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Electromagnetic form factors of the nucleon in effective field theory
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We calculate the electromagnetic form factors of the nucleon to third chiral order in manifestly Lorentz-invariant
effective field theory. The ρ and ω mesons as well as the �(1232) resonance are included as explicit dynamical
degrees of freedom. To obtain a self-consistent theory with respect to constraints we consider the proper relations
among the couplings of the effective Lagrangian. For the purpose of generating a systematic power counting,
the extended on-mass-shell renormalization scheme is applied in combination with the small-scale expansion.
The results for the electric and magnetic Sachs form factors are analyzed in terms of experimental data and
compared to previous findings in the framework of chiral perturbation theory. The pion-mass dependence of the
form factors is briefly discussed.
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I. INTRODUCTION

Electromagnetic form factors parametrize the single-
nucleon matrix element of the electromagnetic current operator
and provide important information about the structure and
composition of the nucleon (see, e.g., Refs. [1–3] for an
overview). Furthermore, they are important input to high-
precision tests of quantum electrodynamics as well as the
standard model of particle physics. In the spacelike region, the
proton form factors have been measured with great accuracy
over a wide range of momentum transfer in experiments on
elastic electron-nucleon scattering. Neutron form factors are
not as well known since they have to be extracted from
scattering experiments with deuterium or 3He. Despite the
wealth of available data there are still open issues such as
the value of the proton charge radius determined from the
Lamb shift in muonic hydrogen on the one hand [4] and
electronic hydrogen Lamb shift measurements and elastic
electron-proton scattering on the other hand [5,6]. A new
generation of precision measurements of electromagnetic form
factors at low momentum transfer has been and is presently
performed at the Mainz Microtron (MAMI) [7,8].

Chiral perturbation theory (ChPT) [9–11] is the effective
field theory (EFT) of quantum chromodynamics in the low-
energy domain (for an introduction and review see, e.g.,
Refs. [12,13]). The first form factor calculation was performed
in the early relativistic approach [11]; however, the power
counting of low-energy dimensions was still an open issue
due to the additional heavy-mass scale introduced by the
nucleon. Later on, the problem of setting up a consistent power
counting in EFT with heavy degrees of freedom was handled
by employing the heavy-baryon approach [14,15] and, more
recently, by choosing suitable renormalization prescriptions
in a manifestly Lorentz-invariant framework [16–19]. Within
the heavy-baryon approach, calculations of the form factors
were performed in Refs. [15,20] and, including the �(1232)
resonance in terms of the small-scale expansion [21], in
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Ref. [22]. In applying different renormalization schemes, form
factor calculations have been performed within manifestly
Lorentz-invariant baryon ChPT up to O(q4) [23,24] and to
O(q3) including the leading-order corrections due to the �

resonance [25]. In general, such calculations describe the
experimental data only for a small range of momentum
transfer (Q2 � 0.1 GeV2). However, the ρ, ω, and φ mesons
were included dynamically in the effective Lagrangians of
Refs. [23,26]. A systematic resummation of higher-order terms
which, in an ordinary chiral expansion, would contribute at
higher orders beyond O(q4), results in an improved description
of the data even for higher values of Q2, as expected
on phenomenological grounds. The reorganization proceeds
according to well-defined rules [27] so that a controlled,
order-by-order calculation of corrections is made possible.

A covariant formalism for massive vector fields involves
Lagrangians with constraints, because one typically introduces
unphysical degrees of freedom [28]. In comparison with
Refs. [23,26], the present article considers the conditions on
the form of the Lagrangian imposed by the demand for a
self-consistent theory in terms of constraints [29,30]. We use
the extended on-mass-shell (EOMS) scheme [19] to generate
a systematic power counting in the presence of heavy degrees
of freedom [27]. As a result, we obtain an effective Lagrangian
which is renormalizable in the sense of effective field theory
[31] and which is consistent with the constraints order by order.

Because of its close proximity to the ground state and
its strong coupling to the pion-nucleon-photon system, we
also include the �(1232) resonance explicitly in our effective
theory. The nucleon-� mass splitting is treated as an additional
small parameter (small-scale expansion [21]). Akin to the
vector-meson case we respect the constraints on the possible
interaction terms to obtain a self-consistent theory describing
the right number of degrees of freedom [32,33].

This article is organized as follows. In Sec. II the definitions
of the Dirac and Pauli as well as the Sachs form factors are
given. We briefly discuss those elements of the most general
effective Lagrangian relevant for the subsequent calculation
and state the applied power-counting rules in Sec. III. In
Sec. IV we discuss the fit of our results to experimental data.
The final results for the Sachs form factors are presented and
analyzed. Section V contains a short summary.
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II. ELECTROMAGNETIC FORM FACTORS OF
THE NUCLEON

Neglecting the contributions due to heavier quarks, the
electromagnetic current operator is given by

Jμ(x) = 2

3
ū(x)γ μu(x) − 1

3
d̄(x)γ μd(x)

= q̄(x)

(
1

6
+ τ3

2

)
γ μq(x), (1)

and the interaction with an external electromagnetic four-
vector potential Aμ reads

Le.m. = −eJμAμ, (2)

where e > 0 denotes the elementary charge. In the one-photon-
exchange approximation, the electromagnetic form factors are
defined via the matrix element

〈N (pf )|Jμ(0)|N (pi)〉

= ū(pf )

[
γ μFN

1 (Q2) + iσμνqν

2mp

FN
2 (Q2)

]
u(pi),

(3)
N = p, n,

where mp denotes the proton mass, q = pf − pi is the
four-momentum transfer, and Q2 ≡ −q2 � 0. The functions
FN

1 (Q2) and FN
2 (Q2) are called Dirac and Pauli form factors,

respectively. At Q2 = 0, the Dirac form factor takes the value
of the electric charge in units of the elementary charge and the
Pauli form factor takes the value of the anomalous magnetic
moment in units of the nuclear magneton:

F
p

1 (0) = 1, F
p

2 (0) = 1.793, (4)

Fn
1 (0) = 0, F n

2 (0) = −1.913. (5)

Our final results are displayed in terms of the electric and
magnetic Sachs form factors [34] because these are better
suited for the analysis of experimental data. The Sachs form
factors are related to the Dirac and Pauli form factors as
follows:

GN
E (Q2) = FN

1 (Q2) − Q2

4m2
p

FN
2 (Q2),

(6)
GN

M (Q2) = FN
1 (Q2) + FN

2 (Q2).

