustrate the effect of the correct inclusion of mean
field effects in charged-current interaction rates, as well as the
importance of the nuclear symmetry energy, five PNS cooling
models are described here. The models have been evolved
using the multigroup, multiflavor, general relativistic variable
Eddington factor code described in Ref. [13], which follows
the contraction and neutrino losses of a PNS over the first
∼45 seconds of its life. These start from the same post core
bounce model considered in Ref. [13] and follow densities
down to about 109 g cm−3. Therefore, they do not simulate the
NDW itself but they do encompass the full neutrino decoupling
region.

One model was run using neutrino interaction rates that
ignore the presence of mean fields, but are appropriate to
the local nucleon number densities (i.e., the renormalized
chemical potentials μ̃i were used but we set �U = 0). The
equation of state used was GM3. This model was briefly
presented in Ref. [13]. Another model was calculated that
incorporated mean field effects in the neutrino interaction
rates and used the GM3 equation of state. A third model was
run using the IU-FSU equation of state and including mean
field effects but with everything else the same as the GM3
model. Additionally, two similar models were run with the
bremsstrahlung rates of Ref. [5] reduced by a factor of 4 as
suggested by Ref. [32]. The neutrino interaction rates in all
five models were calculated using the relativistic polarization
tensors given in Ref. [1] with the weak magnetism corrections
given in Ref. [6].

In the top panel of Fig. 5, the average electron neutrino
and antineutrino energies are shown as a function of time
for the three models with the standard bremsstrahlung rates.
As was described in Ref. [13], including mean field effects
in the charged-current interaction rates significantly reduces
the average electron neutrino energies because the decreased
mean free paths (relative to the free gas case) cause the
electron neutrinos to decouple at a larger radius in the PNS and
therefore at a lower temperature. Conversely, for the electron
antineutrinos the mean free path is increased, they decouple
at a smaller radius and higher temperature, and therefore their
average energies are larger. Mean field effects serve to shift the
average neutrino energies by around 25% at later times. The
antineutrino energies are also slightly larger than the values
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FIG. 5. (Color online) (a) First energy moment of the outgoing
electron neutrino and antineutrino as a function of time in three PNS
cooling simulations. The solid lines are the average energies of the
electron neutrinos and the dashed lines are for electron antineutrinos.
The black lines correspond to a model which employed the GM3
equation of state, the red lines to a model which employed the IU-FSU
equation of state, and the green lines to a model which ignored mean
field effects on the neutrino opacities (but used the GM3 equation
of state). (b) Predicted neutrino driven wind electron fraction as a
function of time for the three models shown in the top panel (solid
lines), as well as two models with the bremsstrahlung rate reduced
by a factor of 4 (dot-dashed lines). The colors are the same as in the
top panel.

reported in Ref. [13] because of the reduced bremsstrahlung
rate.

To illustrate the properties of the region where neutrino
decoupling occurs, a snapshot of the decoupling region as a
function of neutrino energy is shown in Fig. 6. In this work,
the “decoupling region” is defined as the region where the
Eddington factor f1 = Fg/Ng obeys the condition 0.1 < f1 <

0.5. Here, Fg is the neutrino number flux in energy group g

divided by the speed of light and Ng is the neutrino number
density in energy group g (see Ref. [13]). This approximately
defines the region over which neutrinos transition from being
diffusive to free streaming. Higher energy electron neutrinos
decouple at a larger radius and therefore a lower density
and temperature. At these radii, �U is smaller than the
temperature and the inclusion of mean fields in the interaction
rates should not significantly change the high-energy electron
neutrino mean free paths. At lower neutrino energies, �U

is significantly larger than the temperature in the decoupling
region and the presence of mean fields strongly affects the
opacity. As time progresses, the average neutrino energies
become lower and decoupling occurs in conditions at which
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FIG. 6. (Color online) The thermodynamic conditions and nu-
cleon potential difference characterizing the region where electron
neutrinos decouple as a function of neutrino energy. These values
are taken from the PNS model which employed the IU-FSU equation
of state at 3.3 seconds after core bounce. At this point the average
electron neutrino energy is 8.3 MeV.

mean field effects become increasingly important. Decoupling
also occurs at a higher density for lower-energy neutrinos,
where both multiparticle processes and RPA corrections can
potentially become important.

