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We present a model of electron-positron pair production in pion-nucleon collisions in the exclusive reaction
πN → Ne+e−. The model is based on an effective field theory approach, incorporating 16 baryon resonances
below 2 GeV. Parameters of the model are fitted to pion photoproduction data. We present the resulting dilepton
invariant mass spectra for π−p collisions up to

√
s = 1.9 GeV center-of-mass collision energy. These results are

meant to give predictions for the planned experiments at the HADES spectrometer in GSI, Darmstadt.
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I. INTRODUCTION

Dileptons are among the most important signals studied
in heavy ion collision experiments. In the 1–2 GeV/nucleon
energy range electron-positron pair production has been
studied by the DiLepton Spectrometer (DLS) at LBL and, more
recently, by the High Acceptance Di-Electron Spectrometer
(HADES) at GSI. Due to the high complexity of nuclear colli-
sion processes, the experimental results can be interpreted only
via comparison with model calculations. Usually transport
models are used for this purpose. These models need the cross
sections of elementary hadronic collisions as input, therefore
a good understanding of the elementary cross sections is
essential.

Both DLS [1] and HADES [2] studied dilepton production
in elementary NN collisions. In parallel a lot of theoretical
work has been done in order to achieve a good description of
the experimental dilepton spectrum. Earlier, a resonance ap-
proach was used [3,4], where particle production is described
as a multistep process. In the first step a baryon resonance
is created which then decays in one or more steps, creating
the final state particles, including dileptons. This approach
naturally fits the particle production mechanism of trans-
port codes. Recent calculations apply one-boson-exchange
effective Lagrangians to calculate the NN → NNe+e− cross
section [5–10]. Although a lot of progress has been made, the
measured dilepton spectra are still not perfectly reproduced by
the theoretical models [10].

In heavy ion collisions a large number of pions are pro-
duced, therefore elementary πN collisions are also important.
Moreover, besides photon induced reactions, pion beams are
much more suitable for studying individual resonances than
nuclear projectiles. At HADES new experiments are planned
with a pion beam, where both πA and πN collisions would be
studied. At the same time, dilepton production in πN collisions
have not yet been studied in an effective field theory approach
similar to those used in the NN case.

The process πN → Ne+e− is related to the time inverse
of pion photoproduction, which is the key experiment in
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determining the electromagnetic properties of baryon reso-
nances, and is studied in great detail both experimentally and
theoretically. In particular, effective field theory models have
been used to study pion photoproduction [11–13].

In the present paper we set up a model of electron-positron
pair production in πN collisions based on an effective field
theory approach.

The paper is organized as follows. In Sec. II we review
the kinematics of the πN → Ne+e− process and give the
expressions for the differential cross section. In Sec. III we
specify the effective Lagrangians and discuss the calculation of
the transition matrix elements. Separate subsections deal with
the version of the vector meson dominance model used in this
paper to describe the electromagnetic interaction of hadrons;
the contribution of the nonresonant Feynman diagrams to the
matrix element, with an emphasis on the gauge-invariance pre-
serving scheme for hadronic form factors; the contribution of
baryon resonances. For nonresonant contributions explicit ana-
lytical expressions for the matrix elements are listed, while the
contributions of baryon resonances are calculated numerically.

In Sec. IV we discuss the determination of baryon resonance
parameters from pion photoproduction data. The calculated
dilepton spectra are shown in Sec. V, followed by a discussion.

II. KINEMATICS

The differential cross section of the process π + N → N +
e+ + e− is given by

dσ = (2π )4

4
√

(pi · q)2 − m2
Nm2

π

× 1

npol

∑
pol

|M|2d�3(pi + q; pf , k1, k2), (1)

where the n-body phase-space is defined by

d�n(P ; p1, . . . , pn) = δ(4)

(
P −

n∑
i=1

pi

)
n∏

i=1

d3pi

(2π )32pi0
,

(2)

and we have used the notation of Fig. 1 for the four-momenta
of particles. The three-body phase-space in Eq. (1) can be
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FIG. 1. Schematic diagram of the process π + N → N + e+ + e−.

calculated recursively as

d�3(pi + q; pf , k1, k2) = (2π )3d(k2)d�2(pi + q; pf , k)

× d�2(k; k1, k2). (3)

Making use of the Dirac-δ in Eq. (2) we can integrate out four
of the six momentum components in the case of the two-body
phase-space, to get

d�2(P ; p1, p2) = 1

4(2π )6

|p1|√
P 2

d�1, (4)

where p1 is the spatial part of p1 in the frame where P is at
rest, and d�1 = dφ1d(cos θ1) is the solid angle of p1 in the
same reference frame.

Using this the differential cross section Eq. (1) can be
written in the form

dσ = 1

64(2π )5|q|s d(k2)d�kd�k1

|k||k1|√
k2

1

npol

∑
pol

|M|2.