Sometimes it is more convenient to work with the isoscalar
and isovector form factors defined as the sum and difference
of the proton and neutron form factors, respectively:

F
(s)
i = F

p

i + Fn
i , F

(v)
i = F

p

i − Fn
i , i = 1, 2. (7)

The isoscalar and isovector Sachs form factors are defined
accordingly.

III. EFFECTIVE LAGRANGIAN AND POWER COUNTING

A. Nonresonant Lagrangian

The nonresonant part of the effective Lagrangian consists
of a purely mesonic part and a part describing the interaction
of pions and nucleons. From the mesonic sector only the
lowest-order Lagrangian L2, including the coupling to an

external electromagnetic four-vector potential Aμ in terms of
the isovector field vμ = −eAμτ3/2, is needed [10]:

L2 = F 2

4
Tr(∂μU∂μU †) + F 2M2

4
Tr(U † + U )

+ i
F 2

2
Tr[(∂μUU † + ∂μU †U )vμ]. (8)

Here, F denotes the pion-decay constant in the chiral
limit, Fπ = F [1 + O(m̂)] = 92.2 MeV, and M2 = 2Bm̂ is
the squared pion mass at leading order in the quark-mass
expansion. In the isospin-symmetric limit m̂ = mu = md , and
B is related to the scalar singlet quark condensate 〈q̄q〉0 in
the chiral limit [10,35]. The pion fields are contained in the
unimodular, unitary matrix U :

U (x) = u2(x) = exp

(
i
φ(x)

F

)
, φ = φkτk.

Collecting the proton and nucleon fields in the isospin
doublet �, the lowest-order πN Lagrangian is given by [11]

L(1)
πN = �̄

(
i /D − m + gA

2
γ μγ5uμ

)
�, (9)

with

Dμ� = (
∂μ + 
μ − iv(s)

μ

)
�,


μ = 1
2 [u†∂μu + u∂μu† − i(u†vμu + uvμu†)],

uμ = i[u†∂μu − u∂μu† − i(u†vμu − uvμu†)],

where v(s)
μ = −eAμ/2. In Eq. (9), m and gA denote the

chiral limit of the physical nucleon mass and the axial-vector
coupling constant, respectively.

The complete Lagrangians at second and third order can be
found in Ref. [36]. We only display those terms needed for our
calculation,

L(2)
πN = �̄σμν

(
c6

2
f +

μν + c7

2
v(s)

μν

)
� + · · · ,

(10)

L(3)
πN = i

2m
d6�̄[Dμ, f +

μν]Dν� + H.c.

+ 2i

m
d7�̄

(
∂μv(s)

μν

)
Dν� + H.c. + · · · ,

where H.c. refers to the Hermitian conjugate and

f ±
μν = ufLμνu

† ± u†fRμνu,

fRμν = ∂μrν − ∂νrμ − i[rμ, rν],

fLμν = ∂μlν − ∂νlμ − i[lμ, lν], v(s)
μν = ∂μv(s)

ν − ∂νv
(s)
μ ,

with rμ = lμ = −eAμτ3/2.

B. Lagrangian containing vector mesons

The ρ-meson triplet consists of a pair of charged fields,
ρ±

μ = (ρ1μ ∓ iρ2μ)/
√

2, and a third neutral field, ρ0
μ = ρ3μ.

Using a covariant Lagrangian formalism, self-interacting mas-
sive vector fields are subject to constraints [28]. It was shown
in Ref. [29] that the requirement for a quantum field theory
of vector mesons to be self-consistent in terms of constraints
and perturbative renormalizability leads to relations among the
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coupling constants of the Lagrangian. Eventually, at leading
order the self-interacting part of the most general effective
Lagrangian for ρ mesons reduces to a massive Yang-Mills
structure [29],1

Lρ eff = − 1
2 Tr(ρμνρ

μν) + M2
ρTr(ρμρμ), (11)

where

ρμ = ρkμ

τk

2
, ρμν = ∂μρν − ∂νρμ − ig[ρμ, ρν].

The Lagrangian of Eq. (11) contains two parameters, namely,
the ρ-meson mass Mρ (in the chiral limit) and a coupling
strength g. Under the pair of local chiral transformations
(VL, VR), we choose the ρ mesons to transform inhomoge-
neously [37] (model III of Ref. [38]),

ρμ �→ KρμK† − i

g
∂μKK†, (12)

where

K(VL, VR,U ) =
√

VRUV
†
L

−1

VR

√
U.

