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Branching ratios of mesonic and nonmesonic antikaon absorptions in the nuclear medium
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The branching ratios of K− absorption in nuclear matter are theoretically investigated in order to understand
the mechanism of K− absorption into nuclei. For this purpose mesonic and nonmesonic absorption potentials
are evaluated as functions of nuclear density, the kaon momentum, and energy from one- and two-body K−

self-energy, respectively. By using a chiral unitary approach for the s-wave K̄N amplitude we find that both
the mesonic and nonmesonic absorption potentials are dominated by the �(1405) contributions. The fraction of
the mesonic and nonmesonic absorptions are evaluated to be respectively about 70% and 30% at the saturation
density almost independently of the kaon momentum. We also observe different behavior of the branching
ratios to π+�− and π−�+ channels in mesonic absorption due to the interference between �(1405) and the
I = 1 nonresonant background, which is consistent with experimental results. The nonmesonic absorption ratios
[�p]/[�0p] and [�n]/[�0n] are about unity while [�+n]/[�0p] and [�−p]/[�0n] are about 2 due to the
�(1405) dominance in absorption. Taking into account the kaon momenta and energies, the absorption potentials
become weaker due to the downward shift of the initial K−N two-body energy, but this does not drastirally
change the nonmesonic fraction. The �(1385) contribution in the p-wave K̄N amplitude is examined and found
to be very small compared to the �(1405) contribution in slow K− absorption.
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I. INTRODUCTION

Interaction between antikaons (K̄) and nucleons (N ) is one
of the most important clues for strangeness nuclear physics.
The K̄N interaction in the I = 0 channel is strongly attractive
at low energies and dynamically generates �(1405) as a
quasibound state of K̄N , which couples to π� as a decay mode
[1] (see also Ref. [2]). The attractive interaction between K̄N

stimulates recent theoretical studies on K̄ few-nucleon systems
bound mainly by the strong interaction (kaonic nuclei) [3–10]
and further nuclear systems with kaons such as K̄KN [11–14]
and K̄K̄N [15]. The K̄N interaction is also related to the
in-medium property of K̄ [16–21], which is a key to the kaon
behavior in high-density matter [22]. However, at present the
low-energy K̄N interaction is not well understood especially
in its subthreshold regions.

An important tool to study the phenomenological K̄-
nucleus interaction at low energies including the K̄N inter-
action is kaonic atoms, which are Coulombic bound states
of K−-nuclei with the influence of strong interaction. Kaonic
atoms have attracted much attention both experimentally and
theoretically, because they provide unique information on
strong interaction between the nucleus and K− at zero momen-
tum from their binding energies and decay widths [23,24]. In

*The present address is Institute of Particle and Nuclear Studies,
High Energy Accelerator Research Organization (KEK), 1-1, Oho,
Ibaraki 305-0801, Japan.

earlier works, the branching ratios of K−-nucleus absorption
at rest had been experimentally investigated from the 1960s
to the 1970s by using emulsions and bubble chambers with,
for example, hydrogen [25,26], deuterium [27], 4He [28], and
heavier nuclei [29]. As a result, it was found that the probability
of observing the nonpionic final state is as large as 20% per
stopped K− for 4He and heavier nuclei [29] while it is ∼1%
for deuterium [27]. The fraction of the nonpionic final state for
kaon absorption by 4He was theoretically studied in Ref. [30].
A detailed analysis of the branching ratios for stopped K−
on 4He was performed in Ref. [28] and the authors reported,
for example, the absorption ratio R+− ≡ [π−�+]/[π+�−] =
1.8 ± 0.5, which is larger than for smaller systems, such
as ≈0.42 for hydrogen [25,26] and ≈0.85 for deuterium
[28]. The ratio R+− is also studied in Ref. [31] for p-shell
nuclei and R+− = 1.2–1.5 is obtained. It was theoretically
suggested in Refs. [32,33] that the ratio R+− strongly reflects
the in-medium properties of �(1405). In recent works, the
energy shift and width of the 1s state in kaonic hydrogen is
experimentally extracted in Refs. [34–38], which are followed
by theoretical improvements of the K̄N interaction around
and below the threshold in Refs. [39–41]. In Refs. [42–45]
theoretical analyses of kaonic atom data including heavy nuclei
are performed with subthreshold in-medium K̄N scattering
amplitudes, and K−-nucleus potentials by strong interaction
as well as propeties of kaonic nuclei are discussed. Searches for
kaonic nuclei [46–48] were done in stopped K− experiments
by detecting �-nucleus correlations in the final state of stopped
K− absorption reactions, motivated by the deeply bound
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kaonic nuclei predicted in Ref. [4]. However, there is no clear
evidence yet and further there are discussions on alternative
explanations for the peaks observed in experiments [49–51].

One considerable feature of the K−-nucleus absorption
process at rest is that the energy of the K−N two-body system
in the initial state can go below the threshold due to the
off-shellness of the bound nucleon inside the nucleus. This
leads to the expectation that the absorption pattern is closely
related to the K̄N dynamics below the threshold. Especially,
there are two hyperon resonances, �(1405) (�∗) and �(1385)
(�∗) below the K̄N threshold, hence it is natural to consider
that their contributions to the absorption process are important.
Since �∗ strongly couples to the K̄N channel in the s wave, �∗
will play the most important role. Therefore, it is interesting
to construct K̄-nucleus interactions from the K̄N interaction
including �∗ and �∗ and to investigate systematically the
branching ratios of the K̄-nucleus systems from the viewpoint
of the low-energy K̄N interaction in order to understand the
mechanism of K− absorption in experiments.

Motivated by these observations, in this study we theoreti-
cally investigate the decay pattern of K− in nuclear matter as
a simplified condition for the kaonic atoms by calculating the
imaginary part of the K− self-energy with K̄N interaction
as an input. We employ chiral dynamics within a unitary
framework (chiral unitary approach) [52–57] for the K̄N

interaction. Here we investigate mesonic and nonmesonic
decay by taking into account the most probable contributions;
that is, the one- and two-nucleon absorption for the mesonic
and nonmesonic decay, respectively. Multinucleon interactions
for the mesonic decay as well as the more than three-nucleon
interactions for the nonmesonic decay will be suppressed when
the nuclear density is not so high. In this study we consider
the K− self-energy as a function of the kaon energy and
momentum as well as the nuclear density. For bound kaons
these energies and momenta are determined self-consistently
by the equation of motion with the energy-dependent potential,
and the energy shift and the momentum distribution should be
taken into account especially for deeply bound kaon states
as suggested in Refs. [42,43]. For simplicity, we assume the
isospin symmetry and consider the symmetric nuclear matter,
ρN = ρproton + ρneutron with ρproton = ρneutron. The extension to
the case of the asymmetric matter is straightforward.