(5)

For unpolarized beams dσ is independent of the azimuth angle
φk, which can be integrated out. Note that k1 and d�k1 is
defined in the rest frame of the decaying virtual photon of
momentum k, in accordance with Eq. (4). Further,

√
k2 = M

is the dilepton invariant mass, and d(k2) = d(M2) = 2MdM .
Neglecting the electron mass we get |k1| = M/2. The differ-
ential cross section is then

dσ

dM
= M

64(2π )4s

|k|
|q|

∫
d(cos θk)d�k1

1

npol

∑
pol

|M|2. (6)

In Eq. (6) the magnitudes of the center-of-mass momenta are
given by

|q| =
√

λ
(
s,m2

N,m2
π

)
2
√

s
, (7)

|k| =
√

λ
(
s,m2

N,M2
)

2
√

s
, (8)

with λ(a, b, c) = a2 + b2 + c2 − 2(ab + bc + ca).

The leptonic part of the matrix element M can be written
out explicitly, resulting in the expression

M = − e

k2
Mhad

μ ū(k1)γ μv(k2). (9)

The squared matrix element summed over polarizations is

∑
pol

|M|2 = e2

k4
Wμνl

μν, (10)

with the hadronic tensor Wμν defined by

Wμν =
∑
pol

Mhad
μ Mhad

ν

∗
, (11)

and the leptonic tensor lμν given by

lμν = 4
(
k

μ

1 kν
2 + kν

1k
μ

2 − (k1 · k2)gμν
)
. (12)

III. EFFECTIVE LAGRANGIANS AND
MATRIX ELEMENTS

The Feynman diagrams contributing to the process π +
N → N + e+ + e− are depicted in Fig. 2. These are: the
Born contributions [(a) s-, (b) u-, and (c) t-channel diagrams,
and (d) contact interaction term], (e) vector meson exchange
diagram, (f) s-channel and (g) u-channel baryon resonance
contributions.

A. Electromagnetic interaction of hadrons

In most studies the electromagnetic interaction of hadrons is
described using some variant of the vector meson dominance
(VMD) model [14]. Here we adopt a version of the model
described in Appendix B of Ref. [15] and also in Ref. [16],
where it is denoted VMD1. In this version only the ρ0

vector meson is included and the ργ coupling has the

N

(a)

N

(b)

π

(c) (d)

ρ, a1

(e)

R

(f)

R

(g)

FIG. 2. Feynman diagrams contributing to the process π + N →
N + e+ + e−.
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FIG. 3. According to the vector meson dominance (VMD) model
applied in this paper, the full electromagnetic vertex is a sum of the
direct photon term and the ρ meson contribution.

form

Lργ = − e

2gρ

Fμνρ0
μν, (13)

where Fμν = ∂μAν − ∂νAμ is the electromagnetic field
strength tensor and ρ0

μν = ∂μρ0
ν − ∂νρ

0
μ. From the width

of the ρ → e+e− decay, the value gρ = 4.96 is
obtained.

In addition we have to specify the coupling of various
hadrons to the ρ0. Hadrons can also directly couple to the
electromagnetic field Aμ. The full electromagnetic vertex of
hadrons h1 and h2 is, therefore, the sum of the direct photon
term and the VMD contribution (see Fig. 3). The vertex
function corresponding to the VMD contribution to the h1h2γ

coupling has the form

V
μ...

h1h2γ,VMD(k) = FVMD(k2)V μ...

h1h2ρ
(k), (14)

where the VMD form factor appearing on the right hand side
is given by

FVMD(k2) = − e

gρ

k2

k2 − m2
ρ + i

√
k2�ρ(k2)

, (15)

and is the product of the ρ meson propagator and the ργ vertex
contribution. In Eq. (14) k is the photon four-momentum,
μ is the Lorentz index of the photon line, and the dots
stand for possible further Lorentz indices corresponding to
Rarita-Schwinger fields in case h1 or h2 are higher spin
baryons.

For the electromagnetic interaction of a baryon resonance
R (h1 = R and h2 = N ), the gRNρ coupling constants can be
determined from the R → Nρ width of the baryon resonance
R. The VMD form factor in Eq. (15) is proportional to k2,
therefore the VMD part of the electromagnetic vertex does not
contribute to the R → Nγ decay width for real photons, k2 =
0. Thus, gRNγ can be fixed independently using the photonic
decay width �R→Nγ . This is an advantage of the choice of
the VMD Lagrangian Eq. (13). If instead one uses the more
common form

L̃ργ = −em2
ρ

gρ

ρ0
μAμ, (16)

k2 in the numerator of the VMD form factor, Eq. (15)
is replaced by m2

ρ . In that case the VMD contribution to
�R→Nγ is nonzero, and in fact overpredicts the physical Nγ

width for most of the baryon resonances, as pointed out in
Ref. [17].

B. Nonresonant contributions

1. Contributions of direct photon couplings

In order to calculate the nonresonant Feynman diagrams
Figs. 2(a)–2(e), we have to specify the hadronic and electro-
magnetic interaction Lagrangians of pions and nucleons. We
use a pseudovector NNπ coupling,

LNNπ = −fNNπ

mπ

ψ̄Nγ5γ
μ�τψN · ∂μ �π. (17)

Following Ref. [11] we use the value fNNπ = 0.97 for the
coupling constant.