Equation (12) implies ρμν �→ KρμνK
†. The mass term re-

mains chirally invariant through the replacement ρμ → ρμ −
(i/g)
μ, the result of which transforms homogeneously under
local chiral transformations. Neglecting terms irrelevant for the
calculation of the form factors, the effective chiral Lagrangian
can be written as

Lπρ = −1

2
Tr(ρμνρ

μν)

+M2
ρTr

[(
ρμ − i

g

μ

)(
ρμ − i

g

μ

)]
+ dx

2
Tr(ρμνf

μν
+ ) + · · · . (13)

In addition to the proper relations among the self-couplings
of the ρ mesons, the Lagrangian of Eq. (13) gives rise to
vector-meson dominance in the sense that both the ρππ and
the ργ coupling contained in the mass term [second term on
the right-hand side of Eq. (13)] are of leading order. The dx

term parametrizes a deviation of higher order. In model III of
Ref. [38] it is neglected, i.e., set to zero. According to Ref. [38],
the Lagrangian of Eq. (13) is obtained from the most general
one by performing a field redefinition and implementing
certain relations among the coupling constants. These relations
exactly correspond to those derived in Ref. [29] rendering
Eq. (13) consistent with the constraints and renormalizable in
a perturbative sense.

In addition to ρ mesons, we also include the ω meson as
a dynamical degree of freedom. For our calculation, from the
leading-order Lagrangian [38] we only need the coupling of
the ω meson to external fields:

L(3)
πω = −fω(∂μων − ∂νωμ)v(s)

μν + · · · . (14)

1From SU(2)-symmetry considerations alone, the interaction La-
grangian would contain one three-vector and two four-vector inter-
action terms with, in total, three independent coupling constants (see
Eq. (44) of Ref. [29]).

Finally, we require the coupling of vector mesons to the
nucleon, which for our purposes is given by

LπV N = �̄

[
g

(
ρμ − i

g

μ

)
+ 1

2
gω ωμ

]
γ μ �

+ Gρ

2
�̄ρμνσ

μν� + · · · . (15)

Here, we have applied the universality of the ρ-meson
coupling gρNN = g. In the realization of Ref. [37], the
universal coupling is a consequence of chiral symmetry. In
the present context, it is more likely to be a consequence of
consistency conditions imposed by the demand of perturbative
renormalizability [30]. A coupling of the ω meson to the
nucleon proportional to σμν is not needed at third chiral order,
because there is no ωγ coupling at leading order in Eq. (14)
as opposed to the leading-order ργ coupling of Eq. (13).

C. Lagrangian containing the �(1232) resonance

The �(1232) resonance [I (JP ) = 3
2 ( 3

2
+

)] is described by a
vector-spinor isovector-isospinor with components

�μ,i =
(

�μ,i, 1
2

�μ,i,− 1
2

)
, μ = 0, 1, 2, 3, i = 1, 2, 3.

The physical � consists of an isospin quadruplet, whereas the
description above involves six isospin components. To project
onto the physical degrees of freedom, we introduce the isospin
projection operators (see, e.g., Sec. 4.7 of Ref. [13] for more
details)

ξ
3
2
ij,αβ = δij δαβ − 1

3 (τiτj )αβ, ξ
1
2
ij,αβ = 1

3 (τiτj )αβ,

where the isovector components refer to a Cartesian isospin
basis. Incorporating the projection operators explicitly,
the leading-order Lagrangian in n space-time dimensions
reads [21]

L(1)
π� = �̄μξ

3
2 �

(1)μν
π� (A, n)ξ

3
2 �ν, (16)

with

�
(1)μν
π� (A, n)

= −
{

(i /D − m�)gμν + iA(γ μDν + γ νDμ)

+ i

n − 2
[(n − 1)A2 + 2A + 1]γ μ /Dγ ν

+ m�

(n − 2)2
[n(n − 1)A2 + 4(n − 1)A + n]γ μγ ν

+ g1

2
/uγ5g

μν + g2

2
(γ μuν + uμγ ν)γ5 + g3

2
γ μ/uγ5γ

ν

}
.

(17)

Here, the covariant derivative is given by

(Dμ�)ν,i,α = Dμ,ij,αβ�ν,j,β,

Dμ,ij,αβ = ∂μδij δαβ − 2iεijk
μ,kδαβ + δij
μ,αβ

− iv(s)
μ δij δαβ,

065206-3



T. BAUER, J. C. BERNAUER, AND S. SCHERER PHYSICAL REVIEW C 86, 065206 (2012)

where we parametrized 
μ = 
μ,kτk . In Eq. (16), A 	= − 1
2

denotes an arbitrary real parameter and m� refers to the
leading-order mass of the �.

Since the Lagrangian of Eq. (16) describes a system with
constraints, similarly to the previously discussed case of vector
mesons, the requirement for a self-consistent theory leads to
relations among the coupling constants [32],

g2 = Ag1, g3 = −1 + 2A + A2(n − 1)

n − 2
g1.

The lowest-order πN� interaction Lagrangian reads [33]

L(1)
πN� = g�̄μ,iξ

3
2
ij

(
gμν + 1 + 3A

2
γ μγ ν

)
uν,j� + H.c.,

(18)

with the parametrization uμ = uμ,kτk , and g being a coupling
constant.2 Because physical quantities cannot depend on A

[33], we choose A = −1 in the following calculations.

D. Power counting

We assign a low-energy order D to each renormalized
diagram. The value of D is determined with the following
power-counting rules: A pion propagator counts as O(q−2),
a nucleon propagator as O(q−1), vertices derived from L2

count as O(q2), and vertices from L(i)
πN count as O(qi). Both

ρ-meson and ω-meson propagators count as O(q0) while
vertices from L(3)

πω count as O(q3). From the listed terms of
Lπρ and LπV N , vertices of O(q0) to O(q3) can be derived.
The � propagator counts as O(q−1) and vertices from L(1)

πN�

count as O(q). Finally, we assign the order O(q) to the mass
difference δ ≡ m� − m. To renormalize the loop diagrams in
such a way that they respect the above power counting, we
apply the EOMS scheme [19].