Additionally, there are significant differences between the
two models which include mean field effects but use different
equations of state. As was described above, the GM3 equation
of state has a smaller symmetry energy than the IU-FSU
equation of state at subnuclear densities and therefore has
a smaller �U in the neutrino decoupling region. This suggests
that GM3 should have slightly larger electron neutrino average
energies and slightly lower average electron antineutrino
energies. The results of self-consistent PNS simulations are
somewhat more complicated than this simple picture, mainly
because the equilibrium electron fraction near the neutrino
sphere also depends on the nuclear symmetry energy which
affects the charged current rates (see Fig. 1). Still, there is a
larger difference between the average electron neutrino and
antineutrino energies throughout the simulation (relative to
GM3) when the IU-FSU equation of state is used, as expected.

The moments of the escaping neutrino distribution along
with the electron neutrino number luminosities can be used to
calculate an approximate NDW electron fraction [33]

Ye,NDW ≈
[

1 + Ṅν̄e
〈σ (ε)p,ν̄e

〉
Ṅνe

〈σ (ε)n,νe
〉
]−1

, (22)

where Ṅ are the neutrino number luminosities and 〈σ (ε)〉 are
the energy-averaged charged-current cross sections in the wind
region. The approximate NDW electron fraction as a function
of time for the five models is shown in the bottom panel of
Fig. 5. The low-density charged-current cross sections from
Ref. [34] were used. First, it is clear from this plot that mean
field effects significantly decrease the electron fraction in the
wind. This is mainly due to the increased difference between
the electron neutrino and antineutrino average energies caused
by the effective Q value induced by the mean field potentials.
Second, increasing the subnuclear density symmetry energy
decreases the electron fraction in the wind. This in turn implies
that nucleosynthesis in the NDW may depend on the nuclear
symmetry energy because it is sensitive to electron fraction in
the wind (e.g., Ref. [16]). Still, this effect is not particularly
strong because the increase in the electron neutrino cross
section for increased �U is partially mitigated by the larger
equilibrium electron fraction predicted for models with a larger
nuclear symmetry energy.

IV. CONCLUSIONS

In this work, we have discussed the physics of charged-
current neutrino interactions in interacting nuclear matter
at densities and temperatures characteristic of the neutrino
decoupling region in PNS cooling. Additionally, models of
PNS cooling have been run to assess the importance of changes
in the charged current rates to the properties of the emitted
neutrinos. Our main findings are as follows:

(i) The mean field shift of the nucleon energies alters
the kinematics of the charged-current reactions. Under
neutron-rich conditions it increases the Q value for
νe absorption and decreases it for ν̄e. Due to final-
state blocking (electron blocking for electron neutrino
capture and neutron blocking for electron antineutrino
capture), the increase in the Q value leads to an
exponential [exp (�U/T )] increase in the νe cross-
section absorption and reduces the ν̄e absorption cross
section by exp (−�U/T ).

(ii) The formulas for the charged rates developed in
Refs. [3] and [27] neglect these effects, and the
prescription for incorporating mean field energy shifts
outlined in Ref. [3] is inconsistent.

(iii) The nuclear symmetry energy at subnuclear density
plays a crucial role in determining the magnitude of the
difference between the mean field neutron and proton
potential energies, and through its effect on the Q

values increases the difference between the mean free
paths of νe and ν̄e. This sensitivity to the symmetry
energy is potentially exciting since supernova neutrino
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detection and nucleosynthetic yields may be able to
provide useful constraints.

(iv) Our preliminary work indicates that multipair excita-
tions favor kinematics where final-state electron block-
ing is small because the energy/momentum constraints
present when only single particle-hole (p-h) excitations
are considered are relaxed. This is analogous to the
importance of the modified URCA process in neutron
star cooling. In contrast to mean field effects, multipair
excitations decrease the mean free paths of both
electron neutrinos and electron antineutrinos.