The present study is a continuation of the study done in
Ref. [58]. In Ref. [58] we have discussed nonmesonic decay
of �∗ in a nuclear medium by employing one-meson exchange
model as diagrammatically shown in Fig. 1(a), and we have
found that the nonmesonic decay ratio ��N/��0N strongly
depends on the �∗ coupling ratio gK̄N/gπ� ; especially large
gK̄N coupling leads to the enhancement of ��N . Futhermore,
by using the chiral unitary approach we have found that
��N/��0N ≈ 1.2 almost independently of the nuclear density.
In the previous study it has been assumed that one �∗ is
created in nuclear matter and the nonmesonic decay pattern of
K̄-nucleus bound systems has been discussed in an idealized
condition. In the present study we consider an explicit K− in
the initial state rather than �∗ as shown in Figs. 1(b) and 1(c),
which enables us to investigate the decay of K̄-nucleus bound
systems in more realistic conditions. We discuss how much
partition we observe the �∗ dominance in K− absorption,
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FIG. 1. Feynman diagrams for the decay of K̄-nucleus systems.
(a) �∗-induced reaction. (b) Mesonic absorption with an explicit K−

in the initial state. (c) Nonmesonic absorption with an explicit K− in
the initial state. In diagrams, A and B denote the baryons in the final
state and a denotes the exchange meson.

which is assumed to be perfect in our previous study. In
this work we neglect in-medium effects on mesons, baryons,
and hyperon resonances. It is known that the Pauli blocking
effect on the nucleons makes �∗ energy shift above the K̄N

threshold as discussed in Refs. [16–19]. Nevertheless, taking
into account the in-medium effects on K̄ [20] and both on K̄

and π [21] as dressed propagators, it was suggested that the
in-medium attraction felt by K̄ lowers the K̄N threshold and
thus the �∗ position moves to the energy close to its free-space
value. Although the clear peak of �∗ would be dissolved in
nuclear matter, we use �∗ without in-medium effects as a
zeroth-order approximation.

This paper is organized as follows. In Sec. II we explain our
formulation for the calculation of the mesonic and nonmesonic
absorption potentials for K− in nuclear matter. We show
our results of the absorption potential with s-wave K̄N →
MB scattering amplitude including the �∗ contributions in
Sec. III. The �∗ contributions is included in Sec. IV. Section
V is devoted to summary of this paper.

II. FORMULATION

In this section we formulate the absorption potential of K−
in uniform nuclear matter, which is given by the imaginary part
of the K− self-energy in the medium as a function of nuclear
density ρN as well as the kaon energy EK− and momentum
pK− . In general, the potential for K−, V , can be obtained by
evaluating the K− self-energy UK− as,

2mK̄V = UK− , (1)

with the antikaon mass mK̄ . The imaginary part of the potential
V represents the contribution from K− absorption,

ImV = 1

2mK̄

ImUK− , (2)

in which we are interested here. In evaluation of the imaginary
part of the self-energy UK− we use the Cutkosky rule.

In this study we discuss the mesonic and nonmesonic
absorption processes for K− in nuclear matter as one-
and two-body absorption by considering diagrams shown
in Figs. 1(b) and 1(c), respectively. These are the most
kinematically probable contributions to K− absorption. The
mesonic absorption potential is evaluated from the self-energy
of the Feynman diagram in Fig. 2. For the nonmesonic
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FIG. 2. Feynman diagram for the mesonic K− absorption pro-
cesses in nuclear matter. The possible combinations of the nucleon
(N1), hyperon (Y ), and pion (π ) in the intermediate state are given in
Table I. The shaded ellipses represent the K−N → πY amplitudes.

absorption, on the other hand, we take one-meson exchange
model where the Nambu-Goldstone bosons are exchanged
between the baryons, as diagrammatically shown in Fig. 3.
The sum of the two contributions gives the total K−
self-energy,

UK− = U one
K− + U two

K− , (3)

where U one
K− and U two

K− represent the one- and two-body self-
energy, respectively.

The K− absorption potential is calculated as a function
of the nuclear density ρN . In our study we describe nuclear
matter by using the Thomas-Fermi approximation. In this
approximation a bound nucleon with momentum p has energy

EN = MN + p2

2MN

+ vN, vN ≡ − k2
F

2MN

, (4)

where MN is the nucleon mass and vN the potential energy for
the nucleon with the Fermi momentum kF = (3π2ρN/2)1/3.
The nucleon momentum p can take a value from 0 to kF. Since
we consider symmetric nuclear matter, we have kF(proton) =
kF(neutron). The potential is also a function of the kaon energy
and momentum, which are external variables of the self-
energy. In contrast, if one considers bound states of a kaon, one
has to solve the Schrödinger or Klein-Gordon equation with
this energy-momentum-dependent potential self-consistently.
Thus, the potential for the bound kaon should be evaluated with
the energy of the bound kaon and the momentum distribution

TABLE I. Channels of the intermedi-
ate states in Fig. 2.

N1 π Y

p π 0 �0

π+ �−

π− �+

π 0 �

n π− �

π− �0

π 0 �−

N1

K

K

A B N2

a

b

(a)
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K

K

A B N2
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b
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FIG. 3. Feynman diagrams for the nonmesonic K− absorption
processes in nuclear matter. In diagrams, N1 and N2 denote nucleons,
A and B baryons, and a and b mesons. The shaded ellipses represent
the K−N → MB amplitudes.

of the bound state. One of the ways to implement the energy
and momentum dependence into the potential for the bound
state was suggested in Refs. [42,43].

One important feature of K− absorption in nuclei is
that the center-of-mass energy of the K−N pair in nuclear
matter can go below the threshold value, mK̄ + MN , due
to the off-shellness of the bound nucleon. This can be
easily seen by evaluating the center-of-mass energy from
the free K− at rest and bound N momenta, p

μ

K− = (mK̄, 0)
and p

μ

Nin
= (EN, p); W =

√
(EN + mK̄ )2 − p2 < mK̄ + MN

because of EN � MN for the bound nucleon. For a kaon
with a finite momentum and a binding energy, the two-body
energy W shifts farther downward due to the off-shellness
of the kaon. We also note that, since the momentum of the
bound nucleon take a value from 0 up to kF, the span of
the K−-N pair energy depends on the density. At certain
density around the saturation density, the K−-N energy goes
down around the hyperon resonances (�∗ and �∗) sitting
below the K̄N threshold. Thus, for these densities, they are
expected to give important contributions to the K−N → MB

transition amplitudes, which are represented as shaded ellipses
in Figs. 2 and 3, and play a crucial role for the absorption
pattern.

In order to describe the s-wave K−N → MB transition
amplitudes around the K̄N threshold, we use the so-called
chiral unitary approach [52–57], which is based on chiral
dynamics within a unitary framework. Using the parameter
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set in Ref. [56], which is fixed by the branching ratios of
K−p at threshold observed with the kaonic hydrogen [25,26],
we can reproduce well the low-energy K̄N scatterings in
the s wave and dynamically generate the �∗ resonance. In
the chiral unitary approach the �∗ peak position initiated
from the K̄N channel is evaluated to be about 1420 MeV
instead of the nominal 1405 MeV [57], which is consistent
with the experimental observation [59,60]. The details of the
formulation of the chiral unitary approach used here are given
in Ref. [61]. The chiral unitary approach is suitable for our
study of K− absorption since this approach automatically
includes the nonresonant background contributions as well
as the �∗ contribution in the scattering amplitude. Here
we do not take into account the in-medium effects on the
amplitudes determined by the chiral unitary approach. We
will also examine the �∗ contribution in the K̄N p wave in
Sec. IV by introducing a simple Breit-Wigner scattering
amplitude for �∗.