The electromagnetic interaction Lagrangians must be cho-
sen in such a way that electromagnetic gauge invariance is
fulfilled. This will ensure that the photon field Aμ will couple to
conserved currents constructed from the hadron fields, and the
resulting hadronic matrix elements will satisfy the condition
Mhad

μ kμ = 0. An important consequence is, that the photon
propagator can be written as −igμν/k2, which has been used
in the derivation of Eq. (9).

Gauge invariant Lagrangians can be obtained by replacing
derivatives ∂μ with the covariant derivative

∇μ = ∂μ + ieAμQ (18)

in all terms of the Lagrangian (Q is the electric charge
operator). Carrying out this replacement in the nucleon kinetic
energy term results in the NNγ interaction Lagrangian
−eψ̄N /AQψN . This is supplemented by the magnetic term,
which contains the field tensor Fμν , and is gauge invariant.
The complete NNγ interaction is then

LNNγ = −eψ̄N

[
1 + τ3

2
/A

−
(

1 + τ3

2
κp + 1 − τ3

2
κn

)
σμν

4mN

Fμν

]
ψN. (19)

(The isospin 1/2 representation of the electric charge operator,
Q = (1 + τ3)/2 has been substituted.)

Starting from the pion kinetic energy term we obtain the
ππγ interaction in the form

Lππγ = −eAμJμ
π , (20)

where Jμ
π = i(π−∂μπ+ − π+∂μπ−) is the pion current. In

addition a ππγ γ term is also generated, but it does not
contribute to the studied process.

Inserting the covariant derivative in the pseudovector pion-
nucleon coupling term we obtain an NNπγ contact interaction
of the form

LNNπγ = − iefNNπ

mπ

ψ̄Nγ5γ
μ�τψ · AμQ�π. (21)

Using the Lagrangians Eqs. (17),(19)–(21) we can calculate
those Born contributions [diagrams (a)–(d) in Fig. 2] to Mhad

μ

that contain a direct photon coupling. The construction of
the Lagrangians assures that the sum of these contributions
satisfies the gauge invariance condition Mhad

μ kμ = 0. Note,
however, that the individual Feynman diagrams are not gauge
invariant.
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In order to describe the off-shell behavior of internal hadron
lines we apply at all hadronic vertices form factors given by

F1(s) = 1

1 + (
s − m2

N

)2
/�4

, (22)

F2(u) = 1

1 + (
u − m2

N

)2
/�4

, (23)

F3(t) = 1

1 + (
t − m2

π

)2
/�4

(24)

for s-, u-, and t-channel diagrams, respectively. These satisfy

F1
(
m2

N

) = F2
(
m2

N

) = F3
(
m2

π

) = 1. (25)

The application of different form factors to the individual
diagrams Figs. 2(a)–2(c) destroys the overall gauge invariance
of the Born contributions. The solution to this problem has
been given by Davidson and Workman in the case of pion
photoproduction [18], and the method can be generalized to
the present case. We first write Mhad

μ in the form

Mhad
μ = ūf Tμui. (26)

Let T Born
μ denote the Born contribution to Tμ obtained from

direct photon terms. It can be shown by explicit calculation
of T Born

μ from the Born channel Feynman diagrams, that
the replacement T Born

μ → T Born
μ + �T Born

μ makes the hadronic
matrix element Mhad

μ gauge invariant, if

�T Born
μ =

√
2efNNπ

mπ

2mNγ5

[
(F̂ (s, u, t) − F3(t))

2qμ − kμ

t − m2
π

− (F̂ (s, u, t) − F2(u))
2p

μ

i − kμ

u − m2
N

]
, (27)

where

F̂ (s, u, t) = F1(s) + F2(u) + F3(t) − F1(s)F2(u)

−F1(s)F3(t) − F2(u)F3(t) + F1(s)F2(u)F3(t).

(28)

F̂ (s, u, t) was chosen in such a way that

F̂
(
m2

N, u, t
) = F̂

(
s,m2

N, t
) = F̂

(
s, u,m2

π

) = 1, (29)

which means that the poles of T Born
μ at t = m2

π and u = m2
N

are canceled by the factors F̂ − F2(3). This means that the term
�T Born

μ can be generated by adding a suitably chosen contact
interaction to the Lagrangian.

Gauge invariance of the resulting T Born
μ can be made

transparent by writing it in the form

T Born
μ =

4∑
i=1

AiMi,μ, (30)

where Mi,μ denote the gauge invariant combinations

M1,μ = γ5(γμ/k − kμ), (31)

M2,μ = γ5

2
[(2piμ − kμ)(2q · k − M2)

− (2qμ − kμ)(2pi · k − M2)], (32)

M3,μ = γ5

2
[γμ(2pf · k + M2) − (2pf μ + kμ)/k], (33)

M4,μ = γ5

2
[γμ(2pi · k − M2) − (2piμ − kμ)/k]. (34)

In the k2 = 0 limit Mi,μ correspond to the gauge invariant
combinations defined in Ref. [18] for the case of pion
photoproduction.