(v) Nuclear correlation effects treated in the RPA decrease
the νe cross section and enhance the cross section for
ν̄e. However, preliminary calculations using residual
interactions consistent with the equation of state or
derived from Gamow-Teller transitions of finite nuclei
suggest that the changes are much smaller than the
proper inclusion of mean field effects in the reaction
kinematics. Although it is difficult to determine from
the limited and approximate calculations performed for
this work, it seems most likely that multipair excitations
and RPA corrections will bring the average electron
neutrino and antineutrino energies somewhat closer to
one another (relative to the case were only mean fields
are included).

(vi) As was shown in Ref. [13], the changes to the charged-
current mean free paths induced by the correct inclusion
of mean fields decreases the average energy of the
electron neutrinos and increases the average energy of
the antielectron neutrinos emitted during PNS cooling.
The difference is relatively large, it significantly alters
the predicted electron fraction in the NDW, and may
have observable effects. This result has recently been
independently confirmed by Ref. [35].

(vii) We have also directly shown that increasing the value
of the nuclear symmetry energy at subnuclear densities
decreases the electron fraction in the neutrino driven
wind. Therefore, NDW nucleosynthesis may put some
constraint on the poorly known density dependence
of the nuclear symmetry energy, or vice versa. This
potential astrophysical constraint is in addition to those
discussed in Ref. [36]. We emphasize that it may be
hard to disentangle this from the effects of multiparticle
excitations, both on the charged-current reactions them-
selves and on the (related) bremsstrahlung rate. This
effect is also partially compensated by the symmetry
energy dependence of the beta-equilibrium electron
fraction.

(viii) The reduced mean free path of νe is also likely to affect
the deleptonization time of the proto-neutron star and
may account for differences in time scales observed
in simulations performed using equations of state with
different symmetry energies.

Our work also shows that multiparticle excitations and
correlations can alter the charged current response by as much
as as factor of 2 at densities realized in the neutrino decoupling
region. However, our simple treatment has large uncertainty
and warrants further study before we can make reliable

predictions for the difference between νe and ν̄e spectra.
Since this difference affects nucleosynthesis and collective
neutrino oscillations, and is potentially observable from the
high statistics expected for a galactic supernova neutrino burst,
our study here identifies that there is still much work to
pursue both with respect to the charged-current reactions and
the equation of state of neutron-rich matter in the neutrino
decoupling region.

Throughout, we have considered homogenous matter. At
subnuclear densities, light clusters (i.e., 2H, 3H, 3He, and 4He)
and heavier nuclei will be present at low temperature. However,
at the relatively high temperatures and low electron fraction
encountered near the neutrino spheres, the mass fraction of
heavy nuclei is expected to be <1%, but the mass fraction of
light clusters can be significant [37]. Preliminary investigations
of the presence of light clusters in PNS atmospheres (where
the effect of finite nucleon potentials on charged current
interaction rates was not included) have shown that they
can affect the electron antineutrino energies, but they have
a small affect on the electron neutrino energies [8]. Light
clusters change the equilibrium electron fraction and the
number of free protons and neutrons [38]. Thus, they can
alter the nucleon potentials and influence the charged current
neutrino interaction rates with nucleons. To some extent, these
effects can be partially accounted for as a different variation
of the symmetry energy with density from the free gas case.
Therefore, it is unlikely that the inclusion of light clusters will
change the qualitative conclusions of this work, i.e., that the
difference between electron neutrino and antineutrino average
energies will be significantly increased when mean field affects
are taken into account. Interestingly, work performed after this
manuscript was submitted suggests that the presence of light
clusters will enhance this effect [39].

Clusters will reduce the number of free protons significantly
but will not significantly change the free neutron density due
to the large neutron excess present near the neutrino spheres.
This will serve to increase the average energies of electron
antineutrinos and make the wind more neutron rich. In addition
to the bound-free transitions considered earlier in Ref. [8],
free-bound transitions, and where the nucleon involved in the
charged current reaction is in a bound final state, might make
important contributions to the opacity. These and other effects
induced by light clusters are potentially important and will be
pursued in future work.
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