IV. RESULTS AND DISCUSSION

All Feynman graphs contributing to the calculation of the
electromagnetic form factors up to and including O(q3) are
displayed in Figs. 1–4.3 The 16 one-loop diagrams are grouped
into three, independently current-conserving subsets. In the
following, we refer to the diagrams (7)–(11) of Fig. 2 as
set 1, the diagrams (12)–(18) of Fig. 3 as set 2, and the
diagrams (19)–(22) of Fig. 4 as set 3, respectively. Set 1
consists of diagrams proportional to g2

A/F 2 containing only
pion loops while set 2 consists of diagrams proportional to g2

and g2
ω containing pion loops as well as vector-meson loops.

Finally, set 3 contains all pion-loop diagrams involving the �

resonance, thus being proportional to g2.
Summing up all contributions and multiplying them with

the wave-function renormalization constant ZN yields the final

2The sign convention in Eq. (18) is chosen such that SU(4)
symmetry implies the relations g1 = 9

5gA and g = 3
5

√
2gA among

the coupling constants of Eqs. (9), (17), and (18) [21].
3After renormalization, the diagrams (14), (17), and (18) are at least

of O(q5) and can thus be neglected in the numerical analysis.

(1)
1

(2)
2

(3)
3

(4)

0

ρ
1

(5)

1

ρ
1

(6)

0

ρ, ω
3

FIG. 1. Tree-level Feynman diagrams contributing to the elec-
tromagnetic form factors of the nucleon up to and including O(q3).
Wiggly, solid, and double-wiggly lines refer to photons, nucleons,
and vector mesons, respectively. The numbers in the interaction blobs
denote the chiral order of the respective vertex.

expressions for the form factors. To render the results for the
unrenormalized form factors finite, we apply the modified
minimal subtraction scheme of ChPT (M̃S) [10]. Beyond
that, we perform finite subtractions according to the EOMS
scheme [19] such that the power counting of Sec. III D is
respected. To the given order, the product of the wave-function
renormalization constant and the tree-order diagrams subtracts
all power-counting-violating terms of the loop diagrams in the
Dirac form factor F1. In agreement with the Ward identity, we
obtain F

p

1 (0) = 1 and Fn
1 (0) = 0 for the proton and neutron,

respectively. However, the loop contributions to the Pauli
form factor F2 contain power-counting-violating terms. All

1 1

(7)

1 1

(8)

1 1

(9)

1 1 1

(10)

0

1

ρ

(11)

1

1

1 1

ρ

FIG. 2. One-loop Feynman diagrams with nucleons, pions, and
vector mesons up to and including O(q3). Wiggly, solid, dashed,
and double-wiggly lines refer to photons, nucleons, pions, and vector
mesons, respectively. The numbers in the interaction blobs denote the
chiral order of the respective vertex.

065206-4



ELECTROMAGNETIC FORM FACTORS OF THE NUCLEON . . . PHYSICAL REVIEW C 86, 065206 (2012)

0 0

ρ, ω

(12)

1 0 0

(13)

0

1

ρ

ρ, ω

(15)

ρ
1

1

1

ρ
0

ρ
0

1

0 0

ρ

ρ

(14)

0
ρ

1

(16)

ρ
1

ρ
0

ρ ρ

(17)

0

0

ρ
0

0

ρ
1

ρ

(18)

FIG. 3. One-loop Feynman diagrams with nucleons, pions, and
vector mesons up to and including O(q3). For notation, see Fig. 2.

subtraction terms are analytic in the pion mass and momenta
and can be absorbed in the renormalization of the available
low-energy constants (LECs).

A. Fixing of the LECs

To evaluate the form factors numerically, the parameters
of the effective Lagrangian need to be fixed. The masses, the
axial-vector coupling constant, and the pion-decay constant
are expressed in terms of their physical values, because the
difference to the respective values in the chiral limit is beyond
the accuracy of our calculation.

Using the Kawarabayashi-Suzuki-Riazuddin-Fayyazuddin
relation [39,40],

M2
ρ = 2g2F 2, (19)

generated by the combination of chiral symmetry and the
consistency of the EFT with respect to renormalizability [30],
we obtain g = 5.93. Moreover, we take g = 1.13 as obtained
from a fit to the � → πN decay width [33]. The numerical
values of the above parameters are summarized in Table I.

1 1

(19)

1 1

(20)

1 1

(21)

1

1

1

1 1

ρ

(22)

FIG. 4. One-loop Feynman diagrams with nucleons, pions, vector
mesons, and the � resonance up to and including O(q3). Wiggly,
solid, dashed, double-wiggly, and double-solid lines refer to photons,
nucleons, pions, vector mesons, and the � resonance, respectively.
The numbers in the interaction blobs denote the chiral order of the
respective vertex.

To determine the renormalized low-energy constants c6

and c7, we fix the Pauli form factors F2(Q2) at Q2 = 0 in
accordance with Eq. (5). The expansions of the anomalous
magnetic moments of the proton and neutron read

κp = c7m + 2m

(
c6 − Gρ

2g

)
− g2

Am

8F 2π
M

+ g2m

9F 2π2
δ

[
ln

(
M

2δ

)
−

√
δ2 − M2

δ
ln(X)

]
+ · · · ,

(20)

κn = c7m − 2m

(
c6 − Gρ

2g

)
+ g2

Am

8F 2π
M

− g2m

9F 2π2
δ

[
ln

(
M

2δ

)
−

√
δ2 − M2

δ
ln(X)

]
+ · · · ,

with

X = δ − √
δ2 − M2

M
, δ = m� − m. (21)

In Eqs. (20), the ellipses refer to terms scaling at least
as t2 under M �→ tM and δ �→ tδ. Because of the chosen
renormalization scheme, the Feynman diagrams of set 2 do
not contribute to the magnetic moments. The nonanalytic terms
for the magnetic moments of Eqs. (20) coincide with those of
Ref. [22]. Using the values of Table I for the input parameters,
the πN and π� loop contributions to the isoscalar and
isovector magnetic moments are shown in Table II. Keeping
only the leading-order terms, the pion loop contributions are
purely isovector as in ordinary ChPT at O(q3). However,

TABLE I. Input parameters: The masses and Fπ are given in units
of GeV; the coupling constants gA, g, and g are dimensionless.

mN Mπ Mρ Mω m� Fπ gA g g

0.938 0.140 0.775 0.783 1.21 0.0922 1.27 5.93 1.13
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TABLE II. πN and π� loop contributions to the isoscalar and
isovector anomalous magnetic moments.

