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Background: The density of the nucleus has been important in explaining the nuclear dependence of the quark
distributions, also known as the EMC effect, as well as the presence of high-momentum nucleons arising from
short-range correlations (SRCs). Recent measurements of both of these effects on light nuclei have shown a clear
deviation from simple density-dependent models.
Purpose: A better understanding of the nuclear quark distributions and short-range correlations requires a
careful examination of the experimental data on these effects to constrain models that attempt to describe these
phenomena.
Methods: We present a detailed analysis of the nuclear dependence of the EMC effect and the contribution of
SRCs in nuclei, comparing to predictions and simple scaling models based on different pictures of the underlying
physics. We also make a direct, quantitative comparison of the two effects to further examine the connection
between these two observables related to nuclear structure.
Results: We find that, with the inclusion of the new data on light nuclei, neither of these observables can be well
explained by common assumptions for the nuclear dependence. The anomalous behavior of both effects in light
nuclei is consistent with the idea that the EMC effect is driven by either the presence of high-density configurations
in nuclei or the large virtuality of the high-momentum nucleons associated with these configurations.
Conclusions: The unexpected nuclear dependence in the measurements of the EMC effect and SRC contributions
appear to suggest that the local environment of the struck nucleon is the most relevant quantity for explaining
these results. The common behavior suggests a connection between the two seemingly disparate phenomena, but
the data do not yet allow for a clear preference between models which aim to explain this connection.
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I. INTRODUCTION

The nucleus is a system of strongly interacting protons and
neutrons. The characteristic scale for the nucleon momentum is
the Fermi momentum, kF ≈ 200–270 MeV/c, a consequence
of the interaction of the nucleon with the mean field of the
nucleus. The strongly repulsive nature of the nucleon-nucleon
(NN ) interaction at short distances prevents two nucleons
from coming very close together and this loss of configuration
space demands the existence of high-momentum components
in the nuclear ground-state wave function. These cannot
be described in the context of mean-field models and are
commonly called short-range correlations (SRCs). Inelastic
electron scattering was suggested long ago [1] to be a source
of qualitative information on SRCs, yet they remain one of
the least well characterized aspects of the structure of stable
nuclei.

Knockout reactions studied in inclusive and exclusive
electron scattering [2–9] have isolated SRCs by probing the
high-momentum tail of the nuclear momentum distribution.
The tail is assumed to be the result of short-range hard
interactions between nucleons [2,10,11], allowing a study of
short-distance structure via reactions with high-momentum
nucleons. The strength of SRCs in the nucleus has long been
assumed to scale with nuclear density [2,5,6,10,12], a proxy for
the probability of two nucleons interacting at short distances.

Typical parametrizations of the repulsive core of the NN

interaction [13–15] show a sharp rise in the potential well
below 1 fm. Because the nucleon has an rms radius of
roughly 0.85 fm [16], nucleon wave functions can have
significant overlap. In heavy nuclei, the typical internucleon
separation is 1.6 fm, suggesting that the nucleons have some
overlap most of the time, and this short-range interaction
may cause a modification of the structure of the nucleon.
There is a long history of searches for this kind of “medium
modification” of nucleon structure through measurements of
the in-medium nucleon form factors [17–19] or modification
of the quasielastic response in nuclei [20–24]. Overlap of
the nucleon wave functions may also allow for direct quark
exchange, providing a new mechanism for modifying quark
momentum distributions in the nucleus and one may expect
them, like SRCs, to have a dependence on the average nuclear
density.

The modification of the quark momentum distributions was
first observed by the EMC Collaboration [25] and is commonly
referred to as the EMC effect. It was discovered that the per-
nucleon cross section in deep inelastic scattering (DIS) was
different for iron and the deuteron. Because the binding energy
of nuclei is extremely small compared to the energy scales in
DIS, the early assumption was that the parton distribution
functions (pdfs) of the nucleus would be a simple sum of
the proton and neutron pdfs, except at the largest values of
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the quark momentum fraction (Bjorken x) where the Fermi
motion of the nucleus becomes important. Since the DIS cross
sections depend on the quark distributions, the difference in
the measured cross sections for iron and the deuteron indicated
a suppression of quark pdfs in nuclei for 0.3 < x < 0.7, and
the size of this effect was seen to scale with the nuclear density.

Thus, the nuclear density has often been taken as the
underlying cause of both the A dependence of the nuclear
pdfs and the presence of short-distance configurations which
give rise to high-momentum nucleons. Because of this, it is
natural to assume that the behavior of the EMC effect and the
presence of SRCs will be closely connected. The relationship
between these two effects was recently quantified [26] via a
linear correlation between the SRCs in the tail of the nucleon
momentum distribution and the size of the EMC effect.

While the EMC measurements performed in the 1980s and
1990s were well described by a density-dependent fit [27],
the weak A dependence for these nuclei could be equally well
described in other approaches that have been proposed [28,29].
For example, some researchers have explained the effect in
terms of the average virtuality (ν = p2 − m2

N ) of the nucleons
[10,30,31], connecting it more closely to the momentum
distributions. Given the limited precision of the EMC effect
measurements and the fact that it grows smoothly but slowly
for heavy nuclei, it is difficult to make a clear determination
of which approach best describes its A dependence.

Recent measurements on light nuclei [9,32] have observed
a clear breakdown of the density-dependent picture for both
the nuclear modification of quark pdfs and the strength of
short-range correlations in nuclei, while still preserving the
linear correlation between the two [33]. In this work, we
provide a detailed analysis of the nuclear dependence of these
two quantities, focusing on comparisons to model-inspired
assumptions. We also perform an extended version of the
analysis presented in Refs. [26,33], aimed at testing the
possible explanations for the correlation. For both the analysis
of the A dependence and the direct comparison of the EMC
and SRC data, we examine in more detail the meaning of the
observables associated with these effects. As the underlying
dynamics behind the examination of the direct correlation
differ, additional corrections may be required when comparing
the observables that are typically associated with the EMC
effect or the presence of SRCs.

II. NUCLEAR DEPENDENCE OF THE EMC EFFECT

Deep inelastic scattering provides access to the quark
distributions in nuclei via measurements of inclusive cross
sections. This cross section for electron or muon scattering
from a nucleus can be written as

dσ

dxdQ2
= 4πα2E′2

xQ4

E′

E

[
F2 cos2 θ

2
+ 2ν

M
F1 sin2 θ

2

]
, (1)

where F1 and F2 depend on x and Q2. In the parton model,
information about the quark distribution functions is encoded
in the F1 and F2 structure functions. In the Bjorken limit
(Q2, ν → ∞, fixed ν

Q2 ), the structure functions become
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FIG. 1. (Color online) EMC ratio, (σA/A)/(σD/2), for carbon
[32]. The solid line is a linear fit for 0.35 < x < 0.7.

independent of Q2, so

F1(x) = 1

2

∑
q

e2
qq(x), F2(x) = 2xF1, (2)

where q(x) is the quark distribution function and eq is the
quark charge for a given flavor (u, d, or s).

