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We study the consistency of parton distribution functions in the presence of target mass corrections (TMCs)
at low Q2. We review the standard operator product expansion derivation of TMCs in both x and moment space,
and present the results in closed form for all unpolarized structure functions and their moments. To avoid the
unphysical region at x > 1 in the standard TMC analysis, we propose an expansion of the target mass corrected
structure functions order by order in M2/Q2, and assess the convergence properties of the resulting forms
numerically.
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I. INTRODUCTION

The application of the operator product expansion (OPE)
to the phenomenological study of quantum chromodynamics
(QCD) has been very successful in the determination of
the quark and gluon substructure of the nucleon. The OPE
allows the formal separation of cross sections for high-energy
processes such as deep-inelastic scattering (DIS) into pertur-
batively calculable partonic cross sections and nonperturbative
contributions parametrized by parton distribution functions
(PDFs). The factorization of the cross section becomes
especially clean in the Bjorken limit, where the energy ν and
four-momentum squared Q2 transferred to a nucleon with mass
M both become infinite, with the ratio x = Q2/2Mν fixed.

In the Bjorken limit the DIS process becomes dominated
by scattering at light-cone space-time distances zμzμ ∼ 0,
with the expansion made in terms of products of singular
and nonsingular terms around the light cone. The singularities
are isolated in the perturbative Wilson coefficients, while the
nonsingular terms are all the possible operators allowed by
the underlying quantum field theory. The coefficient of the
operators of lowest twist (where twist is defined as the dimen-
sion minus the spin of the operator) contains the most singular
terms. Operators in the expansion with higher twist are less
singular, and at large Q2 are suppressed by powers of 1/Q2.

While this framework has met with considerable success
in describing data at high Q2 � M2 and large final-state
hadron masses W 2 = M2 + Q2(1 − x)/x, many recent high-
precision experiments [1] have been performed at lower
energies, with Q2 down to ≈1–2 GeV2, where the use of
the asymptotic Bjorken limit formalism is more questionable.
In addition to the strong coupling constant αs becoming
large, at low Q2 the higher twist power corrections, which
describe nonperturbative multiparton correlations, become
increasingly important. Furthermore, even at leading twist,
there are corrections arising from purely kinematic effects
associated with finite values of Q2/ν2 = 4M2x2/Q2, usually
termed target mass corrections (TMCs) [2–6].

To perform reliable perturbative QCD based analyses which
include data in the low Q2 region, a careful treatment of
the subleading 1/Q2 corrections is essential, and global PDF
analyses [7–11] have only recently begun to take such effects

systematically into account. Studies of quark-hadron duality
[12,13] have also strongly suggested that data at low W can
be described (to within ∼10%–15%) by leading twist parton
distributions. A more basic question, however, is whether one
can consistently define leading twist parton distributions in the
presence of TMCs, that can be valid at low Q2 over the entire
range of x.

The first analysis to tackle this question was by Georgi and
Politzer (GP) [2], who proposed taking TMCs into account by
defining distributions at low Q2 in terms of the Nachtmann
scaling variable, ξ [14,15],

ξ = 2x

1 + ρ
, with ρ =

√
1 + 4μx2 and μ = M2

Q2
.

(1)

This leads to a specific prescription for removing TMCs from
measured structure functions that has been used extensively in
the literature [5].

Unfortunately, problems with the standard TMC prescrip-
tion were soon realized [16–21] in the behavior of the target
mass corrected structure functions in the vicinity of x ≈ 1. In
particular, functions expressed in terms of ξ over the interval
0 � ξ � 1 necessarily extend into the unphysical region
between the elastic limit ξ = ξ0 ≡ ξ (x = 1) and ξ = 1 for any
finite value of Q2 [2]. This not only violates the conservation
of energy and momentum, but also makes structure functions
nonzero at x = 1, at odds with the expectation that leading
twist functions should vanish at the elastic point [12,22].

As a possible remedy, De Rujula et al. [3,4] noted that in the
threshold region analyses of data should not be performed in
terms of leading twist structure functions alone, without also
incorporating the effects of higher twist operators. They argued
that a nonuniformity in the limits as n → ∞ and Q2 → ∞
renders the entire approach untenable at very low W , when
higher twists exceed ∼nM2/Q2 for the nth structure function
moment.

Attempts were also made by Tung and collaborators [19,20]
to phenomenologically remove the threshold problem by
utilizing an ansatz to smoothly merge the moments in the
perturbative region at large Q2 with their correct threshold
behavior in the n → ∞ limit, although such a prescription is
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not unique. Steffens and Melnitchouk [23] extended this ap-
proach by proposing threshold-dependent distributions which
exactly satisfy threshold kinematics at all Q2, at the expense of
sacrificing the universality of PDFs in the presence of TMCs.

Other approaches based on collinear factorization, starting
with the seminal work of Ellis, Furmanski and Petronzio
[24], avoid the inversion of moments by implementing TMCs
directly in momentum space within the parton model [25–28].
These, too, however, suffer from prescription dependence
[25–28], or do not extend to all orders in 1/Q2 [24]. In addition,
even though they do not invoke distributions at x > 1, all these
formulations nevertheless retain the problem of nonvanishing
structure functions at x = 1.

Given the desire to maximally utilize the recent precision
structure function measurements at large x [1,7–11,29], as well
as those planned for the near future [30,31], there is a pressing
need to address the question of TMCs and the consistency
of parton distributions with mass corrections at finite Q2. A
more reliable treatment of the high-x region at moderate Q2

is important not only in providing a better understanding of
the quark structure of the nucleon in the deep valence region
[32,33], it is also vital for constraining cross sections at collider
energies through the evolution to lower x at higher Q2 values
[34,35].