The coefficients Ai are obtained from the explicit Feynman
diagram calculations and are given by

A1 = −
√

2efNNπ

mπ

[
1

2mN

(F1κn + F2κp) + 2mNF2

u − m2
N

(1 + κp)

+ 2mNF1

s + m2
N

κn

]
, (35)

A2 =
√

2efNNπ

mπ

4mNF̂(
t − m2

π

)(
u − m2

N

) , (36)

A3 =
√

2efNNπ

mπ

2κnF1

s − m2
N

, (37)

A4 =
√

2efNNπ

mπ

2κpF2

u − m2
N

. (38)

In the derivation of Eqs. (35)–(38) we have used the fact, that
kμlμν = 0, and thus arbitrary terms proportional to kμ can be
added to Tμ without affecting the cross section.

2. VMD contributions to Born diagrams

For the calculation of the VMD contributions we need the
coupling of hadrons to the ρ0 meson. Here we face the same
problems related to gauge invariance as in the case of the direct
photon couplings. First we have to ensure that the relation
Mhad

μ kμ = 0 holds without the inclusion of hadronic form
factors. One possibility to fulfill this condition is to define
the interaction of ρ mesons with other hadrons by replacing
derivatives ∂μ in the hadronic Lagrangians with

∇μ = ∂μ − ig̃ρ �ρμ · �T , (39)

where �T denotes the generators of the isospin SU(2) group.
This method is inspired by an SU(2) gauge theory with ρ

mesons as gauge bosons.
In this way an NNρ interaction term can be obtained from

the nucleon kinetic energy term. Similarly to the direct photon
coupling, a magnetic type term can be added to it, yielding the
total NNρ interaction Lagrangian

LNNρ = g̃ρ

2
ψ̄N

(
�/ρ − κρ

σμν

4mN

�ρμν

)
· �τψN. (40)

The ρππ term is obtained from the pion kinetic energy term
and has the form

Lρππ = −g̃ρ[(∂μ �π ) × �π ] · �ρμ. (41)

Comparing the Lagrangians Eqs. (40) and (41) with the
traditional forms of the NNρ and ρππ couplings, we see that
their construction in terms of the covariant derivative Eq. (39)
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provides a relation of their coupling constants in the form

2gNNρ = gρππ = g̃ρ . (42)

From the width of the decay ρ → ππ the value gρππ = 5.96
is obtained. gNNρ can be determined from low energy nucleon-
nucleon scattering. In Ref. [13] the value gNNρ = 2.6 was used,
yielding the ratio gρππ/gNNρ = 2.29, which is reasonably
close to the value of 2 predicted by SU(2) gauge invariance.
In the present calculation we use the values g̃ρ = gρππ = 5.96
and gNNρ = g̃ρ/2 = 2.98.

Inserting the covariant derivative Eq. (39) in the pseudovec-
tor NNπ Lagrangian Eq. (17) we obtain an NNπρ contact
interaction,

LNNπρ = − g̃ρfNNπ

mπ

ψ̄Nγ5γ
μ�τψ · ( �ρμ × �π ). (43)

In accordance with Eq. (14) the VMD contribution to the
hadronic matrix element can be written in the form

Mhad,VMD
μ = FVMD(k2)M̃μ, (44)

where the VMD form factor FVMD(k2) is given by Eq. (15).
Feynman diagrams representing M̃μ can be obtained from the
VMD diagrams by truncating the dilepton part, starting from
the ρ propagator.

At hadronic vertices we employ the same form factors
[Eqs. (22)–(24)] as in the direct photon contributions. Then
we write M̃μ in the form

M̃μ = ūf T̃μui. (45)

The explicit form of T̃ Born,VMD
μ (the contribution to T̃μ of

Born diagrams with VMD coupling) is calculated from the
relevant Feynman diagrams. We observe that the replacement
T̃ Born,VMD

μ → T̃ Born,VMD
μ + �T̃ Born,VMD

μ ensures the validity of
the gauge invariance relation, Mhad,VMD

μ kμ = 0 if �T̃ Born,VMD
μ

is chosen as

�T̃ Born,VMD
μ = g̃ρfNNπ√

2mπ

2mNγ5 (46)

×
[

(F̂ (s, u, t) − F2(u))
2p

μ

i − kμ

u − m2
N

− (F̂ (s, u, t) − F1(u))
2p

μ

f + kμ

s − m2
N

− 2(F̂ (s, u, t) − F3(t))
2qμ − kμ

t − m2
π

]
. (47)

This �T̃ Born,VMD
μ is free from poles, and is assumed to be

generated by suitable contact terms added to the Lagrangian.
The obtained T̃ Born,VMD

μ can be expanded as

T̃ Born,VMD
μ =

5∑
i=1

ÃiMi,μ, (48)

where M1...4,μ are given in Eqs. (31)–(34), and

M5,μ = γ5

2
[(2pf μ + kμ)(2q · k − M2)