The per-nucleon ratio of the F2 structure functions between
an isoscalar nucleus and the deuteron is then a direct measure
of the modification of quark distributions in nuclei. Exper-
imentally, this ratio is defined as REMC = (FA

2 /A)/(FD
2 /2).

The deuteron structure function in the denominator is taken
to approximate the sum of free proton and neutron structure
functions. In almost all measurements of the EMC effect, an
additional assumption is made that the ratio of longitudinal
to transverse cross sections, R = σL/σT , is independent of A

such that the unseparated ratio of cross sections corresponds di-
rectly to the F2 ratio, i.e., σA/σD = FA

2 /FD
2 . For nonisoscalar

nuclei an additional correction is typically applied to account
for the difference in DIS cross sections between protons and
neutrons.

Figure 1 shows a measurement of the EMC ratio for carbon
from Ref. [32]. The region from x = 0.3 to 0.7 shows the
depletion in the cross section ratio characteristic of all nuclei.
The increase of the cross section ratio at large x is attributed to
the greater Fermi momentum in the heavy nucleus as compared
to the deuteron. The shape of the EMC ratio appears to be
universal and independent of nucleus, while the magnitude of
the suppression generally increases with A.

The origin of the EMC effect has been a topic of intense
theoretical discussion since its original observation. There
have been many explanations proposed, and these can be
broadly broken down into two categories. The first includes
only “traditional” nuclear physics effects, using convolution
models with binding effects, detailed models of the nucleon
momentum distribution, or pion-exchange contributions. The
other category invokes more exotic explanations such as
rescaling of quark distributions in the nuclear environment,
contributions of six- or nine-quark bags, or modification
of the internal structure of the nucleons such as “nucleon
swelling” or suppression of pointlike nucleon configurations.
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Several reviews give an overview of models of the EMC
effect [28,29,34].

Because the observed suppression of the F2 structure func-
tion in the range 0.3 < x < 0.7 is relatively straightforward to
reproduce in a variety of approaches, it is difficult to evaluate
the different models without also carefully examining the A

dependence. Direct comparisons to calculations are limited by
the fact that many calculations are made for nuclear matter
and extrapolated to finite nuclei by assuming some simple
scaling with A or nuclear density. Others use more realistic
nuclear structure input [35–37], but often they do not include
light nuclei. So rather than comparing directly to calculations
of the EMC effect, we will examine its nuclear dependence,
comparing the data to different parameters assumed to drive
the modification of the nuclear pdfs.

In our examination of the A dependence, we use the data
from SLAC E139 [27] and the recent data on light nuclei
from Jefferson Lab E03-103 [32]. SLAC E139 sampled a
range of nuclei from A = 4 to 197, allowing a large lever
arm for studying the nuclear dependence. Jefferson Lab (JLab)
experiment E03-103 adds 3He and additional precise data on
4He, 9Be, and 12C. While the JLab data are at somewhat lower
Q2 values than the SLAC data, it has been shown that the
target ratios in this Q2 range have very little deviation from the
DIS limit, even for W 2 values below 4 GeV2 [32,38,39]. The
E03-103 data that go into extracting the EMC slope examined
in this work are all very near or above W 2 = 4 GeV2.

We use the definition of the “size” of the EMC effect as
introduced in [32], i.e., |dREMC/dx|, the value of the slope of
a linear fit to the cross section ratio for 0.35 < x < 0.7. These
limits were chosen to give a range of high-precision data whose
behavior was linear, but the extracted slope is not very sensitive
to small changes in the x region chosen. This definition reduces
the sensitivity to normalization errors, which would otherwise
be significant if one were to assess the nuclear dependence
at a fixed value of x, especially for light nuclei. The impact
of normalization uncertainties for the deuteron measurements
(common to all ratios in a given experiment) is also reduced
in this approach. This procedure makes use of the fact that the
EMC effect has a universal shape for x > 0.3, exhibited by all
experimental data.

Table I lists the EMC slopes extracted from the two data
sets described above. We do not include data from earlier
measurements due to their relatively poor precision and/or
limited x coverage.

When considering the nuclear dependence of the EMC
effect, it is important to be aware of corrections which depend
on A or Z, such as Coulomb distortion [40]. The influence
of the Coulomb field of the nucleus on the incident or
scattered lepton is a higher order QED effect, but it is not
typically included in the radiative correction procedures. In
addition, the size of the EMC effect is taken directly from
the cross section ratio instead of the structure function ratio;
thus no nuclear dependence in R = σL

σT
is assumed. Coulomb

distortions introduce kinematic corrections and consequently
have a direct effect on the extraction of R. An indication of
nuclear dependence in R was observed recently [41] after
applying Coulomb corrections to SLAC E139 and E140 [42]
data. Coulomb distortion was accounted for in the JLab data,

TABLE I. Combined EMC results from JLab E03-103 [32] and
SLAC E139 [27] (averaged over Q2). For JLab data, |dREMC/dx|
was extracted in the 0.35 � x � 0.7 range. SLAC data, whose
binning was different, were fit over 0.36 � x � 0.68. For both cases,
statistical and point-to-point systematic uncertainties were applied
to each x bin and the normalization uncertainties (including the 1%
normalization uncertainty on deuterium common to all ratios for the
SLAC data) were applied to the extracted slope.

A JLab SLAC Combined

3He 0.070 ± 0.028 – 0.070 ± 0.028
4He 0.198 ± 0.027 0.191 ± 0.061 0.197 ± 0.025
Be 0.271 ± 0.030 0.208 ± 0.038 0.247 ± 0.023
C 0.280 ± 0.029 0.318 ± 0.041 0.292 ± 0.023
Al – 0.325 ± 0.034 0.325 ± 0.034
40Ca – 0.350 ± 0.047 0.350 ± 0.047
Fe – 0.388 ± 0.032 0.388 ± 0.033
Ag – 0.496 ± 0.051 0.496 ± 0.052
Au – 0.409 ± 0.039 0.409 ± 0.040

but not the SLAC data, where it is estimated to be negligible
for nuclei lighter than 12C and at most a 2% effect on the
197Au EMC slope. These changes do not significantly affect
the nuclear dependencies studied below.

The JLab and SLAC data also used different prescriptions to
correct nonisoscalar nuclei. In the case of SLAC data, a simple,
x-dependent parametrization was employed based on high-Q2

data for FD
2 /F

p

2 . A more sophisticated correction was applied
to the JLab data [32], using a smeared ratio of free proton
and neutron cross sections [43]. Reanalysis of the SLAC data
using the updated isoscalar corrections yields slightly larger
EMC slopes for the very heavy nuclei but does not impact the
overall conclusions of this analysis. A detailed comparison of
these effects for both the SLAC data and the heavy-target data
from JLab E03-103 is in progress [44,45].

