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The photoproduction of the J/�-3He bound state ([3He]J/� ) on a 4He target has been investigated using
the impulse approximation. The calculations have been performed using several γ + N → J/� + N models
based on the Pomeron-exchange and accounting for the pion-exchange mechanism at low energies. The J/�

wave functions in [3He]J/� are generated from various J/�-nucleus potentials which are constructed by either
using a procedure based on the Pomeron-quark coupling mechanism or folding a J/�-N potential (vJ/�,N ) into
the nuclear densities. We consider vJ/�,N derived from the effective field theory approach, lattice QCD, and
Pomeron-quark coupling mechanism. The upper bound of the predicted total cross sections is about 0.1–0.3 pb.
We also consider the possibility of photoproduction of a six quark-J/� bound state ([q6]J/� ) on the 3He target.
The compound bag model of NN scattering and the quark cluster model of nuclei are used to estimate the
[q6]-N wave function in 3He by imposing the condition that the calculated 3He charge form factor must be
consistent with what is predicted by the conventional nuclear model. The upper bound of the predicted total cross
sections of γ + 3He → [q6]J/� + N is about 2–4 pb, depending on the model of γ + N → J/� + N used
in the calculations. Our results call for the need of precise measurements of γ + p → J/� + p and also the
γ + 2H → J/� + n + p reactions near the threshold.

DOI: 10.1103/PhysRevC.86.065203 PACS number(s): 25.20.Lj, 24.85.+p

I. INTRODUCTION

The role of the gluon field in determining the interactions
between nucleons and quark-antiquark (QQ̄) systems, which
do not share the same up and down quarks with the nucleon,
is one of the interesting subjects in understanding quantum
chromodynamics (QCD). An important step toward this direc-
tion was taken by Peskin [1] who applied the methodology
of the operator product expansion to evaluate the strength
of the color field emitted by heavy QQ̄ systems. His results
suggested [2] that the van der Waals force induced by the color
field of J/� on nucleons can generate an attractive short-range
J/�-N interaction. By using the effective field theory method,
Luke, Manohar, and Savage [3] used the results from Peskin
to predict the J/�-nucleon forward scattering amplitude
which was used to get an estimation that J/� can have a
few MeV/nucleon attraction in nuclear matter. Brodsky and
Miller [4] further investigated the J/�-N forward scattering
amplitude of Ref. [3] to derive a J/�-N potential (vJ/�,N )
which gives an J/�-N scattering length of −0.24 fm. The
result of Peskin was also used by Kaidalov and Volkovitsky [6],
who differed from Ref. [4] in evaluating the gluon content
in the nucleon, to give a much smaller scattering length of
−0.05 fm. In a lattice QCD calculation, Kawanai and Saski [5]
obtained an attractive J/�-N potential vJ/�,N = −αe−μr/r

with α = 0.1 and μ = 0.6 GeV, which gives a scattering length
−0.09 fm. In Ref. [7], Brodsky, Schmidt, and de Teramond
proposed an approach to calculate the potential between a cc̄

meson and a nucleus by using the Pomeon-exchange model of
Dannachie and Lanshoff [8]. The J/�-N potential obtained
in this approach is vJ/�,N = −αe−μr/r with α = 0.6 and μ =
0.6 GeV which gives a rather large scattering length −8.83 fm.

Our first objective in this paper is to explore whether these
J/�-N potentials, with rather different attractive strengths,
can form J/�-nucleus bound states. Following the well

developed method in nuclear reaction theory [9], this is done by
searching for bound states by solving the Schrödinger equation
with a folding potential constructed by integrating the J/�-N
potential over the nuclear density. We will also consider
the approach of Ref. [7] in predicting J/�-nucleus bound
states by the coherent sum of Pomeon-exchange between
quarks in J/� and all quarks in the nucleus. For each of
the predicted bound [3He]J/� systems, we then estimate the
photoproduction cross section of the γ + 4He → [3He]J/� +
N reaction to facilitate future experimental investigations [10].
As discussed by Brodsky [11], the production of such bound
states with hidden charms is feasible at JLab with 12 GeV
upgrade because of the close proximity in rapidity of the heavy
quark with the target spectators.