Now let us formulate the K− potential for the mesonic
absorption, which is calculated by considering the K−N1 →
πY process for the in-medium nucleon N1 diagrammatically
shown in Fig. 2. In this study we use a symbol μ1 = ( p1, χ1)
to denote collectively the initial-state nucleon momentum p1

and its spin χ1, and we assume the isospin symmetry. The cut
amplitude for the mesonic process is given as

2 ImU one
K− = −

∫ kF d3p1

(2π )3
gN

∑
λ

∑
λ′

∑
(π,Y )

γπY (μ1; kF), (5)

with the reaction rate for the K−N1 → πY process,

γπY (μ1; kF) ≡
∫

d
πY |χ †
YTπY χ1|2(2π )4

× δ4(pK− + p1 − pπ − pY ). (6)

Here gN = 2 is the degenerate number of the nucleon for each
momentum in nuclear matter (spin up and down), the phase
space of the intermediate on-shell state (πY ) d
πY ,

d
πY ≡ d3pπ

(2π )3

1

2ωπ

d3pY

(2π )3

2MY

2EY

, (7)

the K−N1 → πY scattering amplitude TπY , which is deter-
mined by the chiral unitary approach, the Pauli spinor χY for
the hyperon, and K−, π , and hyperon momenta pK− , pπ , and
pY , respectively. By means of the two summation symbols
with λ and λ′, the sum and average of the scattering amplitude
for the polarizations of baryons are done, and (π, Y ) under the
summation symbol represents the absorption channels to π�

and π�. Performing the integrations in Eqs. (5) and (6), we
obtain

2 ImU one
K− = −

∫ kF

0

dp1 p2
1

π2

∑
λ

∑
λ′

∑
(π,Y )

γπY (μ1; kF), (8)

γπY (μ1; kF) = p′
cmMY

8π2W

∫
dY |χ †

YTπY (W )χ1|2, (9)

with the center-of-mass energy of the K−N1 system W ,

W =
√

(E1 + EK− )2 − ( p1 + pK− )2 (10)

and the initial nucleon energy E1 expressed in Eq. (4), and the
momentum of the center-of-mass frame for the on-shell πY

state p′
cm. Here we will take an angular average for the kaon

momentum in the integral of the nucleon momentum as

W ≈
√

(E1 + EK− )2 − (
p2

1 + p2
K−

)
. (11)

Next let us consider the nonmesonic absorption process.
Taking into account the Feynman diagrams shown in Fig. 3,
the cut amplitude for the nonmesonic process can be written
as

2 ImU two
K− = −

∫ kF d3p1

(2π )3
gN

∫ kF d3p2

(2π )3
gN

×
∑

λ

∑
λ′

∑
(Y,N)

γYN (μ1, μ2; kF), (12)

with the reaction rate for the K−NN → YN process γYN

defined as

γYN (μ1, μ2; kF) ≡
∫

d
YN |AYN |2ηYN (2π )4

× δ4(pK− + p1 + p2 − pY − pN ), (13)

with

d
YN ≡ d3pY

(2π )3

2MY

2EY

d3pN

(2π )3

2MN

2EN

. (14)

Here AYN is the scattering amplitude for the K−NN → YN

process, and pY and pN are the hyperon and nucleon momenta
in the final state, respectively. The symbol ηYN is defined to be

ηYN =
{

2 for YN = �n, �0n, and �−p,

1 for others,
(15)

in order to take into account the same contribution from
initial pn state with exchanged quantum numbers, namely
p(μ1)n(μ2) and n(μ1)p(μ2) for K−pn → �n, �0n, and �−p

reactions. The scattering amplitude AYN can be written by
summing all possible channels labeled by i as

A�p,�0p, �+n = 1√
2

∑
i

ξi[Ai(K−p(μ1)p(μ2)
ai−→ AiBi)

−Ai(K−p(μ2)p(μ1)
ai−→ AiBi)], (16)

for the K−pp → �p, �0p, and �+n reactions,

A�n,�0n, �−p = 1√
2

[ ∑
i

ξiAi(K−p(μ1)n(μ2)
ai−→ AiBi)

−
∑

i

ξiAi(K−n(μ2)p(μ1)
ai−→ AiBi)

]
, (17)

for the K−pn → �n, �0n, and �−p reactions, and

A�−n = 1√
2

∑
i

ξi[Ai(K−n(μ1)n(μ2)
ai−→ AiBi)

−Ai(K−n(μ2)n(μ1)
ai−→ AiBi)], (18)

for the K−nn → �−n reaction. Here ai represents the ex-
change meson, and Ai and Bi are the baryons in the final state.
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TABLE II. Possible channels for Eqs. (16)–(18). Here N1 and N2

are the nucleons in the initial state, a is the exchange meson, and A

and B are the baryons in the final state. ξ is the relative sign of the
amplitude coming from the exchange of the final state baryons, and
α and β are the Clebsch-Gordan coefficients for the MBB coupling.

N1 N2 a A B ξ α β

p p K− p � + −2/
√

3 1/
√

3
η � p − 1/

√
3 −2/

√
3

π 0 � p − 1 0

p p K− p �0 + 0 1
π 0 �0 p − 1 0
η �0 p − 1/

√
3 −2/

√
3

p p K̄0 n �+ + 0
√

2
π− �+ n − √

2 0
p n K̄0 n � + −2/

√
3 1/

√
3

η � n − 1/
√

3 −2/
√

3
π 0 � n − −1 0

n p K− n � + −2/
√

3 1/
√

3
π− � n − √

2 0

p n K̄0 n �0 + 0 −1
π 0 �0 n − −1 0
η �0 n − 1/

√
3 −2/

√
3

n p K− n �0 + 0 1
π− �0 n − √

2 0

p n K− p �− + 0
√

2
π+ �− p − √

2 0

n p π 0 �− p − 1 0
η �− p − 1/

√
3 −2/

√
3

n n K− n �− + 0
√

2
π 0 �− n − −1 0
η �− n − 1/

√
3 −2/

√
3

The explicit channels are given in Table II. The amplitude A
for the K−N1(μ1)N2(μ2)

a−→ AB process is calculated in the
one-meson exchange model,

Ai(K−N1(μ1)N2(μ2)
a−→ AB)

= χ
†
ATaA(W )χ1 × �̃a

(
q2

a

) × ṼaN2Bχ
†
Bqa · σχ2. (19)

The symbol ξ denotes the relative sign of the amplitude coming
from the exchange of the final-state baryons. In the amplitude
Ai , TaA(W ) is the K−N1 → aA scattering amplitude, which is
determined by the chiral unitary approach, with the energy W

expressed in Eq. (11). The meson propagator �̃a with the
meson momentum qμ = p

μ

B − p
μ

2 includes the short-range
correlations [62],

�̃a(q2) =
(

�2

�2 − q2

)2 1

q2 − m2
a

−
(

�2

�2 − q̃2

)2 1

q̃2 − m2
a

,

(20)

with q̃2 = q2 − q2
C, where we choose a typical parameter set,

� = 1.0 GeV and qC = 780 MeV [63]. The coefficient of the
meson-baryon-baryon coupling ṼaN2B is determined by the

flavor SU(3) symmetry as

ṼaN2B = αaN2B

D + F

2f
+ βaN2B

D − F

2f
, (21)

with empirical values of D + F = 1.26 and D − F = 0.33,
which reproduce the hyperon β decays observed in ex-
periments, and f = fπ = 93.0 MeV commonly for all the
mesons. The SU(3) Clebsch-Gordan coefficients α and β are
listed in Table II. The K−N1 → aA scattering amplitude TaA

has the indices of spinors for N1 (χ1) and A (χA), whereas the
Pauli matrices σ i (i = 1, 2, 3) appearing in Eq. (19) are given
in the space of the spinors for N2 (χ2) and B (χB). We empha-
size that the antisymmetric combinations for initial nucleons
are realized as, e.g., (|p(μ1)p(μ2)〉 − |p(μ2)p(μ1)〉)/√2 in
the amplitudes A�p, �0p, �+n [see Eqs. (16)–(18) and Table II].

Performing the integrations in Eqs. (12) and (13), we obtain

2 ImU two
K− = −

∫ kF

0

dp1 p2
1

π2

∫ kF

0

dp2 p2
2

π2

∫ 1

−1

d cos θ12

2

×
∑

λ

∑
λ′

∑
(Y,N)

γYN (μ1, μ2; kF), (22)

γYN (μ1, μ2; kF) = p′′
cmMY MN

4π2Etot

∫
dN |AYN |2ηYN, (23)

with momentum p′′
cm for the on-shell Y and N states in the

center-of-mass frame and total energy Etot =
√

(pY + pN )2.