Early calculations of the EMC effect included only the
impact of Fermi motion and were unable to give a significant
suppression at large x. One can go beyond simple smearing
by including the effect of the binding energy of the nucleus.
However, the impact of the average nuclear binding is small
and peaks at A = 56, while the EMC effect continues to
grow in heavier nuclei. Thus, the binding energy per nucleon,
EA/A, cannot explain the full modification of the nuclear
pdfs [46].

While the nuclear binding energy is insufficient to explain
the EMC effect, high-energy electron scattering involves a
near instantaneous scattering and averages over all nucleons
in the target. This suggests that the average separation energy
may be the more relevant quantity in evaluating the effect of
binding. The heart of the binding model describes nucleons
bound in a nucleus with some nonzero three-momentum and,
as a consequence of the nuclear binding, an energy modified
from its usual on-shell value, i.e., EN �= √

p2
N + m2

N . The
bound nucleon has a removal or separation energy ε, with
its total energy given by EN = mN + ε (if one ignores the
kinetic energy of the recoiling nucleus). In practice the average
separation energy is often determined using the Koltun sum
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FIG. 2. (Color online) Magnitude of the EMC effect,
|dREMC/dx|, vs the average nucleon separation energy. The empty
circle indicates the known (zero) deuteron EMC slope.

rule [47],

〈ε〉 + 〈p2〉
2mN

= 2
EA

A
, (3)

where p is the nucleon three-momentum and EA/A is the bind-
ing energy per nucleon. An alternate formulation of the above
rule, proposed in Ref. [48], incorporates a recoil factor, but it is
not used in the analysis presented here. The modification of the
nucleon energy results in a value of x = Q2/(2pNq) shifted by
≈ 〈ε〉/mN . In this context, the depletion of the cross section
for A > 2 in DIS is associated with off-shell nucleons and
binding produces a simple rescaling of the relevant kinematic
variable (x) and does not imply an inherent modification of
the nucleon structure in the nucleus. Excellent overviews of
early calculations of the EMC effect in the binding approach
are given in Refs. [28,49]. This approach was relatively
successful in reproducing the shape of the EMC effect at large
x [35,36,50], although calculations including only this effect
consistently underpredict the observed EMC effect.

Figure 2 shows the extracted EMC ratio as a function of
the average nucleon separation energy 〈ε〉 from [51], which
provides the most complete set of nuclei. In this figure, the
separation energy was calculated from spectral functions used
and described in [36,52]; they include contributions from both
mean-field and correlated (high-momentum) components of
the nuclear wave function. While the separation energy is
an inherently model-dependent quantity, we have investigated
alternate definitions of the separation energy based on the
Koltun sum rule as given in Eq. (3) and found that the
typical agreement is usually better than 5 MeV. However,
some calculations use modified estimates of 〈ε〉, which can
yield larger disagreements.

Qualitatively, the size of the EMC effect correlates very well
with the average separation energy, as was also observed in
another recent analysis [53], using a slightly different measure
of the EMC effect and modified calculation of the mean
separation energy. However, while the correlation with the
EMC effect is good, detailed calculations based on the binding
associated with the mean separation energy [35,36] yield an
effect that explains only part of the observed EMC effect. In

FIG. 3. (Color online) Magnitude of the EMC effect vs A (top)
and A−1/3 (bottom). The bottom plot includes a linear fit for A � 12.

addition, nuclear binding models have failed to gain traction
in the past, usually due to the omission of the “flux factor”
(incorrect treatment of wave-function normalization) [50],
exclusion of pions [30], and failure to describe the Drell-Yan
data [54]. It thus seems unlikely that the modification of the
nucleon pdfs in the nucleus can be explained by binding
effects alone, and aspects of medium modification must be
included [30,46,52,55].

The E139 analysis [27] examined the nuclear dependence of
the EMC effect in terms of an ad hoc logarithmic A dependence
and the average nuclear density. In Fig. 3(a) we show the A

dependence. While it is possible to construct a good linear fit
for either light or heavy nuclei, no linear correlation exists for
the whole data set.

Exact nuclear matter calculations [56] can be applied to
finite nuclei within the local density approximation (LDA) [12,
57]. This provides an estimate of the A dependence for effects
that depend on the nuclear density and is based on general
characteristics of the nuclear density distributions. For A > 12,
the nuclear density distribution ρ(r) has a common shape and
has been found to be relatively constant in the nuclear interior.
Contributions to the lepton scattering cross section from this
portion of the nucleus should then scale with A. The nuclear
surface is also characterized by a nearly universal shape, ρ(r −
R), where R is the half-density radius R = r◦A

1
3 , such that
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contributions from the surface grow as R2, or A2/3. It then
follows that the cross section per nucleon (dividing the separate
contributions by A) should be constant with a small deviation
that scales with A−1/3, which is due to the reduced density
of the surface region. For small-A nuclei the nuclear response
is dominated by surface effects while for large-A nuclei the
nuclear response is dominated by the constant density region.
It has been argued that the response function (per nucleon)
for nuclear matter can be extrapolated as a linear function of
A−1/3 to A−1/3 = 0 in the deep inelastic scattering region [57].

In Fig. 3(b) the extracted EMC slope is plotted versus
A−1/3. Somewhat surprisingly, this yields one of the better
correlations with the data, even for 12C, 9Be, and 4He. This
is not expected, since the prediction of the A−1/3 behavior
is based on the assumption of an A-independent “surface”
density distribution and a scaling with A of the volume/surface
ratio. The assumption that the shape of the “surface” density
is universal is certainly not valid for A � 12, and it is not clear
that the concept of dividing the nucleus into a surface region
and a high-density core is at all applicable to 3He or 4He.

The LDA predicts a simple A dependence based on the
assumption that the EMC effect scales with density. Since
this is not expected to work for light nuclei, one can evaluate
the idea of a density-dependent EMC effect more directly by
looking at the average nuclear density based on calculations
or electron-scattering measurements of the nuclear mass (or
charge) density. This dependence is shown in Fig. 4. For
light nuclei (A � 12), the average density is evaluated using
density distributions extracted within Green’s function Monte
Carlo (GFMC) calculations [58,59], while for heavier nuclei
it is derived from electron scattering extractions of the charge
density [60]. This is in contrast to Ref. [27], in which the
average density was calculated by assuming a uniform sphere
with radius equal to the rms charge radius of the relevant
nucleus, although for A � 12, this yields the same qualitative
behavior as is seen in Fig. 4.

