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Derivation of the Fermi function in perturbative quantum field theory
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We postulate that the Fermi function should be derived from the amplitude, not from the solution of the Dirac
equation, in quantum field theory. Then, we obtain the following results: (1) We give the amplitude and width
of the neutron β decay, n → p + e− + ν̄e, to the first order in α. We evaluate it using Feynman parameters. (2)
As the result, we confirm the terms, which can be interpreted as the Fermi function expanded to order α. (3) We
give the same result using the contour integral. (4) We check that there are no such terms in a similar process,
ν̄e + p → e+ + n. (5) We perform the Fermi function expanded to the second order in α using contour integral.
(6) The conventional Fermi function affects the convergence of perturbation theory.
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I. INTRODUCTION

To evaluate the β decay rates, for example, n → p + e− +
ν̄e, we introduce the Fermi function. It represents the effect
of the electromagnetic potential caused by the proton. The
electron runs through this potential. This function affects the
β spectrum, the decay width, and the lifetime of the parent
particle.

The Fermi function has been derived so far as the solution
of the Dirac equation in electromagnetic potential [1–4]. In
β decay, the decay itself is caused by weak interaction and
is treated as the intermediate state, which is represented as
the amplitude. The final-state particles are in electromagnetic
potential. This effect is factorized as the Fermi function [5]. For
the nonrelativistic limit in neutron β decay, it takes the form

FNR = 2πα/v

1 − e−2πα/v
, (1)

where α is the fine structure constant and v is the electron
velocity in the neutron rest frame. To calculate the decay
width, the Fermi function is multiplied by the absolute square
of the amplitude and integrated over the phase space. This is
the same for the loop amplitude. For the sake of simplicity, in
most of this paper, we set the parent and daughter nucleons as
neutron and proton, respectively.

From a quantum field theoretical point of view, this
potential effect is also the interaction of the intermediate
state. Generally, the created particles should be considered
as the asymptotic fields in the far future. The asymptotic fields
are free from the interactions between the created particles.
The electromagnetic interaction should be derived from the
loop diagrams. Furthermore, this effect should appear in
perturbation theory as

FNR = 1 + πα

v
+ π2α2

3v2
− π4α4

45v4
+ · · · , (2)
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order by order with respect to α. References [6,7] men-
tioned that the Coulomb term appeared in the one-loop
correction.

In Refs. [6,7], this term was factored out as a part
of the Fermi function following the usual convention. It
is appropriate for perturbation theory of order α. How-
ever, FNR is actually expanded with respect to α/v rather
than α. This affects order α correction as we discuss in
Sec. V.

In this paper, we give the Fermi function up to order α2. In
Sec. II, the β-decay amplitude and the decay width to the first
order in α are obtained by computing the integral directly using
Feynman parameters. In Sec. III, we extract only the Fermi
function to the first order in α using the contour integrals. In
Sec. IV, we perform the Fermi function to the second order in
α. In Sec. V, the conclusion and discussion are given.

II. A ONE-LOOP CALCULATION INTRODUCING THE
FEYNMAN PARAMETERS

The tree-level β-decay diagram is depicted in Fig. 1,
where the parameters in each set of parentheses represent
their momenta. Also, the one-loop diagrams are depicted
in Fig. 2 with the field-strength renormalization. According
to Ref. [8], the one-loop amplitude is divided into three
parts as iM1L = iM1 + iM2 + iM3. We calculate only iM1 +
iM2, which does not depends on σμνkν in the numerator
of proton propagator, where σμν = i(γ μγ ν − γ νγ μ)/2. To
cancel the infrared divergence, we consider the sum of two
bremsstrahlung diagrams, iMb.

The detailed calculations are given in Appendix A, and the
result is

d� = d�3 + 1

π
G2

F

d3q ′

(2π )3
(1 + 3C2)k2

M

×
[

1 + α

2π

{
2π2

v
+ 3 log

mp

me

− 1

2
− 4

v
Li

(
2v

1 + v

)
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FIG. 1. Tree-level diagram.