In this paper we revisit the problem of kinematic thresholds
and PDF definitions in the OPE approach to TMCs, elucidating
its shortcomings, and proposing an alternative method that
addresses some of the problems inherent in the standard TMC
formulation. In Sec. II we review the standard TMC approach,
outlining the OPE derivation of target mass corrected moments
and their inversion to x space. We demonstrate explicitly
the conflict of the usual inversion procedure with energy-
momentum conservation, and illustrate its consequences for
the x dependence of the structure functions as well as their
moments. We propose a new method to compute TMCs in
Sec. III, based on inversion of the moments order by order in
M2/Q2, without having to introduce the Nachtmann scaling
variable ξ , and study the convergence of the series numerically.
The advantages and limitations of this method are summarized
in Sec. IV. Further technical details of the TMC derivations of
moments and structure functions are provided in Appendices
A and B, respectively.

II. TARGET MASS CORRECTIONS IN THE OPE

In this section we begin by summarizing the basic for-
mulas for inclusive cross sections and structure functions,
before outlining the main steps in the derivation of TMCs
from the operator product expansion. We present results for
the complete set of leading twist moments of unpolarized
structure functions, and discuss their inversion to obtain the x

dependence at nonzero M2/Q2.
In the one-boson exchange approximation, the differential

cross section for a lepton scattering from a nucleon target is
given (in the target rest frame) by

d2σ

d� dE′ = α2

Q4

E′

ME
η LμνW

μν, (2)

where � is the scattered lepton solid angle, and E and E′
are the initial and final electron energies, respectively. The
lepton tensors Lμν and the coefficients η depend on the type
of boson exchanged (γ, γZ,Z, or W±) [36]. Denoting the
initial and final lepton momenta by k and k′, respectively, and
the momentum transferred to the nucleon by q = k − k′, the
hadronic tensor is given by the commutator of electroweak
current operators Jμ,

Wμν = 1

2π

∫
d4z eiq·z〈N |[Jμ(z), J ν(0)]|N〉 (3)

= −gμνF1 + pμpν

p · q
F2 − iεμνλσ pλpσ

2p · q
F3 + 2qμqν

Q2
F4

+ pμqν + pνqμ

p · q
F5, (4)

where Fi (i = 1–5) are the structure functions of the nucleon,
usually expressed in terms of the variables x and Q2 = −q2,
and we adopt the convention ε0123 = 1 [36]. The structure
functions F1 and F2 are accessible in charged lepton or neutrino
scattering through a product of vector currents, while F3

requires the interference of vector and axial vector currents.
The vector structure functions F4 and F5 are accessible in
neutrino scattering but are suppressed by lepton masses,
m2

l /M
2; for completeness, however, we include them in this

analysis. The hadronic tensor Wμν is also related to the
imaginary part of the virtual forward Compton scattering
amplitude,

T μν = i

∫
d4z eiq·z 〈N |T (Jμ(z)J ν(0))|N〉, (5)

with

Wμν = 1

π
disc T μν. (6)

In the following we derive expressions for the amplitude T μν

and use Eq. (6) to extract the results for the structure functions.

A. Moments of structure functions

The standard derivation of TMCs in the OPE in the twist-2
approximation begins with the Compton scattering amplitude
Tμν , which can in general be written as [2]

T μν =
∞∑

k=1

(
− gμνqμ1qμ2C

2k
1 + gμ

μ1
gν

μ2
Q2C2k

2

− iεμναβgαμ1qβqμ2C
2k
3 + qμqν

Q2
qμ1qμ2C

2k
4

+ (
gμ

μ1
qνqμ2 + gν

μ1
qμqμ2

)
C2k

5

)
qμ3

· · · qμ2k

22k

Q4k
A2k �μ1···μ2k , (7)

where

�μ1···μ2k =
k∑

j=0

(−1)j
(2k − j )!

2j (2k)!
{g · · · gp · · · p}k,j (p2)j

(8)
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and {g · · · gp · · · p}k,j represents the (symmetric) sum
of (2k)!/[2j j !(2k − 2j )!] distinct products of the form
gμi1 μi2 · · · gμi2j−1 μi2j pμ2j+1 · · · pμ2k resulting from permutations
of the indices μ1, . . . , μ2k . The Wilson coefficients C2k

i are
calculated perturbatively, while the factors A2k are matrix
elements of local twist-2 operators Oμ1···μ2k [37],

〈N |Oμ1···μ2k |N〉 = A2k pμ1 · · ·pμ2k − traces, (9)

which parametrize the nonperturbative structure of the nu-
cleon. In the case of the flavor singlet operator, for example,
one has

Oμ1···μ2k

sing = ψ̄γ {μ1Dμ2 · · · Dμ2k}ψ − traces, (10)

where the braces {· · ·} denote symmetrization with respect to
the indices μ1, . . . , μ2k .