The relationship between EMC slope and density is im-
proved when taking the scaled nuclear density, which includes
an additional correction factor of (A − 1)/A, meant to account
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FIG. 4. (Color online) Magnitude of the EMC effect vs average
nuclear density.

FIG. 5. (Color online) Magnitude of the EMC effect (solid
circles) vs scaled nuclear density. The solid triangles and hollow
squares show the calculated average 2N overlap from Eq. (5) minus
the deuteron value, i.e., 〈ON 〉A − 〈ON 〉D (right-hand scale; see text
for details). Overlap points are offset on the x axis for clarity.

for the excess nuclear density seen by the struck nucleon. This
is seen in Fig. 5, where the EMC effect grows approximately
linearly with scaled density, with the exception of 9Be. This
was explained in Ref. [32] as being a result of the clusterlike
structure of 9Be, whose wave function includes a sizable
component in which the nucleus can be thought of as two α

clusters associated with a single neutron [61–63]. If the EMC
effect is governed by the local density, rather than the average
nuclear density, then it is not unreasonable that the size of the
effect in 9Be would be similar in magnitude to that in 4He.

As mentioned earlier, nucleon wave functions can have
a significant amount of overlap in the nucleus before the
nucleons come close enough to respond to the repulsive core.
If we can quantify this overlap, it could provide a reasonable
measure of the local density. We estimate this is by taking
the two-body density distributions from GFMC calculations
[58,59] which provide the distribution of the relative nucleon
separation between pp, np, and nn configurations. If we
integrate the normalized ρ

pp

2 (r) up to r = 1.7 fm, we find the
probability that a proton is within 1.7 fm (twice the rms radius
of a nucleon) of another proton. Thus, we define a measure of
the relative pair overlap between nucleons by taking

ONN =
∫ ∞

0
W (r)ρNN

2 (r) d3r, (4)

where W (r) is a cutoff function used to evaluate the contribu-
tion at short distances. If W (r) is a step function that cuts off
at r = R0, then Opn represents the average probability that a
given pn pair has a separation of R0 or less. A proton, then,
has an average overlap parameter Op = (Z − 1)Opp + NOpn,
which for a step function with R0 → ∞ yields (A − 1), the
total number of neighbor nucleons for the studied proton. To
obtain the effective 2N overlap for a given reaction, we take a
cross-section-weighted average of Op and On:

〈ON 〉 = (ZσpOp + NσnOn)/(Zσp + Nσn). (5)

We show the relative 2N overlap for two calculations in
Fig. 5, subtracting the result for the deuteron, i.e. 〈ON 〉A −
〈ON 〉D . The solid triangles are for a step function with
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R0 = 1.7 fm and σn/σp = 0.5, although the result is very
insensitive to the exact value of σn/σp. Because the amount
of overlap between nucleons decreases with the separation,
W (r) can be chosen to enhance the effect when the nucleons
are extremely close together. The hollow squares are the result
when we take W (r) to be a Gaussian centered at r = 0 with
a width of 1 fm. An overall normalization factor is applied
to compare to the A dependence of the EMC slopes. Both of
these simple calculations of overlap yield a good qualitative
reproduction of the behavior for light nuclei and one which is
not very sensitive to the choice of the cutoff function or the
exact scale of the cutoff parameter.

For all of the light nuclei, an average overlap parameter
can be obtained from the ab initio GFMC calculations. This
provides realistic input of the distribution of nucleons in these
nuclei, although the quantitative evaluation of the overlap
parameter does depend on the somewhat arbitrary choice of
the cutoff function in Eq. (4). One could use measurements
of short-range correlations in nuclei as an observable which is
also sensitive to the relative contribution from short-distance
configurations in nuclei. This is a possible interpretation of
the correlation observed between SRC measurements and
the EMC effect, and we will present this in detail after
examining the A dependence of the short-range correlation
measurements.

To definitively test the notion that the EMC effect depends
on “local density,” additional data on light nuclei, especially
those with significant cluster structure, are required. Such
studies are planned as part of the program after the Jefferson
Lab 12 GeV Upgrade [64].

III. NUCLEAR DEPENDENCE OF SHORT-RANGE
CORRELATIONS

Much as DIS isolates scattering from quasifree quarks,
quasielastic (QE) scattering isolates incoherent scattering from
the protons and neutrons in the nucleus. This allows us to
study the momentum distributions of the bound nucleons
[65]. Inclusive electron scattering can be used to pick out
contributions from high-momentum nucleons in SRCs by
going to x > 1 kinematics [2,11,65].

In the QE regime, we can decompose the cross section
into contributions from single-nucleon scattering (mean-field-
independent particle contributions) and scattering from two-
nucleon, three-nucleon, etc., correlations [2] via

σ (x,Q2) =
A∑

j=1

A
1

j
aj (A)σj (x,Q2), (6)

where σj (x,Q2) = 0 at x > j and the aj (A)’s are proportional
to the probabilities of finding a nucleon in a j -nucleon
correlation. In the case of the electron-deuteron cross section,
σ2 will be dominated by contributions from 2N correlations
for x > 1.4, where the nucleon momentum is well above kF

and the mean-field contribution has died off. In this case, a2

is closely related to the number of 2N correlations in the
nucleus (per nucleon) relative to that of the deuteron. Hence
Eq. (6) expresses the fact that in the region j < x < j + 1

FIG. 6. (Color online) Per nucleon cross section ratios for 3He/2H
and 12C/2H measured at JLab [9] at 18◦. In the region dominated by
2N SRCs the ratios become independent of x. The dip around x = 1
is the result of A > 2 nuclei having wider quasielastic peaks and the
solid line indicates the region used to extract the ratio a2.

the contribution of j -nucleon SRCs dominates. This result is
in reasonable agreement with numerical calculations of the
nuclear spectral functions [66,67].

Equation (6) suggests scaling relations between scattering
off the heavy nuclei and the deuteron:

σA(x,Q2)/A

σD(x,Q2)/2
= a2(A) |1.4�x�2 . (7)

The scaling of the cross section ratios has been established, first
at SLAC [2] and at JLab [5,6,9]. The most recent experiment
measured this scaling precisely in the 2N correlation region
for a range of nuclei with selected data shown in Fig. 6.

In extracting the relative contributions of 2N SRCs in the
inclusive cross section ratios at x > 1, it has typically been
assumed that the electron is scattering from a pair of nucleons
with large relative momentum but zero total momentum, such
that the cross section for scattering from a neutron-proton pair
in a nucleus is identical to the cross section for scattering from
a deuteron. In this case, the elementary electron-nucleon cross
sections as well as any off-shell effects cancel in taking the
ratio. Final-state interactions are also assumed to cancel in the
cross section ratios [2,11].