The second part of this work is motivated by the investiga-
tions by Brodsky and de Teramond [12] who found that the spin
correlation of pp elastic scattering near the J/� production
threshold can be explained if one postulates the excitation
of a hidden charm (c) state |qqqqqqcc̄〉. Based on the
similar consideration on the role of multiquark configurations,
Brodsky, Chudakov, Hoyer, and Laget [13] suggested in a study
of γ + 2H → J/� + n + p reaction that J/� can interact
strongly with the six-quark [q6] component of the deuteron
wave function because the octet three-quark [q3]8 in the [q6]
can directly interact with each quark in J/�. These two works
suggest the possibility that if J/� overlap with a [q6] cluster
in nuclei, a bound [q6]J/� system could be formed. It is of
course very difficult, if not impossible, to estimate [q6]-J/�

interaction. Instead, we will simply assume the existence of
such states and use the previous works [14–21] on quark
clusters in nuclei to explore how the cross sections of γ +
3He → [q6]J/� + N depend on the parameters characterizing
the [q6]-J/� interaction within a potential model.

Our first task is to construct a model of γ + N → J/� +
N reaction. At high energies, it is well recognized that this
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FIG. 1. Reaction mechanisms of γN → J/� + N : (a)
Pomeron-exchange, (b) pion-exchange.

reaction can be described by the Pomeron-exchange model
with an interpretation [8,22–24] that Pomeron-exchange is due
to the exchange of gluons within QCD. This is illustrated in
Fig. 1(a). At low energies, one expects that mechanisms other
than Pomeron-exchange could also contribute as can be seen
in the exclusive φ photoproduction reaction on the nucleon
[24–26]. However, very little investigation has been done for
J/� photoproduction in the near threshold region. As a first
step, we will only consider the meson-exchange mechanism
which can be calculated from using the partial decay width
of J/� → πρ listed by the Particle Data Group [27] (PDG).
With the vector meson dominance (VDM) assumption, this
observed decay process indicates that J/� photoproduction
can also be due to the exchanges of a π meson with the nucleon,
as illustrated Fig. 1(b).

We next consider the photonuclear reaction mechanism that
a J/� is produced from a nucleon in a nucleus with mass
number A and then forms a bound state with the spectator
B system which can be a (A − 1) nuclear system or a quark
cluster [q3(A−1)] in the target nucleus A. With this commonly
used impulse approximation, the reaction cross sections
can be calculated from the γ + N → J/� + N amplitude,
which will be generated from the Pomeron-exchange and
pion-exchange mechanisms described above, and the initial
nucleon and final J/� wave functions. The nucleon wave
functions can be taken from the available nuclear models.
The J/� wave functions will be generated from various
J/�-B potentials mentioned above. For simplicity, we only
present the predictions of the cross sections of γ + [4He] →
N + [3He]J/� and γ + [3He] → N + [q6]J/� reactions.

In Sec. II, we present formula for calculating the γ + N →
J/� + N amplitudes from the Pomeron-exchange and pion-
exchange mechanisms. The impulse approximation formula
for calculating the cross sections of γ + [A] → [B]J/� + N

are given in Sec. III. Our results are presented in Sec. IV. In
Sec. V, we give a summary and discuss the necessary future
work.

II. FORMULA FOR γ + N → J/� + N REACTION

In the center-of-mass system, the differential cross section
of γ (�q) + N (−�q) → J/�(�k) + N (−�k) with invariant mass
W can be written

dσ

d	
=

[
(2π )4EN (q)

W

] [
kEJ/�(k)EN (k)

W

]

× 1

4

∑
λγ ,λJ/�

∑
ms,m′

s

|〈�kλJ/�m′
s |t(W )|�qλγ ms〉|2, (1)

where λJ/� and λγ are the helicities of the J/� and photon,
respectively, ms is the z component of the nucleon spin, and
Ea(p) = [m2

a + �p2]1/2 is the energy of a particle with mass
ma . The reaction amplitude is written as

〈�kλJ/�m′
s |t(W )|�qλγ ms〉

= 1

(2π )3

1√
2EJ/� (k)

√
mN

EN (k)

√
mN

EN (q)

1√
2q

× [
ūm′

s
(p′)ε∗

μ(k, λJ/�)Mμν(p′, p)εν(q, λγ )ums
(p)

]
, (2)

where ums
(p) is the nucleon spinor [with the normalization

ūms
(p)um′

s
(p) = δms,m′

s
], εμ(k, λJ/�) and εν(q, λγ ) are the

polarization vectors of J/� and photon, respectively. Here
we also have introduced the four-momenta for the initial and
final nucleons:

p = (EN (q),−�q); p′ = (EN (k),−�k).

In the following subsections, we give formula for calculating
the invariant amplitude Mμν due to the Pomeron-exchange and
meson-exchange mechanisms, as illustrated in Fig. 1.