+ 4

(
1

v
Tanh−1v − 1

) (
kM

3Ee

− 3

2
+ log

2kM

me

)

+ 1

v
Tanh−1v

(
2(1 + v2) + k2

M

6E2
e

− 4Tanh−1v

)}]
, (3)

where kM = mn − mp − Ee; GF , mn, mp, me, and Ee are the
Fermi constant, neutron mass, proton mass, electron mass, and
electron energy, respectively; C represents the Gamow-Teller
coupling constant relative to the Fermi constant; and Li(x) is
the Spence function defined as

Li(x) = −
∫ x

0
dz

log(1 − z)

z
. (4)

kM can be interpreted as the maximum radiated photon energy
for given Ee in the bremsstrahlung diagrams. We set mn �
mp � Ee,me and the neutrino mass is zero. d�3 is a part
depending on iM3, which does not depend on v [8]. We do not
calculate d�3 in this paper. The electron velocity is represented
as v = |q ′|/q ′

0 in the neutron rest frame. The first term in the
curly brackets of Eq. (3) is inversely proportional to v. This
term is interpreted as the Fermi function expanded to the first
order in α, which is expressed in Eq. (2).

According to Appendix A, the amplitude is approximately
written as

iM0 + iM1 � iM0

(
1 + α

4π
I5a

)

� iM0

{
1 + πα

2v
+ i

α

2v
log

(
4m2

e

μ2

v2

1 − v2

)}
(5)

for v � 1, where μ is the photon mass introduced to regulate
the infrared divergence. The last term does not affect the one-
loop decay width but affects the two-loop one as explained
later.

III. EXTRACTING ONE-LOOP FERMI FUNCTION

We derive Eq. (5) again. Here, we use the contour integral.
According to Appendix A, I5a contains this term. I5a originates
from one-loop diagram in Fig. 2, not from the bremsstrahlung
or field-strength renormalization terms. Furthermore, the
integrand of I5a does not contain k in its numerator. Therefore,

FIG. 2. One-loop diagram.

we start from

iM1 �
∫

d4k

(2π )4

−4e2M0p
′ · q ′

(p′ − k)2 − m2
p + iε

× 1

(q ′ + k)2 − m2
e + iε

1

k2 − μ2 + iε
, (6)

where iε is a convergence factor; e is the electromagnetic
coupling constant.

Next, we integrate Eq. (6) over k0. The k0 integral can
be performed as a contour integral in the complex plane. We
close the contour downward, picking up the poles at k0 = p′

0 +√
p′

0
2 + k2 − iε, k0 = −q ′

0 +
√
q ′

0
2 + k2 − 2q ′ · k − iε, and

k0 =
√

k2 + μ2 − iε. Since we focus on the terms propor-
tional to α/v, which dominate for v = |q ′|/q ′

0 � 1, we set
p′

0 � q ′
0 � |q ′|. The contributions that converge for v → 0

can be ignored. For |k| � q ′
0, the integral over |k| converges

even if we set v → 0, though we keep v finite. Hence,
we set q ′

0 � |k|, and the locations of poles are k0 � 2p′
0,

k0 � 1
2q ′

0
(k2 − 2q ′ · k − iε), and k0 �

√
k2 + μ2 − iε. When

we write only the contribution from the second pole explicitly,

iM1 � 2e2q ′
0iM0

∫
d3k

(2π )3

1

k2 + 2q ′ · k − iε

× 1

k2 + μ2 − iε
+ · · · , (7)

where “+ · · ·′′ represents the contribution from other poles.
By defining x = k/|q ′|, x = |x|, cos θ = q ′ · k/(|q ′||k|),

and μ̄ = μ/|q ′|, the integrand becomes dimensionless as

iM1 � e2iM0

2π2

q ′
0

|q ′|
∫

d cos θdx

x2 + 2x cos θ − iε

x2

x2 + μ̄2 − iε
+ · · ·

� αiM0

πv

∫ ∞

0
xdx

log(x2 + 2x − iε) − log(x2 − 2x − iε)

x2 + μ̄2 − iε
.

(8)

In the right-hand side, “+ · · ·′′ is ignored since these terms are
not proportional to the factor 1/v. Generally, the dimensionless
integrand does not contain the factor v. Then, we can ignore
the terms that do not have the factor 1/v as a coefficient of the
integral.

Here, if the numerator of the integrand has the term that
contains k, it gives additional factor |q ′| when we take the
integrand dimensionless. Then, such a term cannot be the
candidate of the Fermi function.

The x integral can be performed as a contour integral in
the complex plane. Since the integrand in Eq. (8) is an even
function, the amplitude can be written as

iM1 � α

2πv
iM0

∫ ∞

−∞

xdx

x2 + μ̄2 − iε
[log(x2 + 2x − iε)

− log(x2 − 2x − iε)]. (9)
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FIG. 3. x contour and the location of the poles.