In earlier analyses [2,5,6] it was assumed that the SRCs
would be isospin independent, with equal probability for
pp, np, and nn pairs to have hard interactions and generate
high-momentum nucleons. This necessitated an “isoscalar
correction” to account for the excess of nn (or pp) pairs in
nonisoscalar nuclei as well as the difference between the e-p
and e-n elastic cross sections. More recently, measurements
of two-nucleon knockout showed that these correlations are
dominated by np pairs [8,68] because the bulk of the high-
momentum nucleons are generated via the tensor part of
the NN interaction rather than the short-range repulsive
core [69,70]. In the most recent experiment [9] to precisely
measure SRCs on a range of nuclei this isoscalar correction
was not applied, and results for previous measurements with
this correction removed were presented.

The per-nucleon cross section ratio at large x provides
a direct measure of the contribution of high-momentum
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FIG. 7. (Color online) Momentum distribution for the free
deuteron and an np pair in iron, taken as the sum of a mean-field
(Gaussian) contribution and the convolution of the high-momentum
deuteron tail with the c.m. motion of the pair in iron.

nucleons relative to the deuteron. However, this is not equal
to the relative number of SRCs, since, in A > 2 nuclei, the
correlated pair experiences motion in the mean field created
by the rest of the nucleons. The momentum distribution of the
pair will be smeared out, which will flatten the top of the QE
peak, depleting the low-momentum part of the distribution but
enhancing the high-momentum tail. The effect is illustrated
in Fig. 7, which shows the deuteron momentum distribution
along with an estimate of the momentum distribution for an
np pair in iron. The “smeared deuteron” curve is generated by
taking the high-momentum part of the deuteron distribution
and convolving it with a pair c.m. distribution to estimate the
impact of the motion of the correlated pair in the nucleus.
This is combined with a Gaussian distribution whose width is
chosen to reproduce a mean-field calculation for iron [67], and
whose magnitude is such that the total distribution is properly
normalized.

A correction for this redistribution of strength was first
applied in Ref. [9], where analyses of previous experiments
were also updated. The correction procedure was based on
the calculation of Ref. [67], where the deuteron momentum
distribution was convolved with a parametrization of c.m.
motion of the pair, which yielded a 20% enhancement in

the high-momentum tail for iron. This correction was applied
to the other nuclei by assuming that the enhancement in the
ratio, which scales with the c.m. momentum of the pair, was
proportional to the Fermi motion of the nucleus.

We performed a similar convolution calculation for a variety
of nuclei and found a slightly larger correction, above 30% for
iron. We also observed that the size of the effect depends on
the momentum region examined, the details of the deuteron
momentum distribution, and the assumed c.m. momentum
distribution. While the enhancement is relatively constant at
large k, it does increase for very large momenta. This effect
is at least partially responsible for the small rise of the SRC
ratios for x → 2.

Another recent attempt to estimate the role of c.m. motion
[71] yielded significantly larger corrections, although it is
not yet clear what explains this difference. In all of the
above cases, the correction has only a very weak nuclear
dependence, mostly yielding an overall scaling factor for the
SRC ratios, without significant impact on the linear correlation
between them and the EMC effect. We use the correction and
uncertainty applied in Ref. [9], but it is clear that this is an
issue requiring further study.

For the purposes of our analysis, we combine the results
of the JLab Hall-C [9], Jlab Hall-B (CLAS) [6], and SLAC
[2] measurements. The combined data set provides a large
collection of nuclei to examine the A dependence of the
extracted SRC contributions. Table II shows a2, the raw
A/D cross section ratio, as well as R2N , where the c.m.
motion correction has been applied. The meanings of the
two quantities are subtly different. a2 represents the relative
strength of the high-momentum tail, i.e., the total contribution
from high-momentum nucleons relative to the deuteron. For
iron, R2N ≈ 4, implying that a nucleon in iron is four times
more likely to be part of an SRC than a nucleon in a deuteron,
At the same time a2 ≈ 4.8, which means that there are almost
five times as many high-momentum nucleons in the tail of
the distribution for iron as there are for the deuteron. This
20% enhancement comes about due to the c.m. motion of the
correlated pair.

We use R2N for the nuclear dependence tests, as we are
examining the behavior of the number of SRC pairs relative to
the deuteron. Since the c.m. correction factor applied to a2 has

TABLE II. Existing measurements of SRC ratios, R2N , all corrected for c.m. motion of the pair and excluding the
isoscalar correction applied to earlier extractions. The second-to-last column combines all the measurements, and the
last column shows the ratio a2, obtained without applying the c.m. motion correction. SLAC and CLAS results do not
have Coulomb corrections applied, which would raise the CLAS Fe ratio by ∼5% and the SLAC Au data by ∼10%
(since the correction is kinematic dependent).

E02-019 SLAC CLAS R2N -ALL a2-ALL

3He 1.93 ± 0.10 1.8 ± 0.3 – 1.92 ± 0.09 2.13 ± 0.04
4He 3.02 ± 0.17 2.8 ± 0.4 2.80 ± 0.28 2.94 ± 0.14 3.57 ± 0.09
Be 3.37 ± 0.17 – – 3.37 ± 0.17 3.91 ± 0.12
C 4.00 ± 0.24 4.2 ± 0.5 3.50 ± 0.35 3.89 ± 0.18 4.65 ± 0.14
Al – 4.4 ± 0.6 – 4.40 ± 0.60 5.30 ± 0.60
Fe – 4.3 ± 0.8 3.90 ± 0.37 3.97 ± 0.34 4.75 ± 0.29
Cu 4.33 ± 0.28 – – 4.33 ± 0.28 5.21 ± 0.20
Au 4.26 ± 0.29 4.0 ± 0.6 – 4.21 ± 0.26 5.13 ± 0.21
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FIG. 8. (Color online) R2N vs A−1/3.

very little A dependence, the nuclear dependence a2 is very
similar to that of R2N .

Figure 8 shows R2N as a function of A−1/3, the behavior
expected in the LDA [12,57]. While R2N is a relatively smooth
function of A−1/3, there is no simple, linear relation suggesting
a proportionality. As with the EMC effect, the prediction of
scaling with A−1/3 is an approximation which is not expected
to be valid for very light nuclei.

For nuclei with similar forms for ρ(r), we expect to
see scaling of the SRCs; that is, denser nuclei are more
likely to have short-range configurations. Figure 9 shows R2N

as a function of the scaled nuclear density, defined in the
previous section. It is clear that the simple density-dependent
model does not track the behavior of the light nuclei, whose
large deviations are reminiscent of those shown by the
EMC effect [32].