κ
(s)
πN κ

(v)
πN κ

(s)
π� κ

(v)
π�

Expanded 0 1.98 0 −0.222
Full 0.169 1.35 −0.0120 −0.150

evaluating the full expressions modifies the isovector pieces
and also generates isoscalar contributions.

Adjusting the complete results for the magnetic moments
to their empiric values yields

c̃6 = 1.39 GeV−1, c7 = −0.148 GeV−1, (22)

with c̃6 ≡ c6 − Gρ/(2g). In Sec. IV C, we compare our results
with explicit � contributions to those without the � resonance.
Therefore, we also state the values for the couplings of the
latter case, namely,

c̃6 = 1.35 GeV−1, c7 = −0.154 GeV−1. (23)

The remaining six free low-energy coupling constants
Gρ , fω, gω, d6, d7, and dx are determined by simultaneous
fits of all four Sachs form factors to experimental data for
different regions of momentum transfer. As the data basis
for the fits, we use the extensive proton cross-section data
set from Refs. [8,41] and the neutron form factor data from

Refs. [42–60]. Because of the small numerical contributions
originating from the diagrams of set 2, the fits depend only
marginally on the individual values of gω and fω. However,
the product of gω and fω stemming from the tree diagram
(6) of Fig. 1 is much much more influential for the final
result. Thus, we fix fω at 0.1 and only use the product fω · gω

as an independent fit parameter. The results for the fitted
renormalized couplings are shown in Table III.

As indicated by the respective values of the reduced chi-
square test (χ2

red ≡ χ2/DOF), the adjusted results including
only vector mesons as explicit resonant degrees of freedom
show better agreement with experimental data than the results
incorporating also the � resonance. As the range of momentum
transfer increases, the respective values for χ2

red of the fits
including the � increase faster than those without the �. We
come back to this feature in Secs. IV C and IV D.

B. Charge and magnetic radii

Expanding the Dirac and Pauli form factors for small values
of Q2,

F
(s,v)
i (Q2) = F

(s,v)
i (0)

(
1 − 1

6

〈(
r

(s,v)
i

)2〉
Q2 + · · ·

)
,

gives access to the mean-square radii. At O(q3), the expanded
mean-square radii are given by

〈(
r

(s)
1

)2〉 = −24d7 + 12cω

M2
ω

+ 9g2
A

32F 2π2
+ g2

288F 2π2

[
− 17 + 40 ln

(
m

μ

)]
− 3g2f (Mρ) − g2

ωf (Mω) + · · · , (24)

〈(
r

(v)
1

)2〉 = −12d6 + 6
1 − dxg

M2
ρ

− 1

16F 2π2

[
2 ln

(
M

μ

)
+ 1

]
− g2

A

16F 2π2

[
10 ln

(
M

μ

)
− 12 ln

(
m

μ

)
+ 41

2

]

+ g2

54F 2π2

{
379

16
− 10 ln

(
m

μ

)
− 3m2

16M2
ρ

[
60 ln

(
m

μ

)
+ 7

]
+ 30 ln

(
M

μ

)
− 30δ ln(X)√

δ2 − M2

}
+ g2f (Mρ) − g2

ωf (Mω) + · · · , (25)〈(
r

(s)
2

)2〉 = 0 + · · · , (26)〈(
r

(v)
2

)2〉 = g2
Am

8F 2πMκ (v)
− g2m

9F 2π2
√

δ2 − M2κ (v)
ln(X) + · · · , (27)

where X is defined in Eq. (21). In the case of the mean-square Dirac radii, the ellipses refer to terms that scale at least linearly
in t under M �→ tM and δ �→ tδ. However, for the mean-square Pauli radii, the ellipses represent terms that remain constant or
scale with higher powers. As expected [61], 〈(r (v)

1 )2〉 diverges logarithmically in the chiral limit, whereas 〈(r (v)
2 )2〉 shows a 1/M

singularity. The respective contributions of the vector mesons are given in terms of the function

f (MV ) = 12m4 − 37M2
V m2 + 10M4

V

64m4
(
4m2 − M2

V

)
π2

+
(
4m4 − 6M2

V m2 + 5M4
V

)
ln

(
MV

m

)
32m6π2

+ MV

( − 36m6 + 70M2
V m4 − 36M4

V m2 + 5M6
V

)
arccos

(
MV

2m

)
32m6

(
4m2 − M2

V

)3/2
π2

, (28)

which vanishes in the limit of infinitely heavy vector-meson masses,

lim
MV →∞

f (MV ) = 0. (29)
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TABLE III. Comparison of the renormalized coupling constants obtained from fits of the results to different ranges of momentum transfer.
The second set includes the � resonance as an explicit dynamical degree of freedom. Gρ is given in units of GeV−1, d6 and d7 in units of
GeV−2, and Q2

max in units of GeV2; the remaining coupling constants dx , gω, and fω are dimensionless.