The Cornwall-Norton moments M
(n)
i of the structure

functions Fi are defined by

M
(n)
i (Q2) =

{∫ 1
0 dx xn−1Fi(x,Q2) if i = 1, 3, 4, 5∫ 1
0 dx xn−2Fi(x,Q2) if i = 2, L,

(11)

where the longitudinal structure function FL is given by

FL = (1 + 4μx2)F2 − 2xF1, (12)

with the corresponding coefficient function Cn
L = Cn

2 − Cn
1 . A

straightforward but tedious calculation gives for each of the
moments [2,38]

M
(n)
1 (Q2) =

∞∑
j=0

μj

(
n + j

j

) (
1

2
C

n+2j

1 + j

(n + 2j )(n + 2j − 1)
C

n+2j

2

)
An+2j , (13a)

M
(n)
2 (Q2) =

∞∑
j=0

μj

(
n + j

j

)
n(n − 1)

(n + 2j )(n + 2j − 1)
C

n+2j

2 An+2j , (13b)

M
(n)
L (Q2) =

∞∑
j=0

μj

(
n + j

j

) (
C

n+2j

L + 4j

(n + 2j )(n + 2j − 1)
C

n+2j

2

)
An+2j , (13c)

M
(n)
3 (Q2) =

∞∑
j=0

μj

(
n + j

j

)
n

n + 2j
C

n+2j

3 An+2j , (13d)

M
(n)
4 (Q2) =

∞∑
j=0

μj

(
n + j

j

) (
j (j − 1)

(n + 2j )(n + 2j − 1)
C

n+2j

2 + 1

4
C

n+2j

4 − j

(n + 2j )(n + 2j − 1)
C

n+2j

5

)
An+2j , (13e)

M
(n)
5 (Q2) =

∞∑
j=0

μj

(
n + j

j

)
n

n + 2j

(
− j

n + 2j − 1
C

n+2j

2 + 1

2
C

n+2j

5

)
An+2j (13f)

where the binomial symbol ( a

b ) = a!/[b!(a − b)!]. Further
details of the derivation of Eqs. (13) are given in Appendix A.
Note that the expression for the M

(n)
1 moment is the same as that

in Ref. [38] once the differences between the corresponding
operator definitions are taken into account [39].

Up to this point the effects of the target mass on the
structure function moments are rigorously derived within the
OPE formalism. To proceed beyond Eqs. (13) and determine
the TMC effects on the x dependence of the structure functions
themselves requires additional assumptions, which inevitably
introduces some model dependence in the calculation, as we
discuss next in the following section.

B. Parton distributions with TMCs

In the absence of color interactions, the matrix elements
A2k in Eq. (9) should not depend on any scale apart from the
factorization scale. With this in mind, the products C2k

i A2k in
Eq. (7) can be written in terms of parton distribution functions

fi as

C2k
i A2k =

∫ 1

0
dy y2k−1 fi(y), (14)

where for ease of notation we suppress the dependence in
C2k

i and fi on the scale Q2, which arises from perturbative
QCD corrections. The functions fi are defined such that in the
massless limit (μ → 0) one has{

F
(0)
1 , F

(0)
2 , F

(0)
L , F

(0)
3 , F

(0)
4 , F

(0)
5

}
= {

1
2f1, xf2, x(f2 − f1), f3,

1
4f4,

1
2f5

}
, (15)

where F
(0)
i ≡ limμ→0 Fi is the massless limit of the physical

structure function Fi . Note that our notation for the parton
distribution functions fi differs from that in Refs. [2,27],
whose distributions effectively correspond to fi(x)/x.

The functions fi can in principle be identified with the PDFs
measured in deep-inelastic or other high-energy scattering
processes. (For simplicity we omit the flavor dependence of
the structure functions, including their electroweak couplings,
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which can be incorporated straightforwardly with the distri-
butions fi .) Following the derivation of GP [2], the structure
functions at finite Q2 can be inverted using the inverse Mellin
transform,

Fi(x,Q2) =
{

1
2πi

∫ i∞
−i∞ dn x−n M

(n)
i (Q2) if i = 1, 3, 4, 5

1
2πi

∫ i∞
−i∞dn x−n+1 M

(n)
i (Q2) if i = 2, L.

(16)

Using Eqs. (13) and (14), the x dependence of the structure
functions can then be determined in terms of the functions fi ,
as outlined in Appendix B [2,27],

F1(x,Q2) = 1

2(1 + μξ 2)
f1(ξ ) − μx2 ∂

∂x

(
g2(ξ )

1 + μξ 2

)
,

(17a)

F2(x,Q2) = x2 ∂2

∂x2

(
xg2(ξ )

ξ (1 + μξ 2)

)
, (17b)

FL(x,Q2) = − x

1 + μξ 2
f1(ξ ) + 2μx3 ∂

∂x

(
g2(ξ )

1 + μξ 2

)

+ (1 + 4μx2)x2 ∂2

∂x2

(
xg2(ξ )

ξ (1 + μξ 2)

)
, (17c)

F3(x,Q2) = −x
∂

∂x

(
h3(ξ )

1 + μξ 2

)
, (17d)

F4(x,Q2) = 1

4(1 + μξ 2)
f4(ξ ) + μx2 ∂

∂x

(
g5(ξ )

1 + μξ 2

)

+μ2x3 ∂2

∂x2

(
ξ 2g2(ξ )

1 − μ2ξ 4

)
, (17e)

F5(x,Q2) = −x

2

∂

∂x

(
h5(ξ )

1 + μξ 2

)
− μx2 ∂2

∂x2

(
ξg2(ξ )

1 − μ2ξ 4

)
,

(17f)

where the functions hi and gi are given by

hi(ξ ) =
∫ 1

ξ

du
fi(u)

u
, (18)

gi(ξ ) =
∫ 1

ξ

du hi(u). (19)

Note that the expression for the F4 structure function in
Ref. [27] contains “ξh5” instead of “g5” in the second term
of Eq. (17e). Equations (17) define the complete set of
unpolarized structure functions in the standard treatment of
TMCs in the OPE. As was noted already in Ref. [3], however,
the standard results lead to problems in the limit as x → 1,
which we shall focus on in the remainder of this section.