To apply the residue theorem, we integrate Eq. (9) by parts
to form

iM1 � α

πv
iM0

∫ ∞

−∞
dx

x2

(x2 + 2x − iε)(x2 − 2x − iε)

× log(x2 + μ̄2 − iε). (10)

By applying the residue theorem, the amplitude becomes

iM1 � iM0

(
πα

2v
− i

α

v
log

μ̄

2

)

= iM0

{
πα

2v
+ i

α

2v
log

(
4m2

e

μ2

v2

1 − v2

)}
, (11)

where the contour is depicted in Fig. 3.
This result is consistent with Eq. (5), not only the real part

but also the imaginary part in the curly brackets.

A. Verification in the scattering process

No more than one charged particles exists at the same
time in the scattering process ν̄e + p → e+ + n. Therefore,
the electron and proton are not affected by the electromagnetic
potential and the amplitude should not contain the α/v terms,
which can be interpreted as a part of the Fermi function. Here,
we verify it.

According to Ref. [9], the diagram is depicted in Fig. 4.
We extract the terms we are interested in using a similar

manner as in the β decay,

iM (v) �
∫

d4k

(2π )4

4e2p′ · q ′M ′
0

(p′ − k)2 − m2
p + iε

× 1

(q ′ − k)2 − m2
e + iε

1

k2 − μ2 + iε
, (12)

which corresponds to Eq. (6) in β decay. We integrate over
k0. We close the contour upward, picking up the poles at
k0 � − 1

2p′
0
(k2 − iε) and k0 � − 1

2q ′
0
(k2 − 2q ′ · k − iε) using

the same approximation with the β decay. Each residue has

FIG. 4. One-loop diagram.

FIG. 5. Two-loop diagram.

the same value with the opposite sign. Then, the amplitude
becomes

iM (v) � 2e2q ′
0iM

′
0

∫
d3k

(2π )3

1

k2 + 2q ′ · k − iε

1

k2 + μ2 − iε

− 2e2q ′
0iM

′
0

∫
d3k

(2π )3

1

k2 + 2q ′ · k − iε

1

k2 + μ2 − iε

= 0,

where iM ′
0 is the tree-level amplitude.

As a result, this scattering process does not have the α/v

term, which can be interpreted as the part of the Fermi function.
This is because the signs on k in the electron and proton propa-
gators are the same. It is just equivalent to the two charged par-
ticles, which do not exist at the same time. Also, the one-loop
correction of π− → π0 + e− + ν̄e decay is given in Ref. [10],
which does not have the α/v term. These support the idea that
the α/v terms in decay correspond to the potential effect.

IV. TWO-LOOP FERMI FUNCTION

A two-loop ladder diagram is depicted in Fig. 5, where k1

and k2 are the photon momenta, respectively. There are some
other-two loop diagrams. However, we are only interested in
the term proportional to (α/v)2. This term originates only from
iM2L. According to Appendix B, after a calculation similar to
that of the previous section, the amplitude contains

iM2L � −iM0
α2

v2

(
− 1

24
π2 + 1

2
log2 μ̄

2
+ iπ

2
log

μ̄

2

)
.

(13)

FIG. 6. Contour and poles of I ′′(t) in the complex x2 plane.
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FIG. 7. Contour of the integral in the complex t plane.

Summing this equation, Eq. (11), and the tree-level ampli-
tude, we give

iM0 + iM1L + iM2L

� iM0

{
1 + πα

2v
− iα

v
log

μ̄

2

− α2

v2

(
− 1

24
π2 + 1

2
log2 μ̄

2
+ iπ

2
log

μ̄

2

)}
. (14)

The absolute square of them is

|iM0 + iM1L + iM2L|2

� |iM0|2
(

1 + πα

v
+ π2α2

3v2

)
+ O(α3). (15)

The logarithmic terms in Eq. (14) are canceled. For v � 1, the
decay width has the form

d� − d�3 ∝ 1 + πα

v
+ π2α2

3v2
. (16)

This is consistent with the Fermi function up to order α2.

V. CONCLUSION AND DISCUSSION

We conclude the main results as follows:
(1) We reviewed the one-loop β decay amplitude to confirm

the terms proportional to α/v. It can be interpreted as the
part of the Fermi function.