Resonances Q2
max gω fω · gω Gρ d6 d7 dx χ 2

red

�, ρ, ω 0.2 − 1.06 − 0.106 − 4.84 1.67 − 0.282 − 0.506 1.50
0.3 − 1.27 − 0.127 − 4.05 1.55 − 0.233 − 0.512 4.21
0.4 − 1.92 − 0.192 − 1.98 1.50 − 0.211 − 0.547 25.30

ρ, ω 0.2 5.13 0.513 − 16.90 0.629 0.0909 − 0.134 1.45
0.3 4.91 0.491 − 17.13 0.507 0.0991 − 0.118 1.74
0.4 4.49 0.449 − 16.58 0.490 0.0934 − 0.130 3.57

Using the couplings from the fitting procedure (see
Table III), we are in the position to determine the numerical val-
ues for the mean-square charge and magnetic radii, defined as〈(

r
p

E

)2〉 = − 6

G
p

E(0)

dG
p

E(Q2)

dQ2

∣∣∣∣
Q2=0

,

〈(
rn
E

)2〉 = −6
dGn

E(Q2)

dQ2

∣∣∣∣
Q2=0

,

(30)〈(
r

p

M

)2〉 = − 6

G
p

M (0)

dG
p

M (Q2)

dQ2

∣∣∣∣
Q2=0

,

〈(
rn
M

)2〉 = − 6

Gn
M (0)

dGn
M (Q2)

dQ2

∣∣∣∣
Q2=0

.

The respective empirical values are shown together with our
results in Table IV.4 As a general trend we find that the proton
radii are better described in terms of the calculation including
the � resonance. In contrast, the neutron radii are in better
agreement with the experimental results in the theory without
the � resonance. In all cases, 〈(rn

M )2〉 is smaller and |〈(rn
E)2〉|

is larger than their respective empirical values. The situation
improves in the calculation featuring just vector mesons
as 〈(rn

M )2〉 is approximately in agreement with experiment.
Again, the discrepancy especially for 〈(rn

M )2〉 grows towards
larger Q2

max. Even though the value of |〈(rn
E)2〉| is notably

4When evaluating numerical expressions, we make use of the
renormalization scale μ = 1 GeV.

TABLE IV. Comparison of the mean-square charge and magnetic
radii of the nucleon obtained from the form factor results including
and excluding the � resonance fitted to different ranges of momentum
transfer. The mean-square radii are given in units of fm2. The
empirical values are taken from Ref. [5].

Resonances Q2
max 〈(rp

E)2〉 〈(rn
E)2〉 〈(rp

M )2〉 〈(rn
M )2〉

�, ρ, ω 0.2 0.740 −0.288 0.631 0.718
0.3 0.744 −0.355 0.614 0.700
0.4 0.761 −0.440 0.574 0.667

ρ, ω 0.2 0.733 −0.198 0.677 0.725
0.3 0.730 −0.221 0.672 0.728
0.4 0.734 −0.252 0.659 0.726

Empirical values 0.770 −0.116 0.604 0.743

smaller than in the results with an explicit � resonance, it is
still larger than empirically predicted.

In principle, one could adjust d6 and d7 to the electric radii
and two LECs originating from the vector-meson Lagrangian
to the magnetic radii, respectively. However, such an approach
would be against the purpose or spirit of introducing vector
mesons, namely, generating curvature to extend the description
to intermediate values of Q2.

Finally, in Table V we display the individual πN , π�,
and vector-meson loop contributions to the mean-square radii.
The parameters are taken from Table I. Note that the ω-meson
loop contributes only to the mean-square radii of the proton.
The contribution is given by the second term in the respective
sum and was evaluated with the largest value of Table III, i.e.,
gω = 5.13. The difference between the full and expanded loop
results may be regarded as an admittedly rough error estimate.

C. Graphical representation of the form factor results

Using the LECs represented in Tables I and III, the final
results for the Sachs form factors are displayed in Fig. 5.
Because our proton results are fitted directly to cross sections
we show a gray band corresponding to a direct least-squares
model fit for G

p

E and G
p

M to the measured cross sections and
thus representing the experimental data [8]. For the neutron
form factors our results are plotted together with the respective
set of data to which they have been fitted. All curves describe
the corresponding experimental data reasonably well for all

TABLE V. πN , π�, and vector-meson loop contributions to the
mean-square radii in units of fm2. The omega loop contributes only
to the proton radii and is given by the second term in the sum.

Mean-square radii 〈(rp

E)2〉 〈(rn
E)2〉 〈(rp

M )2〉 〈(rn
M )2〉

πN , expanded 0.304 − 0.0938 0.301 0.381
πN , full 0.365 − 0.158 0.162 0.201

π�, expanded 0.0312 − 0.0713 0.0796 0.0517
π�, full − 0.115 0.163 0.154 0.0323

Vector-meson loops, 0.0111 0.00554 − 0.000953 0.00278
expanded

+0.00821 +0.00311

Vector-meson loops, 0.0422 − 0.00897 − 0.0153 0.00400
full

+0.00821 +0.00311
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FIG. 5. Sachs form factors of the nucleon at O(q3) including
ρ, ω, and �, fitted to different ranges of momentum transfer Q2.
Solid lines correspond to a fit up to Q2

max = 0.2 GeV2, dashed lines
up to Q2

max = 0.3 GeV2, and dotted lines up to Q2
max = 0.4 GeV2,

respectively. The gray bands represent empirical fits of the form
factors to the measured cross sections.

four form factors. As indicated by the values of χ2
red in

Table III, the description of the form factors adjusted to a
wider range of momentum transfer worsens. Although G

p

E

and Gn
M are still in good agreement with the corresponding

data for Q2
max = 0.4 GeV2 (dotted curves), Gp

M does not show
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FIG. 6. Decomposition of the Sachs form factors of the nucleon
at O(q3) including vector mesons and the � resonance. Solid lines:
total results; long-dashed lines: tree contribution; short-dashed lines:
contribution of set 1 of Fig. 2; dash-dotted lines: contribution of set
2 of Fig. 3; dotted lines: contribution of set 3 of Fig. 4.

sufficient curvature. The electric form factor of the neutron,
Gn

E , cannot be described well beyond Q2 ≈ 0.3 GeV2. In
all cases, the slope of Gn

E at small values of the momentum
transfer turns out too big.