C. Consistency of the standard TMCs?

When taking the moments of the calculated x-dependent
structure functions in the presence of TMCs, one should
for consistency recover the expressions for the moments in
Eqs. (13). To be specific, we investigate this here for the F2

structure function, Eq. (17b), but the same arguments can be
applied to all the other structure functions. From the definition

of the moments in Eq. (11), the nth moment of F2 can be
written as

M
(n)
2 (Q2) =

∫ 1

0
dx xn ∂2

∂x2

(
xg2(ξ )

ξ (1 + μξ 2)

)
(20a)

=
[
xn ∂

∂x

(
xg2(ξ )

ξ (1 + μξ 2)

)]1

x=0

−
[
nxn−1 xg2(ξ )

ξ (1 + μξ 2)

]1

x=0

+ n(n − 1)
∫ 1

0
dx xn−2 xg2(ξ )

ξ (1 + μξ 2)
, (20b)

where integration by parts has been performed twice. Changing
variables from x to ξ , and using the fact that the kinematic
maximum value of ξ is given by ξ0, the moment becomes

M
(n)
2 (Q2) = 4μ2ξ 3

0(
1 + μξ 2

0

)3 g2(ξ0) + 1 − μξ 2
0(

1 + μξ 2
0

)2

∂g2(ξ )

∂ξ

∣∣∣∣
ξ=ξ0

− n(
1 − μ2ξ 4

0

) g2(ξ0) + n(n − 1)

×
∞∑

j=0

μj

(
n + j

j

) ∫ ξ0

0
dξ ξn+2j−2 g2(ξ ),

(21)

where we have also used dx/dξ = (1 + μξ 2)/(1 − μξ 2)2,
together with the relation

1

(1 − μξ 2)n+1
=

∞∑
j=0

μj

(
n + j

j

)
ξ 2j . (22)

Now, consider the last term in Eq. (21) involving the
integral of the function g2(ξ ). From the definition of the parton
distributions in Eq. (14), one can write

1

(n + 2j )(n + 2j − 1)
C

n+2j

2 An+2j

=
∫ ξ0

0
dξξn+2j−2g2(ξ ) +

∫ 1

ξ0

dξ ξn+2j−2 g2(ξ ). (23)

However, because the function f2 [and hence its integrals as
in Eqs. (18) and (19)] has no reason to vanish in the region
ξ0 < ξ < 1, the second term in Eq. (23) is in general nonzero.
The same is true for the first three terms in Eq. (21), and
as a consequence one does not recover exactly the original
expression, Eq. (13b).

On the other hand, if the parton distributions were to vanish
in the region ξ0 < ξ < 1, the moments would have to depend
on ξ0,

Cn
i An(ξ0) =

∫ 1

0
dξ ξn−1 fi(ξ ; ξ0)

=⇒ dAn(ξ0)

dξ0
=

∫ 1

0
dξ ξn dfi(ξ ; ξ0)

dξ0
�= 0, (24)

where we explicitly label the dependence of the functions fi

on ξ and ξ0. This result suggests two immediate problems:
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(i) universal (process-independent) parton distributions would
no longer exist at finite Q2; and (ii) the separation between
short and long distances on the light cone, as embodied in the
OPE, would no longer be possible.

If the condition that the structure functions vanish for
ξ > ξ0 is not imposed, one is then faced with the prospect
of energy-momentum not being conserved. In fact, if the
upper limit of integration in Eq. (20a) were extended from
x = 1 to x = 1/(1 − μ), the first three terms of Eq. (21)
would be identically zero, and extending the integration in
the fourth term to ξ = 1, Eq. (13b) would be recovered.
Consequently, the consistency of the GP prescription [2], and
in most subsequent TMC treatments, requires the violation
of energy-momentum conservation. It thus appears that a
general consequence of defining parton distributions at finite
Q2 in the presence of TMCs is that one must choose between
two less-than-ideal options: either keeping a universal parton
distribution and violating energy-momentum conservation, or
conserving energy and momentum but working with process-
dependent distributions.

We can assess the numerical significance of the ξ > ξ0

region by evaluating the lowest (n = 2) moment M
(2)
2 using a

simple form for the parton distribution,

xf2(x) = 35

32

√
x (1 − x)3, (25)

chosen to approximately reproduce a typical valence quark
distribution, normalized such that

∫ 1
0 dx f2(x) = 1. The mo-

ment shown in Fig. 1 is computed from Eq. (13b) for several
values of j (from the leading term only, j = 0, up to the
inclusion of the first four terms, j < 4), and is compared
with directly integrating F2(x,Q2) over x from 0 to 1 (or
equivalently up to ξ = ξmax = ξ0), using Eqs. (17b). As noted
above, this procedure does not recover the formal result for the
moment, Eq. (13b), which is reflected in the nonconvergence

1 2 3 4 5

Q
2
 (GeV

2
)

0.11

0.115

0.12

M
2(2

) (Q
2 )

j = 0
j < 2
j < 3
j < 4
GP,  ξ

 max
 = ξ0

GP,  ξ
 max

 = 1

FIG. 1. (Color online) n = 2 moments of the F2 structure func-
tion, illustrating the convergence of the series in Eq. (13b) for j = 0
(dotted), j < 2 (dot-dash-dashed), j < 3 (dot-dashed) and j < 4
(dashed), compared with the standard TMC result from GP [2]
using Eq. (17b) with the upper limit of integration ξmax = ξ0 (21)
(dot-dot-dashed) and ξmax = 1 (solid).

of the moments with increasing j to the standard TMC result
from GP [2] in Eq. (17b) (dot-dot-dashed curve in Fig. 1). On
the other hand, if the missing integration range as expressed
in the second term of Eq. (23) is kept, the convergence of
the moments is recovered (solid curve in Fig. 1), although
at the expense of effectively integrating beyond x = 1 (to
ξmax = 1).