− (2qμ − kμ)(2pf · k + M2)]. (49)

The coefficients Ãi are obtained as

Ã1 = g̃ρfNNπ√
2mπ

[
κρ

2mN

(F2 − F1) + 2mN (1 + κρ)

×
(

F2

u − m2
N

− F1

s − m2
N

)]
, (50)

Ã2 = − g̃ρfNNπ√
2mπ

4mNF̂(
t − m2

π

)(
u − m2

N

) , (51)

Ã3 = g̃ρfNNπ√
2mπ

2κρF1

s − m2
N

, (52)

Ã4 = − g̃ρfNNπ√
2mπ

2κρF2

u − m2
N

, (53)

Ã5 = − g̃ρfNNπ√
2mπ

4mNF̂

(t − m2
π )(s − m2

N )
. (54)

3. t-channel ρ- and a1-exchange contributions

We also calculated the contributions of the t-channel ρ- and
a1-exchange diagrams, Fig. 2(e). For the ρ exchange we adopt
the ρπγ interaction Lagrangian from Ref. [12],

Lρπγ = e
gρπγ

4mπ

εμνλσFμν �ρλσ · �π. (55)

The value of the coupling constant, gρπγ = 0.103, is obtained
from the width of the ρ → πγ decay. Lagrangians equivalent
to the above Lρπγ have been used in Refs. [11,13].

The a1πγ interaction was studied in Ref. [19]. In that paper
the momentum space form of the interaction Lagrangian was
given. Its coordinate space equivalent is given by

La1πγ = −ie
ga1πγ

mπ

�aμFμν · ∂ν �π, (56)

where �aμ denotes the axial-vector–isovector a1 field. From the
width of the a1 → πγ decay we get ga1πγ = 0.106 for the
coupling constant.

We also need to specify the form of the NNa1 interaction.
The role of t-channel a1 exchange in the nucleon-nucleon
interaction was studied in Ref. [20]. They take the NNa1

Lagrangian from the chiral SU (2) × SU (2) model of Ref. [21].
In that model the Lagrangian has the form

LNNa1 = gNNa1ψ̄Nγ μγ5 �τψN · �aμ, (57)

and the coupling constant is related to the pseudovector pion-
nucleon coupling via

gNNa1

ma1

= fNNπ

mπ

. (58)

This relation gives the value gNNa1 = 8.65. In Ref. [22] the
nucleon-a1 coupling has been determined from the nucleon
axial form factor, and the value gNNa1 = 6.7 was obtained.

In close analogy with the Born contributions we apply form
factors given by

FV (t) = 1

1 + (
t − m2

V

)2
/�4

(59)
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for t-channel ρ- and a1-exchange diagrams, where mV denotes
the ρ or a1 meson mass.

We found that the contribution of t-channel ρ exchange
is at least three orders of magnitude smaller than the Born
contribution in the

√
s � 1 GeV energy range. The a1-

exchange contribution is even smaller and never exceeds 10%
of the ρ contribution.

C. Contributions of baryon resonances

1. Interaction Lagrangians

In order to calculate the s- and u-channel baryon resonance
contributions, diagrams Figs. 2(f) and 2(g), we have to specify
the coupling of baryon resonances to the πN , ρN , and γN

channels.
Similarly to the nucleon-pion interaction we employ pseu-

dovector couplings in the case of spin-1/2 nucleon resonances,

LR1/2Nπ = −gRNπ

mπ

ψ̄R�γ μ�τψN · ∂μ �π + H.c. (60)

In the spin-3/2 case we use the Lagrangian

LR3/2Nπ = gRNπ

mπ

ψ̄
μ

R��τψN · ∂μ �π + H.c., (61)

while in the spin-5/2 case the Lagrangian

LR5/2Nπ = gRNπ

mπ

ψ̄
μν

R ��τψN · ∂μ∂ν �π + H.c. (62)

In the above � = γ5 for JP = 1
2

+
, 3

2
−

, and 5
2

+
resonances and

� = 1 otherwise. ψμ

R and ψ
μρ

R are the Rarita-Schwinger fields
describing spin- 3

2 and - 5
2 resonances, respectively, and �τ are

the (isospin) Pauli matrices. In the case of � resonances �τ has
to be replaced by the isospin 3

2 → 1
2 transition matrices, �T .

We now list the Lagrangians describing the RNγ and
RNρ coupling of baryon resonances. For spin-1/2 nucleon
resonances these are given by

LR1/2Nγ = gRNγ

2mρ

ψ̄Rσμν�̃ψNFμν + H.c., (63)

LR1/2Nρ = gRNρ

2mρ

ψ̄R �τσμν�̃ψN · �ρμν + H.c. (64)

For spin-3/2 nucleon resonances the corresponding La-
grangians are

LR3/2Nγ = − igRNγ

mρ

ψ̄
μ

Rγ ν�̃ψNFμν + H.c., (65)

LR3/2Nρ = − igRNρ

mρ

ψ̄
μ

R �τγ ν�̃ψN · �ρμν + H.c., (66)

and for spin-5/2 nucleon resonances we use

LR5/2Nγ = − igRNγ

mρ

ψ̄
μρ

R γ ν�̃(∂ρψN )Fμν + H.c., (67)

LR5/2Nρ = − igRNρ

mρ

ψ̄
μρ

R �τγ ν�̃(∂ρψN ) · �ρμν + H.c. (68)

For the RNρ couplings, �τ is replaced by �T in the case of �

resonances, similarly to the RNπ case. In Eqs. (63)–(68) �̃ =
γ5 for JP = 1

2
−

, 3
2

+
, and 5

2

−
resonances and �̃ = 1 otherwise.