To investigate the total results for the Sachs form factors in
more detail, Fig. 6 shows the individual contributions of the
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different diagram sets for the fit up to Q2
max = 0.4 GeV2. The

dotted lines represent the diagrams involving π� loops which
seem to adulterate the results for Q2 � 0.3 GeV2. Similarly to
the short-dashed lines involving πN loops only, the � contri-
butions do not produce significant curvature. At larger values
of Q2, the strong linear Q2 dependence of the dotted lines,
especially for G

p

E , Gn
E , and G

p

M , together with their lack of cur-
vature at O(q3) cannot be compensated by the strongly curved
tree contributions of the vector mesons (long-dashed lines). For
this reason, the quantitative description of the data worsens for
larger values of Q2 at the considered chiral order if the � is
included explicitly. In agreement with Ref. [26], the numerical
contributions resulting from the vector-meson loop diagrams,
denoted by the dash-dotted lines, turn out to be small.

Figure 7 displays the electromagnetic Sachs form factors
without explicit � resonance (see Table III). As opposed to
Fig. 5, all fits describe the related data remarkably well for all
four Sachs form factors. Consequently, the consistent inclusion
of ρ and ω mesons provides a satisfactory description of
the electromagnetic form factors in the momentum transfer
region 0 � Q2 � 0.4 GeV2 already at third chiral order. In
our calculation, the additional inclusion of the φ meson results
in only a small numerical adjustment of the parameters in
Table III and does not generate a visible improvement of the
form factor curves.

In Ref. [26], the electromagnetic form factors of the
nucleon were calculated in Lorentz-invariant ChPT using the
EOMS renormalization scheme up to and including O(q4).
The vector mesons ρ, ω, and φ were incorporated explicitly
using parametrization II of Ref. [38]. The self-consistency
relations for the ρ-meson couplings, as discussed in Sec. III B,
were not considered in the effective Lagrangian. To discuss
to what extent the self-consistent inclusion of vector mesons
influences the description of the form factors, in Fig. 8 we
display a comparison of our calculation, including explicit
vector mesons only, and that of Ref. [26]. Even though our
calculation involves one vector-meson degree of freedom less,
namely the φ meson, and is only up to O(q3), the results for
all Sachs form factors are slightly closer to experimental data
for Q2 � 0.2 GeV2. In particular, our curve for the electric
neutron form factor shows a better trend for larger values
of the momentum transfer. The improved description can be
explained by the following two reasons. First, the consistency
relations lead to a parametrization which features the ργ

and ρππ couplings at leading order in distinction from the
parametrization used in Ref. [26] featuring such couplings
only at next-to-leading order. The reordering of terms changes
the results favorably for larger values of Q2. Second, we fit our
free coupling constants to the global trend of the form factor
curves instead of adjusting them to the electric and magnetic
radii and taking the remaining ones from results based on
dispersion relations. This approach allows for a better overall
description of the form factor curves.

D. Estimate of higher-order effects

To estimate the uncertainties originating in the truncation
of the expansion at O(q3), we add polynomials in Q2 to the
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FIG. 7. Sachs form factors of the nucleon at O(q3) including ρ

and ω fitted to different ranges of momentum transfer Q2. Solid lines
correspond to a fit up to Q2

max = 0.2 GeV2, dashed lines up to Q2
max =

0.3 GeV2, and dotted lines up to Q2
max = 0.4 GeV2, respectively. The

gray bands represent empirical fits of the form factors to the measured
cross sections.

Sachs form factors. The explicit form of the corresponding
polynomial is motivated by an analysis of the maximal powers
of Q2 in the isoscalar and isovector Dirac and Pauli form
factors, taking into account the available chiral structures
at O(q3) with adjustable LECs. We find that the neglected
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FIG. 8. Sachs form factors including vector mesons. The solid
lines refer to the O(q3) results of this work including ρ and ω mesons
and the dashed lines to the O(q4) results of Ref. [26] including ρ, ω,
and φ. The gray bands represent empirical fits of the form factors to
the measured cross sections.

structures that would appear in an O(q4) calculation can be
parametrized as

�GN
E =

(
aN Q2 − bN

Q2

4m2
p

)
Q2,

(31)
�GN

M = (aN Q2 + bN )Q2,
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FIG. 9. Sachs form factors including vector mesons and the �

resonance. The solid lines refer to the O(q3) results, whereas the
dashed lines are supplemented by additional higher-order terms
according to Eq. (31). The gray bands represent empirical fits of
the form factors to the measured cross sections.

where aN and bN (N = p, n) denote unknown coefficients.
The corrections to the electric Sachs form factors are purely of
order (Q2)2 while those to the magnetic Sachs form factors
already start at order Q2. To investigate the influence of
these higher-order contributions we add them to the original
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FIG. 10. Isoscalar and isovector Sachs form factors including
vector mesons and the � resonance. The solid lines refer to the O(q3)
results, whereas the dashed lines are supplemented by additional
higher-order terms according to Eq. (31).

expressions at O(q3) and perform a new simultaneous fit of
all four “improved” Sachs form factors to the data. The results
of this procedure are shown in Fig. 9. Clearly, the inclusion of
higher-order terms according to Eq. (31) changes the slopes of
the Sachs form factors. The reason for this can be understood
if one resolves the physical Sachs form factors into their
respective isoscalar and isovector parts. Figure 10 indicates

TABLE VI. Mean-square charge and magnetic radii of the
nucleon obtained from the form factor results including the �

resonance. The first row corresponds to the O(q3) results, whereas
the second row also includes additional higher-order terms according
to Eq. (31). The mean-square radii are given in units of fm2.