The problem encountered here is at the core of the parton
interpretation of the matrix elements An. The approach of
GP attempts to maintain a partonic interpretation at finite Q2

by introducing a new scaling variable ξ [14,15]. However, as
shown in Eq. (21), this leads to inconsistencies in the extracted
x dependence of the structure functions and their moments.

A possible way to avoid the problematic ξ ∼ ξ0 region is,
ironically, to not introduce the Nachtmann scaling variable
ξ in the first place. This can be realized by performing the
inversion of the moments order by order in μ, rather than
summing over all powers of μ during the inversion. As we shall
see in the next section, this allows us to work with universal
twist-2 distribution functions, while simultaneously preserving
energy-momentum conservation. The only drawback of this
approach is that the region of x and Q2 where parton
distributions can be formulated consistently in the presence
of TMCs will be somewhat restricted.

III. SERIES EXPANSION OF INVERTED MOMENTS

In the course of inverting the moments to obtain the
structure functions, the binomial theorem is used to perform
the integration by absorbing combinatorial factors involving
the integration variable n (see Appendix B). Instead of this
standard procedure, in this section we describe how the
moments can be inverted term by term by absorbing the
combinatorial factor into derivatives, which gives rise to
novel series expansions for each of the structure functions.
We illustrate this procedure for the case of the F2 structure
function, with the derivation of the other structure functions
following similarly.

For the j th term in the series expansion for the F2 moment
in Eq. (13a), M

(n)
2,j , the contribution to the structure function is

given by the inverse Mellin transform

F2,j (x,Q2) = 1

2πi

∫ i∞

−i∞
dn x1−n M

(n)
2,j (Q2). (26)

Using integration by parts to write

C
n+2j

2 An+2j = (n + 2j )(n + 2j − 1)

×
∫ 1

0
dy yn+2j−2 g2(y,Q2), (27)

the contribution to F2,j can then be expressed in the form

F2,j (x,Q2) = μj 1

2πi

∫ i∞

−i∞
dn

∫ 1

0
dy

(n + j )!

j !(n − 2)!

× x1−n yn+2j−2 g2(y). (28)
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Next, we can observe that

(n + j )!

(n − 2)!
x−n+1 = (−x)2+j ∂2+j

∂x2+j
x−n+1 (29)

for all n on the imaginary axis except the origin, so that

F2,j (x,Q2) = μj (−x)2+j

j !

∂2+j

∂x2+j

∫ 1

0
dy x y2j−2 g2(y)

1

2πi

×
∫ i∞

−i∞
dn

(
y

x

)n

. (30)

Finally, making use of the δ-function representation in Eq. (B3)
we arrive at the desired result,

F2,j (x,Q2) = (−x)2+j

j !
μj ∂2+j

∂x2+j
[x2j g2(x)]. (31)

This result can also be obtained by noting that, instead of
Eq. (29), we can write

(n + j )!

(n − 2)!
yn+2j−2 = y2j ∂2+j

∂y2+j
yn+j . (32)

Substituting this into Eq. (28) then leads to

F2,j (x,Q2)

= μj 1

j !

1

2πi

∫ i∞

−i∞
dn

∫ 1

0
dyx−n+1y2j ∂2+j

∂y2+j
[yn+j g2(y)]

= μj x2

j !

∫ 1

0
dyy2j g2(y)

∂2+j

∂y2+j
[yj δ(y − x)], (33)

using again the δ-function representation (B3). Now, because
the δ function is a distribution, one defines its derivative (in
analogy with integration by parts of regular functions) as∫

dz δ(z) φ′(z) = −
∫

dz δ′(z) φ(z) (34)

for a given function φ. Applying this definition (2 + j ) times
to Eq. (33), we find

F2,j (x,Q2) = μj (−1)2+j

j !
x2

×
∫ 1

0
dy

∂2+j

∂y2+j
[y2j g2(y)] yj δ(y − x), (35)

which gives a result identical to that in Eq. (31).
Either of these two methods may be applied to the

moments of the other structure functions to obtain the complete
expressions for the unpolarized TMC structure functions in
terms of power series in M2/Q2, summing over all values of
j ,

F1(x,Q2) = x

∞∑
j=0

μj (−x)j

j !

∂j

∂xj

×
[
x2j−2

(
1

2
xf1(x) + jg2(x)

)]
, (36a)

F2(x,Q2) = x2
∞∑

j=0

μj (−x)j

j !

∂2+j

∂x2+j
[x2j g2(x)], (36b)

FL(x,Q2) = x2
∞∑

j=0

μj (−x)j

j !

∂j

∂xj

× [x2j−2(xf2(x) − xf1(x) + 4jg2(x))], (36c)

F3(x,Q2) =
∞∑

j=0

μj (−x)1+j

j !

∂1+j

∂x1+j
[x2jh3(x)], (36d)

F4(x,Q2) = x

∞∑
j=0

μj (−x)j

j !

∂j

∂xj

[
x2j−2

(
j (j − 1)g2(x)

+ 1

4
xf4(x) − jg5(x)

)]
, (36e)

F5(x,Q2) =
∞∑

j=0

μj (−x)1+j

j !

∂1+j

∂x1+j

×
[
x2j−1

(
− jg2(x) + 1

2
xh5(x)

)]
. (36f)

Note that the Nachtmann variable ξ does not enter in
Eqs. (36), and all the functions fi , gi , and hi are expressed
as functions of x only. As required, the j = 0 term in the
expansion of Fi is simply the massless limit structure function,
F

(0)
i .

The advantage of this formulation is that it explicitly avoids
the problems encountered with the consistency of the inversion
in the GP approach discussed in Sec. II C. Indeed, direct
integration of the structure functions in Eq. (36) leads to the
correct expressions for the moments in Eqs. (13).