(2) The scattering process ν̄e + p → e+ + n does not have
such terms.

(3) We give the result that the two-loop β decay amplitude
has the terms proportional to (α/v)2. These are consistent
with the expanded Fermi function up to order α2.

The α/v term is factored out in Refs. [7,8]. Reference [8]
may omit the explanation about this term. Equation (3) differs
in the constant in the curly brackets from Refs. [7,8]. We show
the process of calculation in Appendix A.

To confirm our conclusion, it is necessary to carry out the
Fermi function to higher order. If the systematic calculation
will be carried out, we will be able to sum up all the order of
contributions.

In a two-loop calculation, we are only interested in the
terms proportional to (α/v)2. However, the terms proportional
to α2/v may exist. These terms also affect the decay width.
We should consider them for the higher order calculation.

For α/v � 1, the perturbation up to the finite order does
not work. We must sum up all order of α/v. The result should
become the full Fermi function written in Eq. (1). Then, we
propose the decay width to form

d� − d�3 = 1

π
G2

F

d3q ′

(2π )3
(1 + 3C2)k2

M

[
2πα/v

1 − e−2πα/v

+ α

2π

{
3 log

mp

me

− 1

2
− 4

v
Li

(
2v

1 + v

)

+ 4

(
1

v
Tanh−1v − 1

) (
kM

3Ee

− 3

2
+ log

2kM

me

)

+ 1

v
Tanh−1v

(
2(1 + v2) + k2

M

6E2
e

− 4Tanh−1v

)}]
.

(17)

We can extend this study to other nuclear species by
changing the expression in curly brackets and exchanging
α → Zα, where Z is the atomic number of the daughter
nucleus, since the loop diagrams that contain the photon
propagator between parent nucleus and the daughter particles
do not give the α/v term as explained in the calculation of the
scattering process. Also, we confirmed that the (α/v)2 term
does not appear in the corresponding two-loop diagrams. Our
study is more important for larger Z.

Our result does not affect the practical use except for v � α.
For instance, this result only slightly affects the Kurie plot [11]
and the main result of Ref. [12]. However, the theoretical
calculation of the nuclear lifetime is changed.

If the Fermi function is derived from the Dirac equation
or factored out from the loop correction, the one-loop decay
width is expressed as

� ∝ FNR[1 + O(Zα)] = FNR + FNRO(Zα). (18)

On the other hand, our study suggests that

� ∝ FNR + O(Zα). (19)

For instance, Eq. (19) differs from Eq. (18) about 0.1α for
neutron β decay and Zα for tritium β decay. Furthermore, for
n � 2, the nth order correction contains the (α/v)n−1 term after
factoring out the Fermi function. It affects the convergence of
perturbation theory.

These results suggest that the potential effect named the
Fermi function should be considered as a part of the amplitude.

APPENDIX A: THE DETAIL OF ONE-LOOP CALCULATION

The tree-level amplitude is

iM0 = − iGF√
2

ū(p′)(1 − Cγ 5)u(p)ū(q ′)(1 − γ 5)v(q). (A1)
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According to Ref. [8], the one-loop amplitude can be separate in three parts as

iM1L = iM1 + iM2 + iM3. (A2)

iM1 picks up the factors (2q ′ + k)μ from the electron propagator and (2p′ − k)μ from the proton propagator. iM2 picks up the
factors σμνkν from the electron propagator and (2p′ − k)μ from the proton propagator. iM3 picks up the remaining factors.

1. d�

The tree-level width is

d�0 = 1

8πmnmp

d3q ′

(2π )3

1

2Ee

1

2

∑
ε

|iM0|2 k2
M

Eν

,
∑

ε

|iM0|2 = 32G2
F mnmpEeEν(1 + 3C2), (A3)

where Eν and mn are the neutrino energy and the neutron mass, respectively;
∑

ε represents the spin sums.
The one-loop width is

d� = d�b + 1

2mn

(
d3p′

(2π )3

1

2Ep′

) (
d3q ′

(2π )3

1

2Eq ′

) (
d3q

(2π )3

1

2Eq

)

× 1

2

∑
ε

∣∣∣∣iM0 + 1

2
(δZe + δZp)iM0 + iM1L

∣∣∣∣
2

δ(4)(p − p′ − q − q ′),

d�b = 1

2mn

(
d3p′

(2π )3

1

2Ep′

)(
d3q ′

(2π )3

1

2Eq ′

) (
d3q

(2π )3

1

2Eq

)(
d3k

(2π )3

1

2Eγ

)
1

2

∑
ε

|iMb|2δ(4)(p − p′ − q − q ′ − k), (A4)

where δZe and δZp are the one-loop electron and proton field strength renormalization, respectively; d�b is the term originating
from the bremsstrahlung; and d�3 is the term originating from iM3.