Dilepton production in the Dalitz decay of baryon reso-
nances (R → Ne+e−) was studied in Refs. [23] and [24]. In
Ref. [24] we discussed the possible forms of matrix elements of
the electromagnetic current between a resonance and a nucleon
state. We demonstrated that the contributions of the various
possibilities do not differ significantly, unless the resonance
mass is far from the nominal value. Based on this result,
the matrix elements containing the lowest power of external
momenta were chosen for the calculation of the resulting
dilepton spectra. The Lagrangians Eqs. (63)–(68) correspond
to the same choice in the sense that the matrix elements
calculated from them coincide with those chosen in Ref. [24].

2. Propagators and form factors

The propagator of spin-3/2 baryon resonances is

G
μν

R3/2
(p) = i

p2 − m2
R + i

√
p2�R(p2)

P
μν

3/2(p,mR), (69)

where

P
μν

3/2(p,mR)

= −(/p + mR)

×
(

gμν − γ μγ ν

3
− 2

3

pμpν

m2
R

+ pμγ ν − pνγ μ

3mR

)
. (70)

On the mass-shell P
μν

3/2(p,mR) coincides with the spin-3/2
projector operator.

For the spin-5/2 propagator we use

G
μν,ρσ

R5/2
(p) = i

p2 − m2
R + i

√
p2�R(p2)

P
μν,ρσ

5/2 (p,mR), (71)

where

P
μν,ρσ

5/2 (p,mR) = (/p + mR)
[

3
10 (GμρGνσ + GμσGνρ)

− 1
5GμνGρσ − 1

10 (T μρGνσ + T νσGμρ

+ T μσGνρ + T νρGμσ )
]
, (72)

with

Gμν = −gμν + pμpν

m2
R

, (73)

and

T μν = −1

2
(γ μγ ν − γ νγ μ) + pμ(/pγ ν − γ ν

/p)

2m2
R

− pν(/pγ μ − γ μ
/p)

2m2
R

. (74)

We parametrize the p2 dependence of the Nπ and Nη width
of baryon resonances as [25]

�(p2) = �
(
m2

R

) mR√
p2

(
q

qR

)2l+1(
q2

R + δ2

q2 + δ2

)l+1

, (75)
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where l is the angular momentum of the pion or η meson, q

is the magnitude of the outgoing three-momentum in the rest
frame of the decaying resonance given by

q =
√

λ
(
p2,m2

N,m2
π(η)

)
2
√

p2
, (76)

while qR is the same quantity for an on-shell resonance, p2 =
m2

R . The cutoff parameter δ is given by

δ2 = (mR − mN − mπ(η))
2 +

[
�

(
m2

R

)]2

4
, (77)

with the exception of the �(1232) where the value δ =
0.3 GeV, and the N (1535), where δ = 0.5 GeV has been used.

The p2 dependence of the Nπ width of baryon resonances
can be calculated from the appropriate Feynman diagrams
using the effective Lagrangians Eqs. (60)–(62). In order to get
a p2 dependence numerically similar to Eq. (75) we employ a
cutoff factor of the form

F (p2) =
√

mR√
p2

(
q2

R + δ2

q2 + δ2

) l+1
2

(78)

at each RNπ vertex.
Two-pion decays of baryon resonances are assumed to

proceed through an intermediate baryon or meson resonance,
as R → (�/N (1440))π → Nππ or R → N (ρ/σ ) → Nππ .
For the p2 dependence of the corresponding decay width
we choose the expression obtained from a Feynman diagram
calculation, multiplied by the cutoff factor

Fππ (p2) =
[

(
√

p2 − mN − 2mπ )2 + δ2

(mR − mN − 2mπ )2 + δ2

]2

. (79)

It was pointed out in Refs. [11,12] that the pion pho-
toproduction data can be reproduced only if the u-channel
resonance diagrams are multiplied by the extra cutoff factor
�2

u/(�2
u + q2), with �u = 0.3 GeV. (q is the magnitude of

the pion momentum in the center-of-mass frame.) The role
of this cutoff is to remove the high-energy divergence of
these contributions. A similar divergence of the u-channel
contributions occurs in the case of the πN → Ne+e− process
discussed in the present paper. However, we find that diagrams
with higher spin resonances diverge faster. Especially spin-5/2
resonances need a stronger cutoff. Therefore we use a spin
dependent cutoff factor of the form

Fu(p2) =
(

�2
u

�2
u + q2

)J

(80)

for u-channel diagrams with a resonance of spin J . Following
Refs. [11,12] we use the value �u = 0.3 GeV for the cutoff
parameter.