While there were few calculations for the nuclear depen-
dence of the EMC effect that went beyond a simple scaling with
A or density, there are more calculations for the A dependence
of short-range correlations. The authors of Ref. [72] estimate
the relative SRC contribution in a variety of nuclei based on
the mean-field densities of the nuclei. In Ref. [73] estimates
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FIG. 9. (Color online) R2N vs scaled nuclear density (solid
circles). The solid triangles and hollow squares show the calculated
2N overlap minus the deuteron value (right-hand scale) from Eq. (5).
Points are offset on the x axis for clarity.

of the high-momentum contributions were based on the
presence of deuteron-like pairs in the nucleus. In both of these
approaches, the authors predict a stronger rise of the SRC con-
tributions with A than is observed in the data. The latter result
[73] displays a sensitivity to the c.m. motion correction [71],
yielding an even sharper rise with A. An earlier work [74] pro-
vided estimates of the probability for multiquark (6q, 9q, . . .)
clusters in nuclei based on the probability of overlap of two or
more nucleons within some critical separation, which should
also be closely related to the contribution of 2N and 3N SRCs.
It was found that the probability for 6q configurations scales
roughly with the density of the nucleus, with the exception of
4He, where a much larger contribution is predicted. In the data,
the SRC ratio in 9Be is significantly larger than expected for a
model which scales with density, and 4He does not show the
anomalously large contribution predicted by this calculation.

As with the analysis of the EMC effect, we also show the
relative 2N overlap from Eq. (5) as a function of the scaled
nuclear density in Fig. 9. As before, the overlap for the deuteron
has been subtracted for A > 2. The density dependence of
SRCs is well reproduced by the overlap calculation, as they
both reflect the abundance of short-distance configurations.
This allows us to use SRC ratios as an experimental measure
of overlap, extending the comparison with the EMC effect in
Fig. 5 to A > 12. In such a comparison we assume a certain
connection between SRCs and the EMC effect, which will be
examined in detail in the next section, along with an alternate
possibility.

IV. DETAILED COMPARISON OF
SRC AND EMC RESULTS

As discussed in the introduction, there have been previous
comparisons of the nuclear dependence of the size of the EMC
effect and the contributions from SRCs in nuclei [26,33]. Given
the data available in the initial analysis, the correlation seen
between the two effects could be explained by a common
density- or A-dependent scaling. However, the new data on
the EMC effect [32] and SRCs [9] rule out this simple
explanation, while exhibiting almost identical trends versus
both density and A, shown in Fig. 10. For the EMC effect,
it was suggested that if the local environment of the struck
nucleon drives the modification of the quark distributions,
then the strong contribution of α-like clusters would make
9Be behave like a much denser nucleus. The nearly identical
behavior of 9Be in the SRC extraction [9] supports this idea,
as the SRC measurements directly probe the short-distance
structure. Even with these new data and their unexpected but
common trend, the linear relationship observed in [26] is still
apparent [33]. This suggests that a careful reexamination of
the linear correlation is in order to try to better understand its
underlying cause.

First, we note that the initial comparison of the EMC
effect and SRCs used extractions of the SRCs which included
an isoscalar correction for nuclei with unequal numbers of
protons and neutrons and did not account for corrections for
c.m. motion of the correlated pair. It has been shown that
SRCs are made up of predominantly np pairs due to the
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FIG. 10. (Color online) Size of the EMC effect (|dREMC/dx| as
well as the relative measure of SRCs (R2N ) shown as a function of A

(top) and scaled nuclear density (bottom).

tensor interaction [8,69,70], making the isoscalar correction
unnecessary. The question of the c.m. motion correction is
somewhat more complicated in the context of the direct
comparison of the EMC and SRC results. Whether or not
this correction should be applied in this analysis depends on
exactly what correlation is being examined, and so we focus
now on the different explanations for this correlation.

The fact that 9Be so obviously violates the density de-
pendence for both effects in the same way suggests that an
altered density dependence, such as “local density” (LD), may
give us a good description of both effects. One should then
compare the size of the EMC effect to R2N , which represents
the relative probability that a nucleon will be part of a very short
distance configuration (a deuteron-like SRC). For extremely
small nucleon separations, the short-range repulsive core will
yield hard interactions, and thus high momenta, for all NN

pairs. However, the bulk of the SRCs observed are np pairs [8],
generated by the longer range tensor interaction. If nn, np,
and pp pairs all have equal probability to form high local
density configurations, we would expect that the EMC effect
should scale with the number of possible NN pairs in the
nucleus, Ntot = A(A − 1)/2, while the SRC contribution is
sensitive to only the possible np pairs, Niso = NZ. For light
nuclei, we test this assumption by examining the two-body
density distributions [58,59] for all NN pairs. For nuclei up
to A = 12, the np pairs have a larger probability to have small

separation, on average 10%–20% more than for pp or nn pairs
at separations below 1.7 fm. So while the assumption that all
pairs contribute equally at short distances is not exact, it is
significantly better than assuming that only np pairs contribute.
Thus, we scale the SRC ratio by a factor Ntot/Niso to account
for the difference in the pair counting for the EMC and SRC
data, which is a simple first-order correction in which the
possible impact of nuclear structure effects is neglected.

A different hypothesis to explain the linear relationship
between the two effects was proposed by Weinstein et al.
[26], who suggested that the EMC effect is driven by the
virtuality of the high-momentum nucleon [10,31]. In this
case, it is the relative probability for a nucleon to have high
momentum (>kF ) that should drive the EMC effect, and thus
the uncorrected a2 SRC ratio is a more direct indicator of the
underlying explanation. We will refer to this hypothesis as
“high-virtuality” (HV).

We now make two comparisons to examine the relationship
between the EMC effect and SRCs using these two different
underlying assumptions. The data as well as the linear fits
for both approaches are shown in Fig. 11. A two-parameter
linear fit is performed for both cases without any constraint
for the deuteron. Thus, we can examine the fit to test both the
linear correlation of the observables and the extrapolation to
the expected deuteron value. The intercept of the fit is expected
to be zero, since both the EMC effect and SRC contributions
are taken relative to the deuteron.

Both approaches yield reasonable results, but we have to
delve into the details to understand the impact of the small
differences. While the LD fit has a better χ2

ν value, the
fractional errors of the points of the x axis are larger due
to the additional model-dependent uncertainties arising from
the c.m. motion correction [9]. A 30% uncertainty was applied
for this A-dependent correction, but any error in this correction
is likely to have a smooth A dependence, so treating these as
uncorrelated will artificially lower the χ2

ν value. If we repeat
the LD fit in Fig. 11(b), neglecting this extra model-dependent
uncertainty (i.e., taking the same fractional uncertainty on R2N

as we use for a2), the reduced χ2
ν value increases from 0.68

to 0.83, as compared to 0.91 for the HV fit. Overall, the LD
fit appears to do a better job: the extrapolation of the fit to the
deuteron gives essentially zero, as it should, and it has a smaller
χ2 value. However, neither of these differences significantly
favors the LD hypothesis.