A. Pomeron-exchange amplitude

Within the Pomeron-exchange model of Donnachie and
Landshoff [8], the vector-meson photoproduction at high
energies is due to the mechanism that the incoming photon
couples with a qq̄ pair which interacts with the nucleon by the
Pomeron exchange before forming the outgoing vector meson.
The quark-Pomeron vertex is obtained by the Pomeron-photon
analogy [8], which treats the Pomeron as a C = +1 isoscalar
photon, as suggested by a study of nonperturbative two-gluon
exchanges [22]. Following the formula given explicitly in
Ref. [28], we then have

Mμν

P (p′, p) = GP (s, t)T μν

P (p′, p) (3)

with

T μν

P (p′, p) = i12
√

4παem
M2

V βqβq ′

fV

1

M2
V − t

×
(

2μ2
0

2μ2
0 + M2

V − t

)
F1(t){	q gμν − qμγ ν},

(4)

where t = (p − p′)2, s = (q + p)2 = W 2, αem = e2/4π , βq is
the Pomeron-quark coupling constant, MV is the vector-meson
mass, and F1(t) is the isoscalar electromagnetic form factor of
the nucleon,

F1(t) = 4M2
N − 2.8t(

4M2
N − t

)
(1 − t/0.71)2

. (5)

Here t is in unit of GeV2, and MN is the proton mass.
The Regge propagator for the Pomeron in Eq. (3) is

GP =
(

s

s0

)αP (t)−1

exp

{
− iπ

2
[αP (t) − 1]

}
, (6)

where αP (t) = α0 + α′
P t . It is common [28] to use α0 = 1.08

and α′
P = 1/s0 = 0.25 GeV−2. In Eq. (4), fV is the vector-

meson decay constant: fρ = 5.33, fω = 15.2, fφ = 13.4, and
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fJ/� = 11.2. The other parameters in Eq. (4) have been
determined by fitting [28] the total cross section data of the
photoproduction of ρ and ω: βu = βd = 2.07 GeV−1 and
μ2

0 = 1.1 GeV2.
With the parameters specified above, our task is to examine

the extent to which the total cross section of photoproduction
of J/� can be fitted by only adjusting the Pomeron-charmed
quark coupling constant βc. This will be discussed in Sec. IV.

B. Pion-exchange amplitude

We observe from the Particle Data Group [27] that the width
of the J/� → π0ρ0 is significant,

�J/�→π0ρ0 = 0.92 MeV × (0.56 ± 0.07)%. (7)

With the vector-meson dominance (VDM) assumption, this
experimental information allows us to calculate the one-pion-
exchange amplitude of γ + N → J/� + N , as illustrated in
Fig. 1(b), by using the following Lagrangian:

L = LJ/�,ρ0π0 + LπNN + LVDM (8)

with

LJ/�,ρ0π0 = −gJ/�,ρ0π0

mJ/�

εμναβ∂μρ0
ν∂αφJ/�,βφπ0 , (9)

LπNN = −fπNN

mπ

ψ̄Nγμγ5 �τψN∂μ · �φπ, (10)

LVDM = em2
ρ

fρ

Aμρ0
μ, (11)

where ρ0
μ, φJ/�,β , �φπ , Aμ, and ψN are the field operators for

ρ0, J/�, π , photon (γ ), and nucleon (N ), respectively. The
mass for particle a is denoted as ma . The well-determined
coupling constants are f 2

πNN/4π = 0.079, e2/4π = 1/137,
and fρ = 5.33. To determine gJ/�,ρ0π0 , we use LJ/�,ρ0π0 given
in Eq. (9) to calculate the decay width

�J/�→π0ρ0 = (2π )
1

3

∑
λρ,λJ/�

∫
d	k|〈�kλρ |H | �p = 0, λJ/�〉|2

× kEπ (k)Eρ(k)

mJ/�

, (12)

where k is defined by mJ/� = Eπ (k) + Eρ(k), and

〈�kλρ |H | ��p, λJ/�〉
= 1

(2π )3/2

1√
2EJ/�(p)

1√
2Eρ(k)

1√
2Eπ (k)

−gJ/ψρ0π0

mJ /ψ

× εμναβkρ
μεν,λρ

(kρ)pαεβ,λJ/�
(p)

[
�2

J/�(�k2 + �2
J/�

)
]2

. (13)

Here we have included a dipole cutoff function with a range
parameter �J/� . The four-momenta are defined in the rest
frame of J/�:

p = (mJ/�, �0),

kρ = (Eρ(k), �k),

kπ = (Eπ (k),−�k).

FIG. 2. The impulse approximation mechanism of γ + A →
N + [B]J/� reaction. A is a nucleus with mass number A and B could
be a nucleus with mass number (A − 1) or a [q3(A−1)] multiquark
cluster.