III. RESULTS

We now show our results for the K− absorption potential
as a function of nuclear density ρN . First we consider the
self-energy of a kaon at rest in nuclear matter with p

μ

K− =
(mK̄, 0). Next we see the absorption widths for kaons with
finite momenta and energies in Sec. III D. In this section we
concentrate on contributions from the s-wave K̄N interaction
in the K− absorption reaction, because, as we have already
mentioned, the resonance �(1405) (�∗) just below the K̄N

threshold in the s wave will play the most important role in
the K− absorption process. Later we will discuss the �(1385)
contributions in Sec. IV.

First of all, let us recall that the energy of a two-body
system of the kaon at rest and a nucleon inside the nucleus
can be less than the K̄N threshold energy owing to the
off-shellness of the bound nucleons. The accessible energy
range depends on the Fermi momentum for the nucleons,
namely the nuclear density, as shown in Eq. (4). The relation
between the accessible energy range and the nuclear density
is shown in Fig. 4(a). As one can see from Fig. 4(a), K̄-N
two-body systems can have lower energies in higher densities
and vice versa. Oppositely, there is a range of density in which a
fixed value W can be achieved by the energy of K−N , as shown
in Fig. 4(a). This means that strength of the �∗ contribution to
the K−p → MB transitions in absorption reactions depends
on the nuclear density. Hence, in order to see in which density
�∗ appears in the absorption reaction, we show the absolute
values of the scattering amplitude for the K−p → (π�)0 and
π0� transitions in Fig. 4(b). From Fig. 4 we can see that the �∗
spectra in the (π�)0 channels have a peak around 1420 MeV
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with a 40 MeV width, which energy can be achieved by a pair of
K−p in nuclear matter with the density ρN ≈ 0.05–0.1 fm−3.
We also see that at the saturation density ρ0 = 0.17 fm−3 the
energy of the K−p pair is around 1400 MeV, which is in
the �∗ resonance peak. Owing to the presence of the �∗
resonance, the amplitudes have strong energy dependence.
This will make nontrivial ρN dependence on mesonic and
nonmesonic absorption potentials.

It is also important to note that the peak structure in the
(π�)0 amplitude comes from �∗ with I = 0, but the peak
position is slightly different in each charged channel. This is
because the I = 1 nonresonant contributions are not so small
and the interference between the I = 0 and I = 1 contributes
in the opposite way for the π±�∓ channels.

A. Mesonic absorption

First we consider the mesonic absorption potential of K−.
We note that in mesonic absorption K−p → (π�)0 processes
contain the �∗ resonance whereas K−p → π0� and K−n →
(πY )− processes do not have the �∗ contributions. We also
note that we expect that the mesonic absorption potential would
be proportional to ρN , if the K̄N amplitude would not depend
on energy.

In Fig. 5, we show the result of the mesonic absorption
potential of K− at rest in nuclear matter. From the figure, we
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FIG. 5. Mesonic absorption potential (ImV one) for K− at rest in
nuclear matter as a function of nuclear density. The potentials for
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symmetry.

find that absorption to the (π�)0 states is dominant to the
other channels. Since the �∗ resonance appears selectively in
the K−p → (π�)0 transitions, this result shows that the �∗
contribution is indeed important for the mesonic absorption
of K− in these densities, and that K− at rest is absorbed
through the �∗ resonance (�∗ doorway process). Thus, if one
observes large branching ratios of (π�)0 in K− absorption into
nuclei, this observation indicates that the �∗ doorway process
dominates the K− absorption reaction. As for the density
dependence of the mesonic absorption potential, the potential
for the (π�)0 channels does not show ρ1

N -like dependence
around ρN > 0.1 fm−3 ≈ 0.6ρ0, whereas that for the π0�,
π−�, and (π�)− states shows ρ1

N dependence. This is owing
to the energy dependence of the K̄N amplitude coming from
the �∗ resonance.

The total sum of the mesonic absorption potential is shown
in Fig. 6 as a function of nuclear density. The total value
of the mesonic absorption width (= −2 ImV one) amounts to
about 200 MeV at the saturation density (ρ0 = 0.17 fm−3).
The large value of the absorption width is caused because,
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FIG. 6. Total sum of mesonic absorption potential (ImV one) for
K− at rest in nuclear matter as a function of nuclear density.
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in addition to that the K−p energy in the realistic nuclear
density is within the range of the �∗ peak, the number of
the initial-state nucleons which can create �∗ becomes large
as the nuclear density increases, as seen in Eq. (8). Here we
note that moderate absorption width will be obtained when the
in-medium K̄N scattering amplitude rather than the free space
is used. Indeed, by using an approximation,

∑
(π,Y )

p′
cmMY

8π2W

∫
dY

∣∣T med
πY (W ; ρ)

∣∣ ≈ −2 ImT med
K−p(W ; ρ),

(24)

for the in-medium K−N → MB scattering amplitude
T med

MB (W ; ρ) and taking value of ImT med
K−p(W ; ρ) from Ref. [21],

we roughly estimate the mesonic absorption potential with
the in-medium amplitude to be ImV one ∼ −40 MeV at the
saturation density ρ0. The obtained value is about two-fifths
of our results (see Fig. 6) and consistent with the preceding
works [21,43], in which in-medium scattering amplitudes
are employed to calculate the absorption potential. The
total mesonic absorption potential shows non-ρ1

N dependence
because of the �∗ doorway contributions. In order to see at
which density the �∗ contribution is large, we plot in Fig. 7 the
absolute absorption potentials divided by the nuclear density,
|ImV one|/ρN , for the total and the π0�0 and π0� mesonic
channels as functions of the nuclear density. As one can see
from Eqs. (8) and (9), |ImV one|/ρN takes values approximately
proportional to the squared scattering amplitude |TπY |2 with
energies achieved by considering nuclear density [see also
Fig. 4(a)]. Therefore, |ImV one|/ρN reflects the structure of
the K−N → πY transition process. From Fig. 7, there is
no structure in the potential for the π0� channel divided
by ρN , because the K−p → π0� process does not have
the �∗ contribution. On the other hand, a local maximum
appears at ρN ≈ 0.05 fm−3 ≈ 0.3ρ0 in the case of the total as
well as the π0�0 channel, which indicates enhancement of
absorption due to the �∗ doorway contribution. The position
of the maximum reflects the matching condition of K−p

energy W to the �∗ peak position via the �∗ resonance
contribution. The fact that a local maximum of |ImV one|/ρN
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[π−�+]/[π+�−], [π+�−]/[π 0�0], and [π−�+]/[π 0�0] as
functions of nuclear density.

appears at ρN ≈ 0.05 fm−3 ≈ 0.3ρ0 is expected from Fig. 4,
which shows that this nuclear density corresponds to the peak
position of �∗ in K−p energy W ≈ 1420 MeV.

Another interesting feature of the absorption potential
shown in Fig. 5 is that the behaviors of the absorption to the
π0�0, π+�−, and π−�+ channels are different from each
other, especially at higher densities (� 0.1 fm−3 ≈ 0.6ρ0).
This comes from the slight difference of the �∗ spectrum
in each channel stemming from the interference between �∗
in I = 0 and the I = 1 nonresonant background as shown in
Fig. 4(b). At the saturation density the K−p energy achieves ≈
1400 MeV, where the squared amplitude |Tπ−�+|2 is about two
times larger than |Tπ+�−|2 (see Fig. 4), hence the absorption
to the π−�+ channel becomes about two times larger than the
π+�− channel.