Next, we remove the intercept as a free parameter (leaving
only the slope) and thus constrain the fit by forcing the EMC
effect to go through zero for the deuteron (a2 = R2N = 1). The
χ2

ν of this fit should test both the linearity and the consistency
with the deuteron, allowing for a more quantitative comparison
of the results. For the constrained fit, these can be seen in
Fig. 12. The gap in the χ2

ν values for the two approaches
grows, with 1.17 for HV and 0.61 (0.73 when taking fractional
uncertainties from HV case) for LD fits, corresponding to a
total change 
χ2 = 3.4 (2.6). While the LD interpretation
yields a better description of the data, χ2

ν = 1.17 for the HV
fit corresponds to a 32% confidence level, so the data are
consistent with either hypothesis.

The HV approach with the single-parameter fit (HV-0) most
closely reflects the previous analysis [26,33], in that a2 was
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FIG. 11. (Color online) Comparison of EMC slopes and SRC
observables from world data where both observables are available
for the same nuclei. The top plot shows the EMC slope vs a2,
testing the high-virtuality interpretation, and the bottom plot shows
the EMC slope vs R2N scaled by Ntot/Niso, testing the local density
interpretation (as discussed in the text), along with fits.

used as the measure of SRCs and the raw EMC effect slope was
reported. However, the quantitative results of the two analyses
differ due to the inclusion of different sets and corrections
factors applied to the data. The initial work used the older
extractions of a2 [6] in which the isoscalar correction was
applied, which we now know is not appropriate. The correction
was applied to all of the experimentally measured A/3He
ratios, which were combined with a 3He/2H ratio based largely
on a calculation which did not include the isospin correction
for 3He. Therefore, even the isoscalar A/2H ratios end up
with this correction applied. The authors of Ref. [33] make
several independent extractions of the correlation, comparing
the EMC results to the original CLAS SRC ratios, as well as the
updated JLab Hall C results [9]. They also compare different
versions of the Hall C data, using both a2 and R2N , and also
examining a2 without the Coulomb corrections but with the
old-style isoscalar corrections, which more closely reflects
the analysis of the CLAS data. Note that in the comparison
to the Hall C data, they compare the copper SRC ratios to the

FIG. 12. (Color online) EMC slopes vs a2 (top) and R2N scaled
by Ntot/Niso and normalized to the deuteron (bottom). The solid line is
the one-parameter fit, constrained to yield zero for the deuteron (grey
point). The dashed red line shows the result of the two-parameter
(Fig. 11) for comparison. The fits are almost indistinguishable for the
LD tests.

EMC effect measurements for iron. We use the data shown in
Tables I and II for common nuclei only.

While the one-parameter fit is a useful way to compare the
relative quality of fits for the LD- and HV-inspired foundations,
it yields an unrealistic estimate for the uncertainties on the fit.
Including a deuteron constraint point neglects the fact that
there are significant correlated uncertainties in all of the EMC
or SRC points from a single experiment, since all of the values
are measured relative to the deuteron. Therefore, the statistical
and systematic uncertainties in the deuteron data generate an
overall normalization of the values for all other nuclei from that
measurement which is neglected entirely in this approach. In
addition, the linear fit will have extremely small uncertainties
for nuclei close to the deuteron, yielding fit uncertainties for
light nuclei (or the extrapolation to the free nucleon) that are
significantly smaller than for any existing measurement.

We can evaluate the impact of this and make a more realistic
estimate of the fit uncertainties by adding a deuteron constraint
point which includes a reasonable estimate of the uncertainty
associated with the deuteron measurements in the experiments.
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TABLE III. Summary of linear fits of EMC effect vs R2N or a2,
and extrapolations to the slopes of the EMC effect for the deuteron,
EMC(D), and in-medium correction (IMC) effect for the deuteron,
IMC(D). “-0” denotes a one-parameter fit, forcing the line to go
through zero, corresponding to no EMC effect for the deuteron. “-D”
denotes a two-parameter fit including a realistic deuteron constraint
described in the text. The numbers in parentheses of the χ2

ν column
include the result of fitting with smaller fractional errors from a2.

As published χ 2
ν EMC(D) IMC(D)

HV (Fig. 11) 0.91 − 0.0587 ± 0.037 0.1040 ± 0.012
HV-0 (Fig. 12) 1.17 – 0.0856 ± 0.004
HV-D 1.14 − 0.0041 ± 0.010 0.0869 ± 0.005
LD (Fig. 11) 0.68 (0.83) − 0.0168 ± 0.035 0.0537 ± 0.007
LD-0 (Fig. 12) 0.61 (0.73) – 0.0505 ± 0.003
LD-D 0.60 (0.73) − 0.0013 ± 0.010 0.0508 ± 0.003

We take |dREMC/dx| = 0 ± 0.01 and a2 = R2N = 1 ± 0.015,
where the error bars were estimated based on deuterium cross
section uncertainties from Refs. [32] and [9]. The extracted
slope is almost unchanged, while the uncertainty increases by
approximately 20%.

The relevant results from the fits are summarized in
Table III. As mentioned in the discussion of the EMC effect
data, the analyses done for JLab E03013 and SLAC E139
used different isoscalar and Coulomb distortion corrections.
We have repeated the above comparisons of the EMC and
SRC measurements after estimating the impact of these
differences and, while the numerical results change slightly
(by ≈10% of the uncertainty), they do not affect the trends or
the conclusions.

V. POTENTIAL IMPACT OF THE CONNECTION

The close connection between the measurements of the
EMC effect and the relative contribution from short-range
configurations in nuclei suggests that the modification of
the nuclear quark distributions may be related to these short-
range structures. However, as seen in the previous section, the
connection can be made by both the HV and LD descriptions.
Future measurements should allow us to better differentiate
between these, but, at the moment, we cannot make a definitive
conclusion as to the exact nature of this connection. In
addition to helping to elucidate the origin of the EMC effect, a
better understanding of this correlation will also impact other
attempts to understand nuclear effects based on this relation.

A key aspect of the initial analysis comparing the EMC
effect and SRCs [26] was the extrapolation of the EMC effect
to the free nucleon, which allows the extraction of the nuclear
effects in the deuteron. The authors of Ref. [26] use the fit
to extract the in-medium correction (IMC) effect, defined
as σA/A

(σp+σn)/2 , by taking the EMC slope based on the ratio to
the deuteron and adding the slope associated with the IMC
for the deuteron, σd/(σp + σn), given by the extrapolation
of the EMC-SRC linear correlation. Given the IMC for the
deuteron, they extract the sum of free proton and neutron
structure functions and, subsequently, F2n(x). They obtain
an IMC slope for the deuteron of 0.079 ± 0.006, where, as

discussed above, the small error is a consequence of using
the known values for the deuteron as a constraint while
neglecting the correlated uncertainties in the measurements.
The equivalent global analysis from their later work, including
the new data from Ref. [9], yields 0.084 ± 0.004 [33]. In
both cases, they use a fit of the EMC slope as a function
of a2 which is not quite consistent with either our LD or HV
comparisons.