By using Eqs. (12)–(13) and the experimental value given
in Eq. (7), we find gJ/�,π0ρ0 = 0.032 for a cutoff �J/� =
2000 MeV.

With the Lagrangian Eq. (8), the one-pion-exchange in-
variant amplitude for γ (q) + N (p) → J/�(k) + N (p′) can
be written as

If i = ūm′
s
(p′)ε∗

μ(k, λJ/�)Mμν
π (p′, p)εν(q, λγ )ums

(p) (14)

with

Mμν
π (p′, p) = G × F (t)

1

t − m2
π

εμναβkαqβ[γ · (p′ − p)]γ 5,

(15)

where t = (p − p′)2, and

G = e

fρ

gJ/�,ρ0π0

mJ/�

fπNN

mπ

, (16)

F (t) = FπNN (t)FJ/�,ρ0π0 (t). (17)

Here we have introduced a cutoff form factor F (t) to regularize
the interaction vertices. For simplicity, we use the following
form:

F (t) =
(

�2

�2 − t

)n

. (18)

We set n = 4, and � = �J/� = 2000 MeV.

III. PHOTOPRODUCTION OF [B]J/� BOUND STATE

A. Reaction mechanism

With the impulse approximation, we assume that a J/�

is produced on a nucleon in the target nucleus A and then is
attracted by a spectator system B to form a bound state [B]J/� .
For simplicity, [B]J/� is denoted as d in the following formula.

With the mechanism illustrated in Fig. 2, the cross section
of γ (�q) + A(−�q) → N ( �p) + d(− �p) in the center-of-mass
system can be written as

dσ

d	
=

[
(2π )4EA(q)

W

] [
pEN (p)Ed (p)

W

]
1

2

1

2JA + 1

×
∑

λ,MJA

∑
ms,md

∣∣〈 �pms,�jdMd

∣∣T (W )
∣∣�qλ,�A

JA,MJA

〉∣∣2
,

(19)
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where

〈 �pms,�jdMd

∣∣T (W )
∣∣�qλ,�A

JA,MJA

〉 =
∑
j,mj

∑
jα,mjα

〈
�jdMd

∣∣a†
jmj

bjα,mjα

∣∣�A
JA,MJA

〉

×
⎡
⎣ ∑

mJ/�,msα

∫
d�kχ∗

j,mj
( �Qd,mJ/� )〈 �pms, �kmJ/� |t(W )

∣∣�qλ, �pαmsα

〉
φjα,mjα

( �QA,msα

)⎤⎦ .

(20)

Here a
†
jmj

is the creation operator for a J/� with wave function χj,mj
( �Qd,mJ/� ), bjα,mjα

an annihilation operator for a nucleon

with wave function φjα,mα
( �QA,msα

), and the γ + N → J/� + N amplitude is

〈 �pms, �kmJ/� |t(W )|�qλ, �pαmsα

〉 = 1

(2π )3

1√
2EJ/�(k)

√
mN

EN (pα)

1√
2q

√
mN

EN (p)

× [
ūms

(p)ε∗
μ(k,mJ/�)

{
Mμν

π (p, pα) + Mμν

P (p, pα)
}
εν(q, λ)umsα

(pα)
]
, (21)

where Mμν
π is the pion-exchange amplitude given in Eq. (15), and Mμν

P is the Pomeron-exchange amplitude in Eq. (3).
For simplicity, we will only perform calculations for the reactions on 3He and 4He. For estimations of cross sections

on these target nuclei, it is sufficient to use the s-wave harmonic oscillator wave functions for both the target A

and B in the [B]J/� bound state. We also only consider the case that the J/� in the produced bound BJ/� is on
an s-wave orbital. For the case B = A − 1 nuclear system, we thus write the initial (|�A〉) and final (|�〉) nuclear
states as

|�A〉 = [|N〉 ⊗ |�A−1〉]L=0, (22)

|�〉 = [|J/�〉 ⊗ |�A−1〉]L=0, (23)

where L is the relative angular momentum between N or J/� and the (A − 1) nucleus. Explicitly, we have∣∣�A
JA,MJA

〉 =
∑

MJA−1

∑
jα,mjα

〈
JAMJA

∣∣jαJA−1mjα
MJA−1

〉
b
†
jαmjα

∣∣�A−1
JA−1,MJA−1

〉
,

(24)∣∣�Jd,MJd

〉 =
∑

MJA−1

∑
j,mj

〈
JdMd

∣∣jJA−1mjMJA−1

〉
a
†
jmj

∣∣�A−1
JA−1,MJA−1

〉
.