2. i M2

iM2 is written as

iM2 = 2iJ

(4π )2

[
1

2cq ′2

{
b − c

1 + b − c
log(b − c) − b + c

1 + b + c
log(b + c)

}
− iπ

(p′ + q ′)2

]
,

(A5)

J = −e2G√
2

ū(p′)γ ν(1 − CAγ5)u(p)ū(q ′)(p′ · q ′ − mep/
′)γν(1 − γ5)v(q),

where b = p′ · q ′/q ′2 and c =
√

(p′ · q ′)2 − p′2q ′2/q ′2. The cross term between iM0 and iM2 is

∑
ε

iM0 (iM2)∗ � α

4π

∑
ε

|iM0|2v
(

log
1 + v

1 − v
+ 2iπEev

mp

)
. (A6)

Then, the decay width takes the form

d� = d�0

{
1 + α

2π
Re

(
6∑

i=1

Ii + v log
1 + v

1 − v

)}
+ d�3 + d�b, (A7)

where Ii are defined in Appendix A 4.

3. d�b

The bremsstrahlung amplitude is approximately written as [6]

iMb � eiM0

(
q ′ · ε(k)

q ′ · k + iε
− p′ · ε(k)

p′ · k + iε

)
(A8)

for small k, where εμ(k) in the numerator represents the polarization vector of the external photon.
The absolute square of this amplitude is

∑
ε

|iMb|2 �
∑

ε

|iM0|2 e2

Ee

[
1

Ee(1 − vβw)
+ Ee + k0

k2
0

v2(1 − β2w2)

(1 − vβw)2

]
, (A9)
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where β = |k|/k0 and w = k · q ′/(|k||q ′|). Here, we define k = |k|, and

Ib ≡
∫ 1

−1
dw

∫ kM

0
dk

k2

k0

[
1

E2
e (1 − vβw)

+ Ee + k0

Ee

v2(1 − β2w2)

k2
0(1 − vβw)2

] (
1 − k0

kM

)2

= 2

[
2 + k2

M

12E2
e

− 1

v
Li

(
2v

1 + v

)
− 1

v
(Tanh−1v)2 +

(
2 − 2kM

3Ee

− k2
M

12E2
e

− 2 log
2kM

μ

) (
1 − 1

v
Tanh−1v

)]
, (A10)

where μ =
√

k2
0 − |k|2 is the photon mass. Then, the bremsstrahlung part is

d�b = 1

8πmnmp

d3q ′

(2π )3

1

2Ee

1

2

∑
ε

|iM0|2 k2
M

Eν

× α

2π
Ib. (A11)

Therefore, Eq. (A7) becomes

d� − d�3 = d�0

[
1 + α

2π

{
Re

(
6∑

i=1

Ii + v log
1 + v

1 − v

)
+ Ib

}]
. (A12)

According to Appendix A 4, the one-loop decay width finally takes the form

d� − d�3 = 1

π
G2

F

d3q ′

(2π )3
(1 + 3C2)k2

M

[
1 + α

2π

{
2π2

v
+ 3 log

mp

me

− 1

2
− 4

v
Li

(
2v

1 + v

)

+ 4

(
1

v
Tanh−1v − 1

) (
kM

3Ee

− 3

2
+ log

2kM

me

)
+ 1

v
Tanh−1v

(
2(1 + v2) + k2

M

6E2
e

− 4Tanh−1v

)}]
.

4. I1 ∼ I6

We define Ii’s. Here, I1 + I3 is derived from δZp/2. Similarly, I2 + I4 is derived from δZe/2. Also, I5 + I6 corresponds to iM1L.
The results are as follows:

I1 =
∫ 1

0
dx(1 − x) log

[
x2m2

p + (1 − x)μ2
] = −3

2
+ log mp,

I2 =
∫ 1

0
dx(1 − x) log

[
x2m2

e + (1 − x)μ2
] = −3

2
+ log me,

(A13)

I3 =
∫ 1

0
dx

2x(1 − x2)m2
p

x2m2
p + (1 − x)μ2

= −1 + log
m2

p

μ2
,

I4 =
∫ 1

0
dx

2x(1 − x2)m2
e

x2m2
e + (1 − x)μ2

= −1 + log
m2

e

μ2
.