We repeat this extraction to obtain the IMC slope for the
deuteron, using our fits from the previous section and taking the
difference of the EMC slope extrapolated to the free nucleon
(a2 = R2N = 0) and that for the deuteron. Note that this is
equivalent to the intercept parameter, b, of the fits, and taking
dRIMC(D) = b accounts for the correlated errors in the EMC
slopes for the deuteron and free nucleon. Similarly, one can
obtain the IMC slope for A > 2 via dRIMC(A) = dREMC(A) +
dRIMC(D).

Our HV fit yields slopes that are close to those from the
initial analysis of [26] when we apply a deuteron constraint.
The unconstrained linear fit yields a somewhat larger slope,
while the LD fits all yield a smaller IMC slope for the deuteron,
suggesting smaller nuclear effects. A reanalysis [33] of the
deuteron IMC effect with different data sets revealed that its
value varied from 0.079 to 0.106, with the largest difference
associated with the use of R2N rather than a2 from the SRC
measurements. In the same work, the value for the IMC effect
is always larger than our results based on the local density
picture because it was assumed that only the high-momentum
nucleons associated with the SRCs contribute to the EMC
effect, while low-momentum short-distance pairs are included
in our local density analysis through the factor Ntot/Niso.

The use of the SRC observables to extrapolate measure-
ments of the EMC effect to the free nucleon generates a large
range of potential results, with IMC slopes for the deuteron
from 0.059 to 0.104, even under the assumption that the
correlation is perfectly linear all the way to A = 2. In addition,
there is still a significant uncertainty associated with the size
of the c.m. motion correction, which modifies the extracted
values of R2N , changing the IMC slopes for the LD extractions.
This range can be significantly narrowed if one can determine
whether the underlying connection is related to the density or
the virtuality associated with the short-distance configurations.
With further studies, this may be possible. If so, the nuclear
effects as extrapolated from measurements can be compared
with direct calculations of the nuclear effects in the deuteron. A
recent study of the model dependence of nuclear effects in the
deuteron [75], based on convolution calculations and off-shell
effects, produced a range of results for the neutron structure
function. For on-shell extractions it is relatively narrow, and
a direct comparison to the IMC for the deuteron based on
extrapolation from heavier nuclei can provide a constraint on
off-shell effects.

However, one must be careful in using this approach to
obtain the free neutron structure function, especially at large
x values. As discussed in Ref. [75], extrapolations of the
EMC effect to the deuteron neglect Fermi motion, which
is the dominant effect at x > 0.6 and is sensitive to the
difference between proton and neutron structure functions at
smaller x values. Fermi motion has a significant impact and
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an important Q2 dependence in this high-x region [43,76],
neither of which is accounted for in this kind of approach,
limiting the reliability of such extrapolations. The off-shell
effects as determined from the extrapolation of the EMC effect
in Ref. [77] are perfectly consistent with the range of off-shell
models included in more recent analyses [75,78], in which
the model dependence of the extraction of neutron structure
functions is examined and the large-x deviation between the
IMC-based extraction [77] and the results of the microscopic
deuteron calculations shown in that work are related to the
neglect of Fermi motion in the IMC result. Thus, it is necessary
to improve our understanding of the connection between the
EMC effect and the presence of SRCs, to better constrain the
extrapolation, and to explicitly account for both the effects
of Fermi motion and additional nuclear effects, as done in
Ref. [36], when going to large x values.

Finally, we note that the connection between the EMC
effect and SRCs suggests a mechanism by which the structure
function could have an isospin dependence that is not included
in most models. In 3He, the singly-occurring neutron is
more likely to be at high momentum [11], as the SRCs
are dominantly np pairs and the neutron must balance the
high-momentum tail of both protons. The neutron also has a
larger average local density: the two-body densities from the
GFMC calculations [58] show that the two np pairs have a
significantly larger contribution for separations below 1 fm
than the pp pair. For both the HV and LD explanations of the
correlation between SRCs and the EMC effect, this implies a
larger EMC effect for the neutron in 3He and for the proton
in 3H.

An isospin dependence in the EMC effect for the A = 3
nuclei would yield an additional correction to the neutron
structure function extracted from DIS on 3He and 3H [79,80].
It was shown in Ref. [79] that the difference between the
nuclear effects in 3He and 3H, defined as σA/(Zσp + Nσn), is
extremely small, typically less than 1% with a spread of ∼1%
when varying the nuclear structure, nucleon pdfs, and other
aspects of the calculation. Their analysis takes into account
the difference between the proton and neutron distributions in
the convolution, but not the possibility of isospin dependence
in effects beyond the convolution. While it is unlikely to be a
very large effect, given the EMC effect for 3He, it may not be
a negligible effect in such measurements.

Similarly, the EMC effect in heavy nonisoscalar nuclei may
also have a small isospin-dependent component. Such an effect
is generally not included in models of the EMC effect and
would have to be accounted for in heavy nuclei or asymmetric
nuclear matter [72].

VI. SUMMARY AND CONCLUSIONS

We examined the A dependence of both the EMC effect
and presence of short-range correlations in nuclei and find that
the traditional models of a simple density or A dependence
fail with the inclusion of the new data on light nuclei. Both
observables show similar behavior, suggesting a common ori-
gin. We examined the correlation between the two observables
under two different assumptions for the underlying physics.
In the first, we assume that the EMC effect is driven by the
presence of high-momentum nucleons in the nucleus, which
is directly extracted in the inclusive measurements at x > 1.
In the second, we assume that the EMC effect scales with the
average local density and thus correlates with the number of
SRCs extracted from the x > 1 measurements. We find that,
under both assumptions, the data are consistent with a linear
correlation between the two effects, with the local density
comparison yielding a smaller χ2

ν value.
These results support the local density explanation pro-

posed in Ref. [32], but they are still consistent with the
explanation in terms of high virtuality [26]. In the end, a more
definitive determination of the underlying physics will require
further data. A large step in this direction will be taken at
JLab after the 12 GeV Upgrade. A large set of nuclear targets,
including several light nuclei with significant cluster structure,
will be used to make high-precision measurements of the EMC
effect [64] as well as SRCs [81], which will further illuminate
the nature of the relationship between the two. The results
from these two experiments, combined with heavy-target EMC
slopes from Jlab E03-103, will more than double the sensitivity
of the linear correlation tests.

In addition, measurements probing the modification of
nucleon form factors [19,82] and structure functions [83,84]
as a function of virtuality are planned that will cover a large
range of initial momentum, allowing for direct comparison to
models of the nuclear effects.
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