IV. RESONANCE PARAMETERS

Our model includes 16 baryon resonances below 2 GeV
that have three- or four-star status according to the Review of
Particle Physics [26]. We did not include the state �(1920)
because we have no information about its Nρ and Nγ

branching ratio. We also excluded the spin-7/2 �(1950)
resonance.

We take the mass and total width of the resonances
from Ref. [26]. The RNπ and RNρ coupling constants are
determined from the partial decay widths, that are obtained
from the total width and the mean value of the lower and upper
bounds of the appropriate branching ratio listed in Ref. [26].

The Nγ branching ratios are poorly known for most
resonances. Also, the partial decay widths give no information
about the sign of coupling constants. These signs determine the
signs of interference terms in the πN → Ne+e− cross section.
To overcome these problems we also calculated the total
cross section of pion photoproduction, fitted to the available
experimental data, using the RNγ coupling constants as
fit parameters. We varied also the signs of these coupling
constants.

The Feynman diagrams contributing to pion photoproduc-
tion can be obtained from the time inverse of the diagrams in
Fig. 2 by truncating at the photon propagator. The calculation
of the matrix elements goes along the same lines as for
the πN → Ne+e− process, but now the photon is on-shell,
k2 = 0, which substantially simplifies the obtained expres-
sions. In particular, there are no VMD contributions to pion
photoproduction because of the choice of the ργ Lagrangian
of the form Eq. (13).

Nonresonant contributions are calculated according to the
gauge-invariance preserving scheme of Ref. [18], which can
be obtained from the formulas of Sec. III B in the k2 = 0 limit.
Resonant contributions are calculated numerically.

During the fitting procedure we varied the RNγ coupling
constants within the ranges allowed by the total width and
Nγ branching ratios of the resonance R as listed in Ref. [26].
An exception is the N (1680) resonance where we reduced
the limits of the pγ branching ratio by a factor of about
10 to coincide with the limits of the nγ branching ratio.
This reduction was necessary because otherwise the large
N (1680)pγ coupling resulted in a high N (1680) peak on
the γp → π+n total cross section starting with a rapid rise
already below 1 GeV laboratory photon energy, which is not
seen in experimental data. The other exception is the �(1232)
where we decreased the photonic branching ratio by about 25%
below the PDG lower bound in order to obtain a reasonable
description of the pion photoproduction data.

We repeated the fit with various values of the cutoff
parameter � of the Born contributions. The best fit was
obtained with the value � = 0.63 GeV.

The resonance parameters—including the fitted RNγ

coupling constants—are summarized in Table I. Figure 4
shows the total pion photoproduction cross sections calculated
from our best fit in comparison with the experimental data.
We also show the contribution of Born diagrams. The three
plots correspond to the processes γp → π0p, γp → π+n,
and γ n → π−p.

The discrepancies seen in the π0p and π+n channels are
hard to cure in the framework of the present model. Both cross
sections contain the pγ coupling constant of each resonance in
the s-channel contributions. Thus the ratio of the contribution
to the π0p and π+n channels of each s-channel resonance
diagram is purely determined by isospin Clebsch-Gordan
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TABLE I. Parameters of the 16 baryon resonances included in the model.

J P mR �tot BR (%) Coupling constants

(GeV) (MeV) Nπ Nρ gRNπ gRNρ gRpγ gRnγ

�(1232) 3/2+ 1.232 0.118 100 0 1.52 0 − 1.5 − 1.5
N (1440) 1/2+ 1.440 0.3 65 0 7.40 0 0.204 − 0.088
N (1520) 3/2− 1.520 0.115 60 20 1.94 9.92 − 0.67 0.654
N (1535) 1/2− 1.535 0.15 45 2 0.838 1.73 0.204 0.033
N (1650) 1/2− 1.655 0.165 77 8 1.09 0.994 − 0.186 − 0.181
N (1675) 5/2− 1.675 0.15 40 1 0.122 6.74 0.124 − 0.679
N (1680) 5/2+ 1.685 0.13 67 9 0.509 6.03 − 0.38 − 0.381
N (1700) 3/2− 1.700 0.10 10 17 0.434 1.25 − 0.135 − 0.060
N (1710) 1/2+ 1.710 0.10 15 15 1.28 1.68 0.0694 0.044
N (1720) 3/2+ 1.720 0.2 15 77 0.208 9.37 − 0.045 0.515
�(1600) 3/2+ 1.600 0.35 17 12 0.355 16.5 0.189 0.189
�(1620) 1/2− 1.630 0.145 25 16 0.587 1.72 0.0272 0.0272
�(1700) 3/2− 1.700 0.3 15 42 0.922 3.40 0.361 0.531
�(1905) 5/2+ 1.890 0.33 12 60 0.178 4.76 0.173 0.173
�(1910) 1/2+ 1.910 0.25 22 0 1.95 0 0.165 0.165
�(1930) 5/2− 1.960 0.36 10 0 0.0491 0 0.0 0.0

coefficients appearing in the RNπ vertex. Since Born and
s-channel resonance contributions dominate the cross sections
little freedom is left to balance the two channels with γ + p

initial state.
In the π−p channel above 0.8 GeV laboratory photon

energy the total cross section is less than the Born contribution.
This is a result of a destructive interference.