〈(rp

E)2〉 〈(rn
E)2〉 〈(rp

M )2〉 〈(rn
M )2〉

0.761 −0.440 0.574 0.667
0.718 −0.142 0.708 0.758

that an O(q3) calculation does not generate enough curvature
for both, the electric and magnetic, isoscalar form factors. To fit
to the data over a wider range of momentum transfer in terms
of minimizing the total χ2

red function, the respective slopes
counterbalance the missing curvature. This overcompensation
leads to a lower value for 〈(rp

M )2〉 and 〈(rn
M )2〉, as well as to

a higher value for |〈(rn
E)2〉| than in the case with additional

higher-order terms. A comparison between the radii obtained
within the two approaches is shown in Table VI.

E. Pion-mass dependence of the form factors

Nucleon electromagnetic form factors have been calculated
in the framework of lattice QCD (for a recent overview, see
Refs. [62–66] and references therein). Several collaborations
have reached pion masses down to 270 MeV. Systematic
extrapolations to the physical value of the pion mass and
the Q2 dependence are necessary to compare the lattice form
factor results to experimental data. Given the manifest Lorentz
covariance of our results, they may provide useful guidance
for extrapolations of lattice simulations. In lattice calculations
it is more convenient to work with isoscalar and isovector
form factors. Simulations of the isoscalar form factors are
numerically expensive because they involve the evaluation of
disconnected quark loops. For the isovector form factors the
disconnected quark loop contributions cancel.

In Fig. 11 we display the pion-mass dependence of the
Sachs form factors in the isovector and isoscalar channels.
The quantities are derived from the results including ρ and ω

mesons as explicit resonant degrees of freedom. We stress that,
at the given order of our calculation, the vector-meson masses
are independent of the pion mass (see, e.g., Refs. [67–69] for
a discussion of the quark-mass dependence of the ρ-meson
mass). Extrapolations of lattice data of G

(v)
E were performed in

Refs. [70,71]. The results qualitatively agree with ours as the
values of the form factor fall off more slowly with increasing
pion mass. In Ref. [72] the isovector magnetic moment is
extrapolated to small pion masses using results from heavy-
baryon ChPT [73]. The pion-mass dependence and the value in
the chiral limit are in good agreement with our corresponding
findings plotted in Fig. 12.

In the present article we fit the unknown LECs to experi-
mental data at the physical pion mass. Alternatively, they can
be fitted to lattice simulation data at different values of the
pion mass, resulting in a complete theoretical prediction of the
observables. Whether this is a useful approach largely depends
on the range of pion masses in which the low-energy EFT is
still applicable. The region of applicability depends on the
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FIG. 11. Electric and magnetic Sachs form factors in the isoscalar
and isovector channels including ρ and ω for different values of the
pion mass Mπ . The solid lines refer to Mπ = 140 MeV, the dashed
lines to Mπ = 200 MeV, the dash-dotted lines to Mπ = 300 MeV,
and the dotted lines to Mπ = 400 MeV, respectively.

calculational scheme, and investigations of this issue within
different schemes may be found in, e.g., Refs. [74–77].

V. SUMMARY

We calculated the electromagnetic form factors of the
nucleon at O(q3) in manifestly Lorentz-invariant baryon chiral
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FIG. 12. Pion-mass dependence of the anomalous magnetic mo-
ment in the isoscalar and isovector channels and of the mean-square
isovector Dirac and Pauli radii; the vertical dashed line indicates the
physical pion mass.

perturbation theory including ρ and ω mesons as well as the
� resonance. In terms of constraints and perturbative renor-
malizability, we incorporated the resonant degrees of freedom
self-consistently into the EFT. To generate a systematic power
counting we applied the extended on-mass-shell renormaliza-
tion scheme. Two of the undetermined low-energy coupling
constants were adjusted to the anomalous magnetic moments
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while the remaining six LECs were fitted simultaneously
to the experimental data for different ranges of momentum
transfer up to Q2 = 0.4 GeV2. We found that the results
incorporating vector mesons agree well with experimental data
in a momentum transfer region 0 � Q2 � 0.4 GeV2 whereas
those also including the � describe the form factors only
up to Q2 ≈ 0.3 GeV2. For larger values of Q2, notably Gn

E

and G
p

M disagree with the data. This is because the π� loop
contributions at O(q3) feature a strong linear Q2 dependence
without sufficient curvature.

From a formal point of view, the difference between the
two calculations is of higher order in the quark-mass and
momentum expansion [10] and may be interpreted as an
error estimate. Whether the inclusion of additional degrees of
freedom leads to an improved phenomenological description,
in general, depends on the observable in question. In the
present case, vector mesons are expected to provide an
improved empirical description due to the well-known vector-
meson-dominance picture [78]. However, the inclusion of the
� resonance is needed in reactions and kinematics with a
resonance-generating channel involving the quantum numbers

I (JP ) = 3
2 ( 3

2
+

). It is therefore useful to have such a calculation
of the elastic nucleon form factors if one is interested in
electromagnetic reactions such as, e.g., pion electroproduction
beyond the threshold regime.

Our results including ρ and ω mesons at third chiral
order agree at least as well with experimental data as the
previously performed calculations of Refs. [23,24] at O(q4).
This improvement is a hint towards the importance of a
proper consideration of self-consistency relations among the
couplings of the effective Lagrangian. The resulting form
of the vector-mesonic Lagrangian gives rise to vector-meson
dominance at leading order and deviations thereof are pushed
to higher orders.
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