Even though the �∗ resonance sits in the I = 0 channel, the
interference between the I = 0 and I = 1 contributions makes
the peak position of the �∗ spectrum shift in the opposite
direction in the π±�∓ channels as seen in Fig. 4. The effect
of the peak shift can be clearly seen in the density dependence
of the ratios of K− absorption into (π�)0 channels, because
the density determines the accessible energy of the two-body
system of K− and a bound nucleon. In Fig. 8 we plot the
ratios of the mesonic absorption potential for the π0�0,
π+�−, and π−�+ channels. As one can see, while the ratio
[π−�+]/[π+�−], which we denote R+−, is less than unity in
ρN < 0.08 fm−3 ≈ 0.5ρ0, it gets larger as the density increases
and becomes ∼1.6 at the saturation density. This tendency
comes from the facts that the upward shift of the �∗ peak
is seen in the K−p → π+�− amplitude while the downward
shift in K−p → π−�+ and that the smaller Fermi momentum
for the nucleon, or the lower density, probes the �∗ spectrum in
energies closer to the threshold, while the higher density probes
the lower energy of the �∗ spectrum. We also show the ratios
of the mesonic absorption potentials for [π±�∓]/[π0�0] in
Fig. 8. Here we note that the π0�0 channel has no I = 1
contribution and can be a guide for the �∗ spectrum. The ratios
[π±�∓]/[π0�0] shows opposite behaviors to each other;
[π+�−]/[π0�0] ([π−�+]/[π0�0]) becomes weaker (large)
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as the density increases. All of the three ratios in Fig. 8 are
almost unity at ρN ≈ 0.08 fm−3 ≈ 0.5ρ0.

The increase of the absorption ratio R+− as the density
increases also indicates the nature of the �∗ resonance.
As mentioned before, the increase of the ratio means that
the �∗ peak is shifted upward in the π+�− channel and
downward in the π−�+ channel, which is a consequence of
the interference of I = 0 and I = 1 and is determined by the
relative sign of the I = 0 and I = 1 amplitudes. Then, an
important point is that the inversion of the π+�− dominance
to the π−�+ dominance takes place at relatively lower density
ρN ≈ 0.08 fm−3 ≈ 0.5ρ0. This means that the peak position
of the �∗ spectrum in K−p → (π�)0 should be at an energy
close to the K̄N threshold rather than at 1405 MeV, because
lower densities cannot prove the energy far from the threshold.
In fact, we have an experimental indication of the ratio increase
and the inversion of the dominance channel. Namely, while
the ratio R+− is 0.42 for kaonic hydrogen [25,26], which
constrains the ratio at zero density, it becomes 0.85 for kaonic
deuterium, 1.8 ± 0.5 for kaonic 4He [28], and 1.2–1.5 for
p-shell nuclei [31]. Therefore, experimental results on R+− for
various kaonic atoms could be explained by the nature of the
�∗ resonance. More qualitative and quantitative discussions on
K− absorption in light kaonic atoms will be given in Ref. [64].

B. Nonmesonic absorption

Next we show the results of the nonmesonic absorption po-
tential of K− calculated with the one-meson exchange model.
In the nonmesonic absorption, the �∗ contribution appears in
the K−pp → (YN )+ and K−pn → (YN )0 processes whereas
the K−nn → �−n process does not have the �∗ contributions
within the one-meson exchange picture. We also note that
we expect that the nonmesonic absorption potential would be
proportional to ρ2

N , if there is no energy nor density dependence
in the K̄N amplitude.

The result of the nonmesonic absorption potential is shown
in Fig. 9. From the figure, we find that the absorption
potential has large contributions from the K−pp → (YN )+
and K−pn → (YN )0 processes, while the K−nn → �−n

process gives a tiny contribution. Bearing in mind that K−
absorption with a proton induces the �∗ resonance, we see
that these large contributions stem from the �∗ resonance, and
the �∗ doorway process is realized also in the nonmesonic
absorption.

The total sum of the nonmesonic absorption potential is
plotted in Fig. 10 as a function of nuclear density. The total
value of the nonmesonic absorption width (= −2 ImV two)
amounts to about 100 MeV at the saturation density ρ0 =
0.17 fm−3, although this value will be suppressed, as in the
mesonic absorption case, when the in-medium K̄N scattering
amplitude is employed. The total nonmesonic absorption
potential has non-ρ2

N dependence, especially decreasing al-
most linearly at high densities, due to the existence of the
�∗ as doorway. Then, in a manner similar to the mesonic
absorption case, we can extract the �∗ structure by evaluating
the absolute nonmesonic potentials divided by ρ2

N , which
contains information of the squared amplitude |T |2 for the
K−N → MB transitions. The result is plotted in Fig. 11
for the total and the �p and �−n nonmesonic channels.
From the figure, while no structure appears in the �−n

channel because of the absence of the �∗ contributions, the
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total and �p contributions show the peak structure around
ρN ≈ 0.06 fm−3 ≈ 0.4ρ0, which means that the �∗ doorway is
most prosperous at these densities corresponding to the energy
1420 MeV. The peak position in Fig. 11 is consistent with the
case of the mesonic absorption potential.

The dominance of the �∗ contribution in the nonmesonic
K− absorption can also be seen in the absorption ratios
[�p]/[�0p], [�n]/[�0n], [�+n]/[�0p], and [�−p]/[�0n].
The numerical results of our calculation for the K− absorption
are plotted as functions of nuclear density in Fig. 12. As one
can see, the absorption ratios [�p]/[�0p] and [�n]/[�0n]
in our calculation show around unity almost independently
of the density. Bearing in mind that the previous study [58]
on the �∗N → YN nonmesonic transition suggests the ratio
of the �∗ nonmesonic decays [�N ]/[�0N ] to be around
1.2, one can see that the present results for [�p]/[�0p]
and [�n]/[�0n] are attributed to the �∗ dominance in
K− nonmesonic absorption. Furthermore, the K− absorption
ratio [�+n]/[�0p] and [�−p]/[�0n] are around two in
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these densities in our calculation. This also suggests the �∗
dominance, because if the initial K−p system is dominated
by the I = 0 component these ratios should be exactly two
according to the isospin symmetry. Therefore, our result of the
absorption ratios shows that indeed the �∗ doorway process
dominantly contributes to the nonmesonic absorption of K−
at rest in nuclear matter.

C. Fractions of mesonic and nonmesonic absorptions

Now it is interesting to compare the magnitude of the
mesonic and nonmesonic absorptions in our approach. In order
to see this, we show in Fig. 13 the fractions of the mesonic and
nonmesonic absorptions to the total, together with the fraction
of the sum of (π�)0 states. Here we note that although the
absorption potentials would be suppressed by the in-medium
K̄N scattering amplitude, as discussed in preceding sections,
the fractions of the mesonic and nonmesonic absorptions to the
total would not largely change as long as the �∗ dominance
would be valid. As one can see from Fig. 13, the fraction of the
mesonic (nonmesonic) absorption almost linearly goes down
(up) from unity (zero) as the nuclear density increases. The
reason for decrease (increase) of the fraction of the mesonic
(nonmesonic) absorption is that the nonmesonic reaction can
more largely contribute to the absorption at higher densities.
The almost linear dependence of the fractions on density is
a nontrivial result of the �∗ properties in the �∗ doorway
process. We also note that the absorption to the (π�)0 channels
gives more than half of the total absorption process.

Beside this, we emphasize that the mesonic and nonmesonic
absorption fractions are respectively about 70% and 30%
at the saturation density ρ0 = 0.17 fm−3 of nuclear matter.
This fraction is close to the empirical value for kaonic
atoms with nuclei heavier than 4He (about 80% and 20%,
respectively [24]). From Fig. 13, the nonmesonic fraction of
20% corresponds to ρN = 0.1 fm−3 ≈ 0.6ρ0 in our calculation
of K− absorption at rest.