I5 =
∫ 1

0
dx

∫ 1−x

0
dy

1

 − iε
{(2 − x)p′ + yq ′}{xp′ + (2 − y)q ′} = I5a + I5b + I5c, (A14)

where  = m2
px2 + m2

ey
2 − (2xp′ · q ′ + μ2)y + (1 − x)μ2,

I5a =
∫ 1

0
dx

∫ 1−x

0
dy

4p′ · q ′

 − iε
= b

c

[
4π2

3
+ 2iπ log

2c

c − c′ − log
2c

c − c′ log
b + c

b − c
+ 2Li

(
1 + b − c

1 + b + c

)

+ 2Li

(
b − c

b + c

1 + b + c

1 + b − c

)
+ 1

2
log2

(
1 + b + c

1 + b − c

)
+ 1

2
log2

(
b + c

b − c

1 + b − c

1 + b + c

) ]
,

I5b =
∫ 1

0
dx

∫ 1−x

0
dy

2(p′ − q ′) · (xp′ − yq ′)
 − iε

= −1

(1 + b)2 − c2

[
(1 + c2 − b2) log(b2 − c2) − 2c

(
log

b + c

b − c
− 2iπ

)]
,

I5c = −
∫ 1

0
dx

∫ 1−x

0
dy

(xp′ − yq ′)2

 − iε
= −1

2
,

where c′ =
√

(p′ · q ′)2 − p′2q ′2 − (p′ + q ′)2μ2/q ′2,

I6 =
∫ 1

0
dx

∫ 1−x

0
dy{−2 log( − iε)} = 3 − log m2

e + 1 + b

(1 + b)2 − c2
log

m2
p

m2
e

+ 2c

(1 + b)2 − c2

(
−Tanh−1 c

b
+ iπ

)
.
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We note here that b/c = 1/v, and the ultraviolet divergence is already removed.
The sum of these Ii’s is

6∑
i=1

Ii � −5

2
+ log

m3
pme

μ4
+ 2

v
log

μ2

m2
e

Tanh−1v − 2

v
Li

(
2v

1 + v

)
− 2

v
(Tanh−1v)2 + 2π2

v
+ 2iπ

v
log

(
4m2

e

μ2

v2

1 − v2

)
.

The last two terms diverge for v → 0. The latter one, which contains μ, does not affect the one-loop decay width. However, this
term has a nontrivial, important role in the two-loop calculation, as explained in Appendix B.

APPENDIX B: TWO LOOP CALCULATION USING THE CONTOUR INTEGRALS

We first note that we are only interested in the terms proportional to (α/v)2 and we ignore the others. The two-loop ladder
amplitude contains

iM2L = i
e4

2

8√
2
GF

∫
d4k1

(2π )4

∫
d4k2

(2π )4
ū(q ′)

γ μ1 (p/′ + k/1 + me)γ μ2 (p/′ + k/1 + k/2 + me)γ ρPL(
k2

1 + 2q ′ · k1 + iε
){(k1 + k2)2 + 2q ′ · (k1 + k2) + iε}v(q)

× ū(p′)
γμ1 (p/′ − k/1 + mp)γμ2 (p/′ − k/1 − k/2 + mp)γρP

′
L(

k2
1 − 2p′ · k1 + iε

){(k1 + k2)2 − 2p′ · (k1 + k2) + iε}u(p)
1

k2
1 − μ2 + iε

1

k2
2 − μ2 + iε

� i
4e4

√
2
GF

∫
d4k1

(2π )4

∫
d4k2

(2π )4

4q ′μ1q ′μ2 ū(q ′)γ ρPLv(q)(
k2

1 + 2q ′ · k1 + iε
){(k1 + k2)2 + 2q ′ · (k1 + k2) + iε}

× 4p′
μ1

p′
μ2

ū(p′)γρP
′
Lu(p)(

k2
1 − 2p′ · k1 + iε

){(k1 + k2)2 − 2p′ · (k1 + k2) + iε}
1

k2
1 − μ2 + iε

1

k2
2 − μ2 + iε

, (B1)

where PL = (1 − γ 5)/2 and P ′
L = (1 − Cγ 5)/2.