To examine the convergence of the series in Eqs. (36),
we show in Fig. 2(a) the first few terms in the expansion
of F2, starting with the leading order, j = 0, term and up
to the first five terms in the series, j < 5. For illustration,
we use the simple massless limit function in Eq. (25), and
compare the result with the standard TMC calculation from
GP [2] in Eq. (17b). The results show that the convergence at
Q2 = 1 GeV2 is fairly rapid for x � 0.5, with just the first two
or three terms already giving a target mass corrected function
that does not change noticeably with inclusion of higher orders.

It is noteworthy that in this range one is already well
within the nucleon resonance region, traditionally taken to be
W < 2 GeV, from which data are typically excluded in global
PDF analyses. This can be more clearly seen in Fig. 2(b),
where the structure function is shown as a function of W .
The convergence of the TMCs is well under control down to
values as low as W ≈ 1.3 GeV, just above the peak of the
first resonance region dominated by the �(1232) resonance.
At smaller W , or higher x, the higher order terms display
oscillatory behavior as one approaches the nucleon elastic
point, x = 1 (or W = M). For the particular form of f2 chosen
in Eq. (25), xf2 ∼ (1 − x)3, the first three terms in the series
(j < 3) vanish as x → 1, while the contributions for j � 3
diverge at x = 1. The target mass corrected function from
Eq. (17b) (labeled “GP” in Fig. 2) is finite at x = 1 and indeed
extends into the unphysical region W < M .

The large-x oscillatory behavior is significantly dampened
by the time one reaches Q2 = 5 GeV2, with the first three
terms (j < 3) converging well up to x ≈ 0.8, as shown in
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FIG. 2. (Color online) Target mass corrected F2 structure function
at Q2 = 1 GeV2 from Eq. (36b), showing the convergence with
increasing j , and compared with the standard TMC result from GP [2]
using Eq. (17b), shown as a function of (a) Bjorken x, and (b) the
hadronic final state mass W . The arrows in (a) indicate the locations
of the resonance region (W = 2 GeV) and the � resonance, while
the arrow in (b) denotes the elastic limit, W = M .

Fig. 3(a) for the ratio of F2 to the GP target mass corrected
function, Eq. (17b). At this Q2 this corresponds to values
of W � 1.4 GeV, illustrated in Fig. 3(b), which again is well
outside of the range where DIS data are typically used in global
PDF analyses. Note that the vanishing of ratio of the leading
order term, j = 0, to the full GP result as x → 1 reflects the
nonzero value of the GP TMC function at x � 1.

One may ask whether the series converges over the entire
range of x at finite Q2 if a sufficiently large number of terms is
included in the sum over j . For the trial distribution (25) used
here, Fig. 4 shows the result of summing up to ≈100, 200, or
300 terms for Q2 = 2 GeV2. For x � 0.73 (or W � 1.27 GeV)
fairly good convergence is observed, while for x � 0.74 (or
W � 1.25 GeV) the addition of a large number of terms is
needed to push the convergence of the target mass corrected
function to significantly higher x values. It is interesting to
observe that the inclusion of additional odd or even terms in
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FIG. 3. (Color online) Ratio of target mass corrected F2 structure
function at Q2 = 5 GeV2 from Eq. (36b) for various j (j = 0 up
to j < 5) to the standard TMC result from GP [2] using Eq. (17b),
shown as a function of (a) Bjorken x, and (b) the hadronic final state
mass W . The arrows in (a) indicate the locations of the resonance
region (W = 2 GeV) and the � resonance.

j gives alternating negative and positive divergent behaviors,
respectively. The systematics of this convergence with Q2 and
W will be discussed in more detail in Ref. [40]. What is clear,
however, is that a severe limitation on the computation of
TMC exists at very high x for small values of Q2, although
this occurs deep in the resonance region at low W .

IV. CONCLUSION

The problem of target mass corrections to deep-inelastic
structure functions is almost as old as the theory of QCD itself.
With the focus of most structure function analyses being on
the perturbative region where subleading 1/Q2 effects can be
neglected, the study of TMCs remained largely dormant for
several decades. The advent of new, high-precision data in the
resonance-scaling transition region at high x and low Q2 has
brought the problem of TMCs back to the fore, giving rise
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FIG. 4. (Color online) Convergence of the series expansion for
the target mass corrected F2 structure function for large values of j

(j < 101, 102, 201, 202, 301, and 302), at Q2 = 2 GeV2. The arrows
indicate the values of x at which the final state mass corresponds to
the � resonance and to W = 1.25 GeV. Note the limited x range on
the ordinate.

to greater urgency to the need for resolution of the remaining
open issues with respect to their implementation.

In this paper we have sought to illustrate the inherent
problem with the standard TMC formulation, already evident
in the pioneering work of Georgi and Politzer [2], in the
treatment of the x ≈ 1 region and the inversion of the structure
functions from their moments. In particular, we have critically
analyzed the definition of PDFs in the presence of TMCs,
and discussed the consequences of the violation of energy
and momentum conservation in the standard TMC analysis.
Historically it has been argued [3,4] that the problem in the
threshold region exists because at low Q2 the higher twist
contributions cannot be neglected. We do not disagree that
higher twists are essential for describing low energy structure
function data; we believe, however, that one ought to maintain
consistency of leading twist functions at any x, regardless of
how large the higher twists may be at a given Q2.

We contend that the introduction of the Nachtmann variable
ξ , which appears naturally in the standard TMC implementa-
tion, does not lead to self-consistent parton distributions that
are valid at all x. In fact, our analysis suggests that strictly
speaking PDFs cannot be defined consistently at any finite
Q2 when the mass of the target is incorporated. What is
feasible, however, is to compute the x dependence of the TMC
structure functions in terms of standard PDFs as a series whose
convergence can be studied as a function of x and Q2.