The absorption width for K− bound in finite nuclei is
obtained as the imaginary part of the eigenenergy of K−. To
obtain the eigenenergy one solves the equation of motion for
the K−-nucleus system with the optical potential for K−. Here
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let us estimate the nonmesonic absorption fraction for finite
nuclei in an approximate way based on perturbation theory by
calculating an overlap of the absorption potential and a wave
function for the bound K−. To evaluate the wave function we
need both the real and imaginary parts of the optical potential.
Nevertheless, the calculation of the real part of the optical
potential is out of the scope of this work, so that we take
several examples for the K− wave function. It is worth noting
here that, to obtain the atomic wave funtion, one needs to
understand the energy spectrum of the K− nuclear states, since
the wave functions of the atomic and nuclear states should be
orthogonal if nuclear bound states exist, and the orthogonality
condition is significant for the behavior of the wave function
in the region of the nucleus size [65], where the absorption
takes place. In addition, owing to the orthogonality the wave
functions of the atomic states have nodes in the region of the
nucleus, and this implies that K− even in atomic states may
have a large momentum inside the nucleus, as suggested in
Refs. [42,43]. It is also known that the effective density where
the absorption takes place mainly is strongly dependent on the
strong interaction between K− and nucleus [66,67].

From the nuclear density distribution, we assume the
Woods-Saxon form

ρWS(r) ≡ ρ̄

1 + exp[(r − R)/a]
, (25)

where we take the nuclear radius R = 1.18A1/3 − 0.48 fm and
the diffuseness a = 0.5 fm, which reproduce empirical density
distributions of nuclei, and the normalization ρ̄ is fixed so as
to reproduce the atomic number A,

A =
∫

d3r ρWS(r). (26)

Applying the local density approximation, we evaluate the
absorption width as

�

2
= N

∫
d3r |ψ(r)|2ImV (ρWS(r)), (27)

where ψ(r) is the K− wave function. Here we consider several
wave functions ψ(r) in the 2p and 3d states, which are ob-
tained by the pure Coulombic potential, the phenomenological
potential, and chiral unitary model. The latter two potentials
are discussed in Ref. [5]. We also consider a plane wave with
zero momentum, which could be the case of in-flight kaons
with very low momentum, such as 10 MeV/c.

We show in Fig. 14 the result of the nonmesonic absorption
fraction to the total for nuclei of A = 4–40 with assumption
Z = N . As one can see, the fractions of the nonmesonic
absorption to the total absorption are marginally dependent
on the wave functions. For a detailed discussion, one needs
to evaluate the wave functions in a more appropriate way
using a realistic optical potential including the momentum
dependence.

D. Absorption with finite kaon momenta and energies

Until the previous subsections we have considered the self-
energy of a kaon at rest in nuclear matter with p

μ

K− = (mK̄, 0).
In this subsection let us take into account the finite kaon
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FIG. 14. Fraction of the nonmesonic absorption to the total
absorption (27) for realistic nuclei with the Woods-Saxon densities.
Here we consider several wave functions for the kaon: 2p and 3d

of the wave function in the pure Coulomb potential and in the
phenomenological and chiral unitary potentials in Ref. [5], and the
plane wave.

momenta pK− �= 0 and energies EK− < mK̄ . These effects
will be important to investigate absorption of kaons into actual
finite nuclei, because attractive strong interaction will change
the kaon momentum as well as the energy from zero to finite
values at the absorption point. Especially, for the atomic states,
kaons in the center of the nucleus may have large momenta to
compensate a large strong attraction by the kaon kinetic energy
for small atomic binding energy as suggested in Refs. [42,43].

One important influence of the finite kaon momenta and
energies is the downward shift of the K−N two-body energy W

(11) due to the off-shellness of the kaon. Actually for the kaon
energy-momentum p

μ

K− = (EK− , pK− ) the two-body energy
W becomes, after averaging the angular dependence,

W =
√

(E1 + EK− )2 − p2
1 − p2

K− , (28)

which is obviously smaller than W with EK− = mK̄ and
pK− = 0. This fact indicates that the nuclear density which
hits �∗ will become lower according to the values of p2

K−
and EK− . Here we will see how this two-body energy shift
affects the absorption scenarios with finite kaon momenta and
energies.

Firstly we consider the finite kaon momenta with p
μ

K− =
(mK̄, pK− ). Here we take the approximation that we average
the angular dependence appearing in the K−NN three-body
energy Etot in the nonmesonic absorption as well as the
K−N two-body energy W , so that one drops the angular
dependence of pK− · p1 and pK− · p2 with initial nucleon
momenta p1 and p2. The mesonic and nonmesonic absorption
potentials with finite kaon momenta are shown in Fig. 15
from pK− = 0 MeV/c, which is the same case as the previous
subsections, to pK− = 250 MeV/c. As one can see, the
absorption potentials become weaker as the kaon momentum
increases in both mesonic and nonmesonic cases. While with
the small kaon momenta pK− � 100 MeV/c the absorption
potentials are suppressed only slightly, the potentials with
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pK− � 200 MeV/c become about half of the potential with
the kaon at rest at the nuclear saturation density.

For the bound state, since it is an eigenstate, the momentum
and position of the kaon are correlated. If one takes the local
density approximation, which connects position and density,
the density and momentum also can be correlated. Therefore,
each bound state may have one line for the absorption
strength against the density. As an example, we put squares
in Fig. 15 for a bound kaon atomic state calculated with a
density-momentum relation,

pK− (ρN )2

2mK̄

+ ReV (ρN ) = −(atomic binding energy) ≈ 0.

(29)

where we take a potential proportional to the nuclear density
with a typical potential strength from the chiral unitary
aproach,

ReV (ρN ) = −70 MeV × ρN

ρ0
. (30)

The squares show that the growth of the absorption potentials
decreases as the nuclear density gets large, compared to the
case of the kaon at rest due to the increase of pK− as a

function of the nuclear density. The squares will move upward
(downward) in the figure as the potential strength becomes
strong (weak).

The suppression of the absorption potential is caused by
two reasons. One is, as we have already mentioned, that the
downward shift of the two-body energy W due to the finite
pK− makes the nuclear density which hits the �∗ resonance
lower, and hence the �∗ doorway becomes weak compared to
the case of the kaon at rest at the saturation density. Indeed,
we can estimate the density at which the �∗ contribution
is large by calculating |ImV one|/ρN and |ImV two|/ρ2

N , and
the results with finite kaon momenta are plotted in Fig. 16.
From the figure, one can see that the peak position shifts
downward in density as the kaon momentum increases, which
is consistent with expectation from the behavior of W , and
the peak disappears at pK− ∼ 200 MeV/c because in such
kaon momenta the two-body energy W is smaller than the
�∗ peak position, even in the low density limit ρN → 0. The
other reason for the suppression of the absorption potential
is that the downward shift of W makes the phase space
for the on-shell πY mesonic channels and YN nonmesonic
channels small, and hence suppresses the reaction rate for the
absorption, γπY, YN . We have checked that these two factors
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FIG. 17. Fraction of the nonmesonic absorption to the total
absorption with finite kaon momenta pK− .

suppress the absorption potential with similar strength. We
note that the phase-space suppression is especially crucial
to the mesonic absorption because W is closer to the πY

threshold in the mesonic case than Etot is to the YN threshold
in the nonmesonic case.

The fraction of nonmesonic absorption to the total ab-
sorption with finite kaon momenta is plotted in Fig. 17.
The figure indicates that, although the absolute absorption
potentials are suppressed due to the finite kaon momenta both
in the mesonic and nonmesonic cases, the fraction only slightly
changes because of the cancellation of the suppressions. This
means that the results for the nonmesonic fraction obtained
in the previous subsection are not so sensitive to the kaon
momentum.