By separating the integrations over k0
1 and k0

2, the amplitude is written as

iM2L � i
4e4

√
2
GF

∫
d3k1

(2π )4

∫
d3k2

(2π )4
× 4q ′μ1q ′μ2 ū(q ′)γ ρPLv(q) × 4p′

μ1
p′

μ2
ū(p′)γρP

′
Lu(p) × Da, (B2)

where

Da =
∫

dk0
1dk0

2
1

k2
1 − μ2 + iε

1

k2
2 − μ2 + iε

× 1

k2
1 + 2q ′ · k1 + iε

1

(k1 + k2)2 + 2q ′ · (k1 + k2) + iε

× 1

k2
1 − 2p′ · k1 + iε

1

(k1 + k2)2 − 2p′ · (k1 + k2) + iε
. (B3)

We close the integration contour downward. The term we focus on is derived from the pole of [(k1 + k2)2 + 2q ′ · (k1 + k2) + iε]−1

for k0
1 integral and then the pole of [k2

1 − 2p′ · k1 + iε]−1 for k0
2 integral. By applying the approximation similar to one-loop

calculation, Da contains

Da � − π2

p′2
0

1

k2
1 + μ2 − iε

1

k2
2 + μ2 − iε

1

B − iε

1

A − iε
, (B4)

where

A = (k1 + k2)2 + 2q ′ · (k1 + k2),
(B5)

B = k2
1 + 2q ′ · k1.

Then, the amplitude contains

iM2L � −i
4e4

√
2
GF q ′2

0

∫
d3k1

(2π )3

∫
d3k2

(2π )3
× 4ū(q ′)γ ρPLv(q) × ū(p′)γρP

′
Lu(p) × 1

k2
1 + μ2 − iε

1

k2
2 + μ2 − iε

1

B − iε

1

A − iε

= 4e4q ′2
0 iM0

∫
d3k1

(2π )3

∫
d3k2

(2π )3

1

k2
1 + μ2

1

k2
2 + μ2

1

B − iε

1

A − iε
.
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When we write k1 and k2 in spherical polar coordinates,

iM2L � 4e4q ′2
0 iM0

(2π )4

∫
dk1d cos θ1dk2d cos θ2

k2
1

k2
1 + μ2

k2
2

k2
2 + μ2

1

B − iε

1

A − iε

= 4e4q ′2
0 iM0

(2π )4

∫
dk1dk2d cos θ1

k2
1

k2
1 + μ2

k2
2

k2
2 + μ2

1

k2
1 + 2q ′k1 cos θ1 − iε

×
∫

d cos θ2
1

k2
1 + k2

2 + 2q ′k1 cos θ1 + 2|q ′ + k1|k2 cos θ2 − iε
, (B6)

where k1 = |k1|, k2 = |k2|, q ′ = |q ′|, cos θ1 = q ′ · k1/(q ′k1), and cos θ2 = (q ′ + k1) · k2/(|q ′ + k1|k2). By performing the cos θ2

integral,

iM2L � 4e4q ′2
0 iM0

(2π )4

∫
dk1dk2d cos θ1

k2
1

k2
1 + μ2

k2
2

k2
2 + μ2

1

k2
1 + 2q ′k1 cos θ1 − iε

× 1

2|q ′ + k1|k2
{log ((k2 + |q ′ + k1|)2 − q ′2 − iε) − log((k2 − |q ′ + k1|)2 − q ′2 − iε)}, (B7)

where |q ′ + k1| =
√

k2
1 + 2q ′k1 cos θ1 + q ′2.

By defining x1 = k1/q
′, x2 = k2/q

′, x1 = |x1|, x2 = |x2|, q̂ ′ = q ′/q ′, μ̄ = μ/q ′, r = √
1 + iε to make the integrand

dimensionless and performing the x2 integral,

iM2L � 2e4q ′2
0 iM0

q ′2(2π )4

∫
dx1d cos θ1

x2
1

x2
1 + μ̄2

1

x2
1 + 2x1 cos θ1 − iε

1

|q̂ ′ + x1|
×

∫
dx2

x2

x2
2 + μ̄2

{log((x2 + |q̂ ′ + x1|)2 − r2) − log((x2 − |q̂ ′ + x1|)2 − r2)}. (B8)

When we substitute t =
√

x2
1 + 2x1 cos θ1 + 1 = |q̂ ′ + x1|, the amplitude is

iM2L � 8α2iM0

v2(2π )2

∫ ∞

0
dx1

x1

x2
1 + μ̄2

∫ x1+1

|x1−1|
dt

1

t2 − r2
×

∫ ∞

0
dx2

x2

x2
2 + μ̄2

{log ((x2 + t)2 − r2) − log ((x2 − t)2 − r2)}.