To this end, we have derived formulas for the entire set of
unpolarized structure functions, as a series in M2/Q2, involv-
ing PDFs and their derivatives. The virtue of this approach is
that the resulting TMC functions can be consistently inverted
from their moments, without ever encountering unphysical
regions of kinematics or violating energy and momentum
conservation. Moreover, it allows us to systematically study
the regions of x and Q2 where TMCs can be reliably
applied. Using a simple trial function, we have illustrated the

convergence of our scheme numerically for the case of the F2

structure function. Rapid convergence is observed for most of
the range of x, with the first two or three terms saturating the
sum well into the nucleon resonance region. For Q2 values as
low as 1 GeV2, we find that the convergence of the TMC series
expansion is under control down to W ≈ 1.3 GeV, which is
almost in the vicinity of the � resonance peak.

At smaller W , or higher x for fixed Q2, rapid oscillations
ensue as one approaches the elastic scattering limit, and beyond
W ≈ 1.3 GeV it becomes prohibitively difficult to tame these
with a finite number of higher order terms. At Q2 = 2 GeV2,
for example, even summing over ∼300 terms allows for a
smooth TMC function up to x ≈ 0.73 (or W ≈ 1.27 GeV).
Fortunately, such low W values are well outside the range
typically encountered in perturbative QCD analyses of DIS
data, and in practice will not pose any serious restrictions.

Our results therefore lend greater support to global PDF
fits which incorporate low-W data, currently down to W 2 =
3 GeV2 in some analyses [7–9], but with more ambitions
plans to extend the range further into the traditional resonance
region. Provided higher twist and other subleading corrections
are tractable, our method for accounting for TMCs will
introduce only minimum theoretical uncertainty into global
analyses. A more detailed discussion of the utility of the
present approach, as well as its application to spin-dependent
structure functions, will be presented in a forthcoming publi-
cation [40].
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APPENDIX A: DERIVATION OF STRUCTURE
FUNCTION MOMENTS

In this Appendix we illustrate the derivation of moments
of structure functions in the presence of TMCs, using as an
example the F1 structure function (the F1 case contains some
more general features that are not present in the F2 derivation
discussed in Secs. II and III). The results for the other structure
functions follow in a similar manner.

We begin by finding T1, the coefficient of −gμν in Eq. (7),
which has contributions from both the C2k

1 and C2k
2 terms.

For the C2k
1 term, for fixed k ∈ N, j ∈ {0, . . . , k}, and each

term of {g · · · gp · · ·p}k,j , a total of j qμi
factors will have

their indices raised by j gμiμl metric tensors. The result
will then contract with j qμl

’s to give a factor of (q2)j .
The remaining (2k − 2j ) qμi

factors will contract with the
(2k − 2j ) pμi factors to give (p · q)2k−2j . Since there are
(2k)!/[2j j !(2k − 2j )!] terms in {g · · · gp · · ·p}k,j , we find
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that
∞∑

k=1

( − gμνqμ1qμ2C
2k
1

)
qμ3 · · · qμ2k

22k

Q4k
A2k�

μ1···μ2k

= −gμν

∞∑
k=1

k∑
j=0

(−1)j
(2k − j )!

2j (2k)!

(2k)!

2j j !(2k − 2j )!
(p2 q2)j (p · q)2k−2j 22k

(Q2)2k
C2k

1 A2k. (A1)

The gμ
μ1

gν
μ2

Q2C2k
2 term of Eq. (7) contributes to the coefficient of −gμν due to the identity gμ

μ1
gν

μ2
gμ1μ2 = gμν . For fixed

k ∈ N and j ∈ {0, . . . , k}, we seek the terms of {g · · · gp · · · p}k,j which include a factor of gμ1μ2 . The number of such terms is
determined by the number of ways to distribute the indices μ3, . . . , μ2k among (j − 1) g’s and (2k − 2j ) p’s without creating
duplicate products. From the (2k)!/[2j j (2k − 2j )!] ways to distribute the indices μ1, . . . , μ2k over j g’s and (2k − 2j ) p’s
without creating duplicates, relabeling indices j → j − 1 and k → k − 1 gives (2k − 2)!/[2j−1(j − 1)!(2k − 2j )!] terms of
{g · · · gp · · · p}k,j which contain gμ1μ2 for k ∈ N, j ∈ {1, . . . , k}. (Note that there are no terms of {g · · · gp · · ·p}k,0 that contain
gμ1μ2 .) As for the C2k

1 terms, we then find

∞∑
k=1

(
gμ

μ1
gν

μ2
Q2C2k

2

)
qμ3 · · · qμ2k

22k

Q4k
A2k �μ1···μ2k = gμν

∞∑
k=1

k∑
j=1

(−1)j
(2k − j )!

2j (2k)!

(2k − 2)!

2j − 1(j − 1)!(2k − 2j )!

× (p2)j (q2)j − 1 (p · q)2k − 2j 22k

(Q2)2k
Q2 C2k

2 A2k + terms not involving gμν.

(A2)

Now, the term −iεμναβgαμ1qβqμ2C
2k
3 + (qμqν/Q2)qμ1qμ2C

2k
4 + (gμ

μ1
qνqμ2 + gν

μ1
qμqμ2 )C2k

5 in Eq. (7) will not contribute to T1,
as the indices μ and ν are “locked up” in such a way that they cannot result in a factor of gμν through contractions. We conclude,
therefore, that the coefficient T1 of −gμν in the expansion (7) is

T1 =
∞∑

k=1

k∑
j=0

(−1)j
(2k − j )!