Next, let us take into account the kaon energy. Here
we assume the kaon is at rest with energy EK− < mK̄ ,
p

μ

K− = (EK− , 0). The mesonic and nonmesonic absorption
potentials with the finite kaon energies are plotted in Fig. 18
up to mK̄ − 50 MeV. From the figure, one can see the
suppression for the absorption potentials in a manner similar
to the finite kaon momentum case. For the finite kaon
energy, the absorption potentials are largely suppressed even at
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FIG. 19. Fraction of the nonmesonic absorption to the total
absorption with kaon energy EK− < mK̄ .

EK− = mK̄ − 10 MeV, which reflects the fact that the energy
shift due to that energy is large enough to suppress the
�∗ doorway contribution and the phase space for the decay
channel. In both mesonic and nonmesonic cases, the absorption
potentails at the saturation density become half for the kaon
energy EK− ∼ mK̄ − 20 MeV compared to the potential for
kaons with EK− = mK̄ . The fraction of nonmesonic absorption
to the total absorption with finite kaon energies is plotted
in Fig. 19. The nonmesonic fraction increases as the energy
decreases, and at the saturation density the fraction becomes
∼0.4 with EK− = mK̄ − 50 MeV while it is ∼0.3 for kaons
with EK− = mK̄ .

Finally, we summarize our results for the K− absorption
potential with the s-wave K̄N → MB transition amplitude.
We have seen that K− absorption at rest is dominated by the �∗
doorway process, where the transitions of the initial state K−N

to MB take place mainly through the �∗ resonance. From
the behavior of the absorption potential the �∗ contributes
mostly at the nuclear density ρN ≈ 0.05–0.06 fm−3. We
have found that increase of the ratio [π−�+]/[π+�−] in
experiments of heavier kaonic atoms can be explained as
the interference with the nonresonant I = 1 background with
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respect to the �∗ contributions in the K̄N subthreshold
region. Due to the dominance of the �∗ doorway process, the
nonmesonic absorption ratios [�p]/[�0p] and [�n]/[�0n]
are about unity while [�+n]/[�0p] and [�−p]/[�0n] are
about 2. In addition, our approach gives the result that the
mesonic and nonmesonic absorption fractions are respectively
about 70% and 30% at the saturation density. Estimating
the surface effect for finite nuclei with some examples
of the K− wave function, we have found that the fraction of the
nonmesonic absorption will be about 10%–20%. The details
are dependent on the atomic wave function, and thus more
realistic evaluation is necessary with the real part of the optical
potential. Taking into account the kaon momenta and the
kaon energies, the absorption potentials become weaker due to
the downward shift of the K−N two-body energy. However,
even in such a case the fraction of the nonmesonic absorption
does not drastically change because of the cancellation of the
suppressions of potentials.

IV. �(1385) CONTRIBUTIONS

Next we examine the �(1385) (�∗) contribution to K−
absorption. The hyperon resonance �∗ exists below the K̄N

threshold and couples to K̄N and πY channels in the p

wave. Since the scattering amplitude with p-wave coupling
is proportional to the momentum transfer, we expect that
the �∗ contribution to the K− absorption with small kaon
momenta is small compared to the �∗ contribution, which
couples to K̄N and π� channels in the s wave. Here we also
discuss the �∗ nonmesonic decay in nuclear matter in a manner
similar to the �∗ resonance developed in Ref. [58]. Because
we are interested in the K− absorption in nuclear matter, we
take into account �∗0 and �∗− contributions, while �∗+ is
not considered in this study since it is not directly produced
in the K−N initial state. Throughout this study we neglect
in-medium modifications on �∗.

A. �(1385)-induced nonmesonic decay

Before going to the K− absorption, we discuss the non-
mesonic decay process of �∗ in nuclear matter by considering
the �∗N → YN transition in the nuclear medium. This
enables us to investigate the nonmesonic decay pattern for the
�∗ dominance, and is a supplemental study with respect to the
�∗-induced nonmesonic decay discussed in Ref. [58]. For this
purpose, we calculate the �∗N → YN process ( �∗0p → �p,
�0p, and �+n; �∗0n → �n, �0n, and �−p; �∗−p → �n,
�0n, and �−p; and �∗−n → �−n) in uniform nuclear matter
with a one-meson exchange approach, as done in Ref. [58].
Here we note that we have two cases of initial states, �∗0n and
�∗−p, for the (YN )0 final states.

In this study we use the one-meson exchange model
diagrammatically shown in Fig. 20 with propagating particles
listed in Table III. Along with the �∗-induced nonmesonic
decay discussed in Ref. [58], we define the nonmesonic
decay width of �∗ in nuclear matter through the �∗N → YN

Σ* N

a

A B

FIG. 20. Feynman diagram for the �∗N → YN process. The
propagating particles a, A, and B are listed in Table III.

process, ��∗N→YN , as

��∗N→YN =
∫ kF

0

dp1 p2
1

π2

∑
λ

∑
λ′

γ�∗N→YN , (31)

γ�∗N→YN ≡ p′′
cmMY MN

4π2Etot

∫
dN |BYN |2, (32)

where BYN is the scattering amplitude for the �∗N → YN

process, written as

BYN =
∑

i

ξiBi(�
∗
i Ni

ai−→ AiBi) (33)

for channel i with an amplitude for the �∗N
a−→ AB process,

B(�∗N
a−→ AB) = iDaA × �̃(p)

a

(
q2

a ; qa, S1, σ 2
) × ṼaNB.

(34)

TABLE III. Possible channels for Eq. (33). Here �∗ and N are
the hyperon resonance and nucleon in the initial state, while A and
B are the baryons in the final state. a denotes the exchange meson.
ξ is the relative sign of the amplitude coming from the exchange of
the final-state baryons. C is the Clebsch-Gordan coefficient for the
aA�∗ coupling, and α and β are the Clebsch-Gordan coefficients for
the MBB coupling.

�∗ N a A B ξ CaA α β

�∗0 p K− p � + −√
1/12 −2/

√
3 1/

√
3

π 0 � p − 1/2 1 0

�∗0 p K− p �0 + −√
1/12 0 1

η �0 p − −1/2 1/
√

3 −2/
√

3

�∗0 p K̄0 n �+ + √
1/12 0

√
2

π− �+ n − √
1/12

√
2 0

�∗0 n K̄0 n � + √
1/12 −2/

√
3 1/

√
3

π 0 � n − 1/2 −1 0

�∗0 n K̄0 n �0 + √
1/12 0 −1

η �0 n − −1/2 1/
√

3 −2/
√

3

�∗0 n K− p �− + −√
1/12 0

√
2

π+ �− p − −√
1/12

√
2 0

�∗− p K− n � + −√
1/6 −2/

√
3 1/

√
3

π− � n − 1/2
√

2 0

�∗− p K− n �0 + −√
1/6 0 1

π− �0 n − −√
1/12

√
2 0

�∗− p π 0 �− p − √
1/12 1 0

η �− p − −1/2 1/
√

3 −2/
√

3
�∗− n K− n �− + −√

1/6 0
√

2
π 0 �− n − √

1/12 −1 0
η �− n − −1/2 1/

√
3 −2/

√
3
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Here the symbol ξ denotes the relative sign of the amplitude
coming from the exchange of the final-state baryons, a denotes
the propagating meson, and DaA is the aA�∗ coupling
constant, which we evaluate by first using the SU(6) quark
model to relate the πNN coupling to the πN� one and then
using the flavor SU(3) symmetry to relate the πN� coupling
to the πY�∗, ηY�∗, and K̄N�∗ ones, as done in Ref. [68].
As a result we obtain

DaA = CaA

12

5

D + F

2f
, (35)

with the SU(3) coefficient CaA listed in Table III and parame-
ters D + F = 1.26 and f = fπ = 93.0 MeV. The propagator
with p-wave short-range correlation �̃