Here, we define

I ′′(t) =
∫ ∞

0
dx2

x2

x2
2 + μ̄2

[log{(x2 + t)2 − r2} − log{(x2 − t)2 − r2}],
(B9)

I = 1

2

∫ ∞

0
dx1

x1

x2
1 + μ̄2

s

∫ x1+1

|x1−1|
dt

1

t2 − r2
I ′′(t).

Then, the amplitude is written as

iM2L � 4α2iM0

v2π2
I. (B10)

We now calculate I ′′(t). Since it is an even function, we can change the integrating interval to form

I ′′(t) = 1

2

∫ ∞

−∞
dx2

x2

x2
2 + μ̄2

[log{(x2 + t)2 − r2} − log{(x2 − t)2 − r2}]. (B11)

After integrating by parts, it becomes

I ′′(t) = 1

4

[
log

(
x2

2 + μ̄2
)
[log{(x2 + t)2 − r2} − log{(x2 − t)2 − r2}]]∞

−∞

+
∫ ∞

−∞
dx2 log

(
x2

2 + μ̄2
) t

(
x2

2 − t2 + r2
)

[(x2 + t)2 − r2][(x2 − t)2 − r2]
. (B12)
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The first term is 0. We evaluate the x2 integral along the contour shown in Fig. 6. By applying the residue theorem and
changing the variable x2 = iz, we have

I ′′(t) = 2πiRes(t + r) + 2πiRes(−t + r) −
∫ iμ̄+i∞

iμ̄

dx2(−2πi)
t
(
x2

2 − t2 + r2
)

[(x2 + t)2 − r2][(x2 − t)2 − r2]

= iπ

2
[log{(t + r)2 + μ̄2} − log{(t − r)2 + μ̄2}] − 2π

∫ ∞

μ̄

dz
t(−z2 − t2 + r2)

[(t + iz)2 − r2][(t − iz)2 − r2]
. (B13)

After performing the integral over z, it becomes

I ′′(t) = iπ [log(μ̄ − ir − it) − log(μ̄ − ir + it)]. (B14)

Changing the order of integration, we obtain

I = 1

2

∫ ∞

0
dx1

∫ x1+1

|x1−1|
dt

x1

x2
1 + μ̄2

1

t2 − r2
I ′′(t) = 1

2

∫ ∞

0
dt

∫ t+1

|t−1|
dx1

x1

x2
1 + μ̄2

1

t2 − r2
I ′′(t)

= 1

4

∫ ∞

0
dt[log{(t + 1)2 + μ̄2} − log{(t − 1)2 + μ̄2}] 1

t2 − r2
I ′′(t). (B15)

Since the integrand is an even function, this expression becomes

I = iπ

8

∫ ∞

−∞
dt[log{(t + 1)2 + μ̄2} − log{(t − 1)2 + μ̄2}] 1

t2 − r2
× [log(μ̄ − ir − it) − log(μ̄ − ir + it)]. (B16)

Applying the residue theorem to I , we evaluate the t integral along the contour shown in Fig. 7. We define the contribution
of the contour around the cut that starts from point t as Cut(t). This expression becomes

I = 2πiRes(r) − Cut(1 + iμ̄) − Cut(−1 + iμ̄), (B17)

where

2πiRes(r) = −π2

4
log2 μ̄

2
− iπ2

8
log

μ̄

2
,

−Cut(1 + iμ̄) = π2

8

(
3

8
π2 + 1

2
iπ log

μ̄

2
+ 3

2
log2 μ̄

2

)
, (B18)

−Cut(−1 + iμ̄) = −π2

8

(
7

24
π2 + 1

2
iπ log

μ̄

2
+ 1

2
log2 μ̄

2

)
.

Our result then becomes

iM2L � −iM0
α2

v2

(
− 1

24
π2 + 1

2
log2 μ̄

2
+ iπ

2
log

μ̄

2

)
. (B19)
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