2j (2k)!

(2k)!

2j j !(2k − 2j )!
(p2q2)j (p · q)2k−2j 22k

(Q2)2k
C2k

1 A2k

−
∞∑

k=1

k∑
j=1

(−1)j
(2k − j )!

2j (2k)!

(2k − 2)!

2j−1(j − 1)!(2k − 2j )!
(p2)j (q2)j−1(p · q)2k−2j 22k

(Q2)2k
Q2 C2k

2 A2k. (A3)

Substituting p2 = M2, q2 = −Q2, and p · q = Q2/2x into Eq. (A3), changing indices in each term to l = k − j and j , and
rearranging, gives the result

T1(x,Q2) =
∞∑
l=0

∞∑
j=0

(
2l + j

j

)
μj 1

x2l
C

2l+2j

1 A2l+2j +
∞∑
l=0

∞∑
j=1

(
2l + j

j

)
j

(l + j )(2l + 2j − 1)
μj 1

x2l
C

2l+2j

2 A2l+2j . (A4)

Finally, using the identity
∮
C

dω ωn−m−1 = 2πi δnm together with Eq. (6), we find that

M
(n)
1 (Q2) = 1

2

1

2πi

∮
C

dω
T1(1/ω,Q2)

ωn+1

= 1

2

∞∑
l=0

∞∑
j=0

μj

(
2l + j

j

)
C

2l+2j

1 A2l+2j δ2l,n + 1

2

∞∑
l=0

∞∑
j=1

μj

(
2l + j

j

)
j

(l + j )(2l + 2j − 1)
C

2l+2j

2 A2l+2j δ2l,n,

(A5)

which leads to Eq. (13a). The results for the other moments (13) are derived in a similar manner.

APPENDIX B: STRUCTURE FUNCTION INVERSION

In this section we illustrate the standard moment inversion procedure by presenting a detailed derivation for the case of the
F1 structure function. The derivations for the other structure functions can be deduced straightforwardly from this example.

We begin by denoting the series in Eq. (13a) involving C
n+2j

1 and C
n+2j

2 by m
(n)
1 (Q2) and m

(n)
2 (Q2), respectively. Using

Eq. (14), we find for the m
(1)
1 term

1

2πi

∫ i∞

−i∞
dn x−n m

(n)
1 (Q2) = 1

4πi

∫ i∞

−i∞
dn

∫ 1

0
dy x−n yn−1 f1(y)

∞∑
j=0

(
n + j

j

)
(μy2)j . (B1)
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From the (generalized) binomial theorem, it follows then that

1

2πi

∫ i∞

−i∞
dnx−nm

(n)
1 (Q2) = 1

4πi

∫ i∞

−i∞
dn

∫ 1

0
dyx−nyn−1f1(y)

1

(1 − μy2)n+1
= 1

2

∫ 1

0
dy

f1(y)

y(1 − μy2)
δ

(
ln

y

x(1 − μy2)

)
,

(B2)

where we have used the δ-function representation

δ(ln u) = 1

2π

∫ ∞

−∞
dn ein(ln u) = 1

2πi

∫ i∞

−i∞
dn un. (B3)

Using the relation

δ(u(y)) =
∑

a = root of u

1

|u′(a)|δ(y − a) (B4)

with u(y) = ln(y/[x(1 − μy2)]) and u′(y) = (1 + μy2)/[y(1 − μy2)], the only root of u on [0, 1] corresponds to ξ = 2x/(1 + ρ),
which leads to

1

2πi

∫ i∞

−i∞
dn x−n m

(n)
1 (Q2) = 1

2

∫ 1

0
dy

f1(y)

1 + μy2
δ(y − ξ ). (B5)

For the m
(n)
2 term, using integration by parts with Eqs. (19) and (27), we can write

1

2πi

∫ i∞

−i∞
dn x−n m

(n)
2 (Q2) = 1

2πi

∫ i∞

−i∞
dn

∫ 1

0
dy x−n yn−2 g2(y)

∞∑
j=1

j

(
n + j

j

)
(μy2)j . (B6)

Next, from the relations
∞∑

j=1

j

(
n + j

j

)
(μy2)j =

∞∑
j=1

(n + 1)

(
n + j

j − 1

)
(μy2)j = (n + 1)

μy2

(1 − μy2)n+2
, (B7)

we obtain

1

2πi

∫ i∞

−i∞
dn x−n m

(n)
2 (Q2) = 1

2πi
μ

∫ i∞

−i∞
dn

∫ 1

0
dy (n + 1) x−nyn g2(y)

(1 − μy2)n+2
. (B8)

Finally, since (n + 1)x−n = −x2(∂/∂x) x−n−1, we arrive at the result for the m
(n)
2 moment,

1

2πi

∫ i∞

−i∞
dn x−n m

(n)
2 (Q2) = − 1

2πi
μx2 ∂

∂x

∫ i∞

−i∞
dn

∫ 1

0
dy

x−n−1 yn g2(y)

(1 − μy2)n+2

= −μx2 ∂

∂x

∫ 1

0
dy

g2(y)

x(1 − μy2)2

[
1

2πi

∫ i∞

−i∞
dn

(
y

x(1 − μy2)

)n]
. (B9)

Combining Eqs. (B5) and (B9) then gives the final result for the inverted F1 structure function,

F1(x,Q2) = 1

2(1 + μξ 2)
f1(ξ ) − μx2 ∂

∂x

(
g2(ξ )

1 + μξ 2

)
. (B10)

The results for the other structure functions F2, . . . , F5 in Eqs. (17) follow analogous derivations.
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