(p)
a is written as [62]

�̃(p)
a (q2; q, S, σ ) = (q · S)(q · σ )�̃a(q2)

− S · σ
q2

C

3

(
�2

�2 − q̃2

)2 1

q̃2 − m2
a

. (36)

We use here the same parameters � = 1.0 GeV and qC =
780 MeV as for the s-wave short-range correlations. For the
MBB coupling Ṽ we use the same one as in the previous
section,

ṼaNB = αaNB

D + F

2f
+ βaNB

D − F

2f
. (37)

The vector S is the spin transition operator from spin 3/2 to
1/2, having a relation

SiSj† = 2

3
δij − i

3
εijkσ

k. (38)

The subscript 1 (2) for the operator S (σ ) in Eq. (34) means
that the operator is sandwiched by the spinors for �∗ and A

(N and B). The �∗ mass is fixed as 1385 MeV.
The results of the nonmesonic decay width of �∗0 and

�∗− in nuclear matter are shown in Fig. 21. The linear
dependence of the decay widths is caused by insensitivity
of the elementary transition rate γ�∗N→YN to the Fermi
motion of the initial nucleon. For the �∗-induced nonmesonic
decays, there are several relations due to the flavor SU(3)
symmetry in the coupling constants. In the �∗0 case
we obtain the same result for proton and neutron in the

initial state because of the same coupling strengths in the
scattering amplitudes, hence we plot them in one figure
[Fig. 21(a)]. We also find that ��∗0N→�N/��∗−p→�n = 1/2
and ��∗0N→�±N/��∗−p→�0n = 1.

One interesting finding is that at all densities the �∗-
induced nonmesonic decay ratio ��N/��0N is much larger
than the �∗-induced one, ≈1.2 [58]. Especially in the �∗0-
induced case, we have a very small branching ratio to the �0N

final state. This is caused by the small couplings Ṽ at both
K̄N�0 and ηNN vertices in the �∗0N → �0N transition,
hence the �∗0 scarcely exchanges one Nambu-Goldstone
boson for the �0 final states. Also it should be noted that
there is no relation between the �0p (�0n) and �+n (�−p)
branching ratios, which should be 1/2 if the I = 0 hyperon
resonance appears in the initial state. These points will be
important in the discussion of the �∗/�∗ contribution rate in
the realistic kaon absorption experiments.

At the saturation density ρ0 = 0.17 fm−3, the total non-
mesonic decay width is 43 MeV (42 MeV) for �∗0 (�∗−), in
which ��p + ��n = 25 MeV, ��0p + ��0n = 0.4 MeV, and
��+n + ��−p = 17 MeV (��n = 25 MeV, ��0n = 9 MeV,
��−p = 3 MeV, and ��−n = 5 MeV). The result is similar
to the mesonic �∗ decay width in vacuum, ≈37 MeV.

B. �(1385) contribution to antikaon absorption

Let us evaluate how the �∗ contributes to the K− absorption
in nuclear matter. For this purpose, we add coherently the �∗
contribution in the simple Breit-Wigner form as

T (�∗)
πY (W ) = ( pπ · S1)

DπY DK−N1

W − M�∗ + i��∗/2
( pK− · S†

1),

(39)

for mesonic absorption, and

A(�∗)(K−N1N2
a−→ AB) = ṼaN2BDaADK−N1

W − M�∗ + i��∗/2

× �̃(p)
a

(
q2

a ; q, S1, σ 2
)
( pK− · S†

1),

(40)
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for nonmesonic absorption. Here M�∗ = 1385 MeV and
��∗ = 37 MeV are mass and decay width of �∗, respectively,
and the subscript 1 in the S(†) denotes it is sandwiched by the
spinors for N1 and A.

The results for kaon energy-momentum p
μ

K− = (mK̄, pK− )
with momenta pK− ≡ | pK−| = 0 MeV/c and 100 MeV/c are
shown in Fig. 22. As we can see, the �∗ contributions are
constructively added to the absorption potential. However, the
values of the contribution to the potential are quite small com-
pared with the �∗ one for the kaon at rest, pK− = 0 MeV/c,
and even for pK− = 100 MeV/c the shift of the absorption
potential at the nuclear saturation density is less than 10 MeV
both in mesonic and nonmesonic cases. This feature has been
seen also in the K̄-nucleus bound systems [69,70] and the
analysis of the kaonic atoms data [43]. This is because �∗
sits energy farther below the K̄N threshold than �∗ and �∗
exists in the p wave of the K−N system, and hence requires
high momentum transfer, which is not adequately achieved
with slow the K− and Fermi momentum of N . Thus, we can
neglect the �∗ contribution to the absorption of slow K−.

V. SUMMARY

In this paper we have theoretically investigated the branch-
ing ratios of mesonic and nonmesonic K− absorption in
nuclear matter in order to understand the mechanism of K−
absorption in experiments by systematic evaluation of the
decay patterns of K̄-nucleus systems from the low-energy K̄N

interaction. For the K− absorption, we have paid attention to
two hyperon resonances, �∗ and �∗, which are both below
and close to the K̄N threshold and thus will play important
roles in the absorption process. The mesonic and nonmesonic
absorption is evaluated from the K− self-energy with one-
and two-nucleon interactions, respectively, which are the most
probable contributions at moderate nuclear densities.

As a result, within s-wave K̄N scatterings determined
by the chiral unitary approach, which dynamically generates
�∗, we have seen that both the mesonic and nonmesonic
K− absorption potentials at rest are dominated by the �∗

doorway process in the K−p → MB scattering. The density
dependence of the K− absorption potential shows non-ρ1

N

(non-ρ2
N ) dependence due to the existence of the �∗ resonance

in the mesonic (nonmesonic) absorption process. We have
found that the interference between �∗ and the nonresonant
I = 1 background modifies transition strengths of K−p to
π+�−, π−�+, and π0�0 channels below the threshold, and
this modification can explain the ratios [π−�+]/[π+�−]
(R+−) of the branching ratios observed in several kaonic atoms
in experiments. Due to the �∗ dominance doorway process, the
nonmesonic absorption ratios [�p]/[�0p] and [�n]/[�0n]
are about unity while [�+n]/[�0p] and [�−p]/[�0n] are
about 2. Our approach gives the result that the mesonic and
nonmesonic absorption fractions are respectively about 70%
and 30% at the saturation density, and with some K− atomic
wave functions and the Woods-Saxon density distribution
we obtain the fraction ∼10%–20% for the nonmesonic
absorption. Taking into account the kaon momenta and the
energies, the absorption potentials become weaker due to the
downward shift of the initial K−N two-body energy, but this
does not drastirally change the nonmesonic fraction.

We note that the density dependence of the decay pattern
will be realized by using nuclei with different atomic numbers
as targets of the stopped K− reaction. Especially the light
nuclei such as the deuteron, 3He, and 4He will be suitable
for this purpose, since they serve as environments of various
nuclear densities inside nuclei due to the large varieties of the
binding energies per one nucleon.

From the discussions on the �∗ contribution we have
observed different branching ratios and the larger total width
in the �∗-induced nonmesonic decay, where one �∗ exists
in nuclear medium in its initial state, compared with the
�∗-induced one discussed in the previous study [58]. This fact
will be important in the discussion on �∗/�∗ contribution
rate in the realistic K̄ absorption experiments. In the slow K−
absorption up to the momentum 100 MeV/c, however, �∗ has
very small contributions to the absorption process, because
�∗ exists in the p wave of the K−N system and requires high
momentum transfer, which is not adequately achieved with
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slow K− and the Fermi momentum of N . As a consequence,
�∗ in the s-wave K−p system gives dominant contributions
to slow K− absorption.
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