V. RESULTS FOR DILEPTON PRODUCTION

We used the effective field theory model described in
Sec. III to calculate the matrix elements of the process π− +
p → n + e+ + e− represented by the Feynman diagrams of
Fig. 2. Then we used Eq. (6) to calculate the differential cross
section dσ/dM . The integrations were carried out numerically
using a Monte Carlo technique. The resulting dilepton spectra
for various collision energies are shown in Fig. 5. The mass
spectra at 1.3 GeV and below are monotonically decreasing,
above 1.5 GeV pion energy the ρ meson contributes. At 1.5
and 1.7 GeV energy only the tail of the ρ meson spectrum

is populated, still it produces a peak in the dilepton invariant
mass spectrum. Note, however, that in the model no direct ρ

channel is included. The effect of the ρ meson is encoded in
the VMD form factors of hadrons.

As the center-of-mass energy increases from 1.3 GeV
to 1.9 GeV the importance of different resonances also
changes. At 1.3 GeV the s-channel �(1232) contribution
dominates the dilepton cross section. On the other hand at
1.9 GeV the Born term and the s-channel N (1680) gives
the dominant contribution. The s-channel N (1520) diagram
is also important. These can be seen in Fig. 6 which shows
the contributions of the dominant channels to the dilepton
spectrum at

√
s = 1.9 GeV center-of-mass energy. Similarly

to pion photoproduction, u-channel resonance contributions
are always negligible after the inclusion of the cutoff Eq. (80).

In Fig. 6 we also show the contribution of the interference
terms of the dominant channels. Note that interference terms
can be negative, therefore we used a linear scale on the
vertical axis. Since the interference terms are not negligible,
dilepton production in πN collisions cannot be approximated
by the incoherent sum of s-channel baryon resonance diagrams

 0

 50

 100

 150

 200

 250

 300

 350

 0.1  0.3  0.5  0.7  0.9

σ 
[μ

b]

Elab  [GeV]

(a) π0 p

experiment
theory

Born

 0

 50

 100

 150

 200

 250

 300

 0.1  0.3  0.5  0.7  0.9

σ 
[μ

b]

Elab  [GeV]

(b) π+ n

 0

 50

 100

 150

 200

 250

 300

 350

 0.1  0.3  0.5  0.7  0.9

σ 
[μ

b]

Elab  [GeV]

(c) π- p

FIG. 4. (Color online) Total cross section of pion photoproduction. Results of our calculation are compared with experimental data. Dashed
lines show the contribution of Born diagrams.
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FIG. 5. (Color online) Dilepton invariant mass spectra from the
reaction π− + p → n + e+ + e− for various collision energies.

Fig. 2(f), (which is the usual assumption in transport models),
even if a background term is added to simulate the Born term.
The simplest solution for transport models is to use the cross
section calculated by the sum of all diagrams shown in Fig. 2.
There is a price to pay for that: it is difficult to study in medium
modification of baryon resonances in heavy ion reactions.

VI. CONCLUSION

We have developed an effective field theoretical model to
calculate the πN → Ne+e− cross section. We constructed an
effective Lagrangian including nucleons, photons, pions, and
ρ mesons (via VMD), and 16 baryon resonances below 2 GeV,
i.e., all states with three- or four-star status except �(1950) and
�(1920). We applied form factors at each vertex for internal
hadron lines to account for their off-shell behavior. To maintain
gauge invariance we generalized the method of Davidson-
Workman [18] to the production of massive photons (with
and without an intermediate ρ meson). The NNπ and ππρ

couplings are well known. In the derivation of the interaction
Lagrangians we used the electromagnetic gauge invariance
and a model inspired by SU(2) gauge theory with ρ mesons

-5
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FIG. 6. (Color online) Contributions of the dominant channels
to the dilepton invariant mass spectrum of the reaction π− + p →
n + e+ + e− at

√
s = 1.9 GeV energy. See the text for the precise

definition of the channels.

as gauge bosons. This model gives relations between some of
the coupling constants.

Coupling constants of baryon resonances to the Nπ and Nρ

channels have been determined from the appropriate partial
width of the resonance, while the RNγ couplings constants
have been fitted to the pion photoproduction data.

For dilepton production we obtained monotonically de-
creasing invariant mass spectra below 1.5 GeV center-of-mass
energy, while at higher energies the VMD form factor (related
to the intermediate ρ meson) creates a peak at high dilepton
masses. The spectrum is dominated by the Born-term, but
the N (1680) and N (1520) and their interference terms are
sizable too. The importance of interference terms contradicts
the usual assumption of transport models that the cross
section is dominated by incoherent sum of s-channel resonance
contributions.
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