Then the momentum variables in Eqs. (20) and (21) are

�pα = �p + �k − �q, (25)

�pβ = − �p − �k = −�q − �pα, (26)

�QA = �pαEA−1( �pβ) − �pβEN ( �pα)

EA−1( �pβ) + EN ( �pα)
, (27)

�Qd =
�kEA−1( �pβ) − �pβEJ/�(�k)

EJ/�(�k) + EA−1( �pβ)
, (28)

where �Qd ( �QA) is the relativistic relative momentum between J/� (N ) and the (A − 1) nuclear system.
For the target 4He, we have JA = 0 and assume that |�A−1

JA−1,MJA−1
〉 is the 3He ground state with JA−1 = 1/2. We then have the

following simplicities: 〈
�jdMd

∣∣a†
jmj

bjα,mjα

∣∣�A
JA,MJA

〉 = 〈
JAMJA

∣∣jαJA−1mjα
MJA−1

〉〈
JdMd |jJA−1mjMJA−1

〉
→ 1√

2

〈
JdMJd

∣∣jαj − mjα
mj

〉
, (29)

and

χj,mj
( �Qd,mJ/� ) = δj,1δmj ,mJ/�

1√
4π

F (Qd ), (30)

φjα,mjα

( �QA,msα

) = δjα,1/2δmjα
, msα

1√
4π

R(QA), (31)

065203-4



PHOTOPRODUCTION OF BOUND STATES WITH HIDDEN CHARM PHYSICAL REVIEW C 86, 065203 (2012)

Eq. (20) then becomes〈 �pms,�jdMd

∣∣T (W )
∣∣�qλ,�A

JA,MJA

〉 =
∑

MJA−1

∑
mJ/�,msα

〈
JAMJA

∣∣jαJA−1mjα
MJA−1

〉〈
JdMd

∣∣jJA−1mjMJA−1

〉

×
[∫

d�k 1√
4π

F (Qd )
〈 �pms

�kmJ/�

∣∣t(W )
∣∣�qλ, �pαmsα

〉 1√
4π

R(QA)

]
. (32)

We have applied the formula Eqs. (19) and (32) to estimate
the production cross section on 4He. We use the usual s-wave
harmonic oscillator wave function with b = 1.32 fm for the
target 4He

R(p) = [
Ne

−b2p2

2
]

(33)

with the normalization
∫

R2(p)p2dp = 1. For the J/�

wave function in d = [3He]J/� , we will generate an s-wave
ψJ/� (r) from a potential VJ/�,B (r) with the normalization∫

r2dr|ψJ/�(r)|2 = 1. The wave function in Eq. (30) and also
in Eq. (32) can then be calculated from

F (p) =
∫ ∞

0
r2drj0(pr)ψJ/�(r), (34)

where j0(z) is the spherical Bessel function. The form of
VJ/�,B (r) will be discussed in Sec. IV.

The above formula can be easily extended to investigate
other possible impulse approximation mechanisms as far as
all wave functions in the bound A and [B]J/ψ are all in s
waves. This is what we will need in Sec. IV when we consider
the production of [q6]J/� from the q6-N component of 3He.

IV. RESULTS

A. Models of γ + N → J/� + N reaction

We first develop a model consisting of Pomeron-exchange
and pion-exchange mechanisms, as described in Sec. II. With

the parameters specified there, we try to fit the available total
cross section data of γ + p → J/� + p up to invariant mass
W = 300 GeV by only adjusting the charmed quark-Pomeron
coupling constant βc. With βc = 1.21 we only able to fit the
data up to 20 GeV. Clearly, the result at high energy is not
satisfactory as shown in the red dashed curve in the left-hand
side of Fig. 3. We then find that by changing α0 of the Regge
trajectory in the Pomeron propagator Eq. (6) from α0 = 1.08,
as determined in the previous fits [28] to the total cross sections
of ρ and ω photoproduction, to α0 = 1.25, we are able to get a
very good fit to the data by choosing βc = 0.84 GeV−1. Our fit
is the solid black curve in the left-hand side of Fig. 3. We thus
will use the model with α0 = 1.25 and βc = 0.84 GeV−1 (PM
model) in our investigations. As also seen in the insert in the
left-hand side of Fig. 3, the contribution (magenta dotted curve)
from the pion-exchange amplitude, as defined by Eqs. (14)–
(18), is very weak except in the very near threshold region.

We next consider the model of Ref. [13] based on the two-
gluon (2g) and three-gluon (3g) exchange mechanisms. In
terms of the normalization defined by Eq. (2), the amplitude
of this model can be written as

〈�kλJ/ψm′
s

∣∣t(W )
∣∣�qλγ ms

〉
= 1

(2π )3

1√
2EJ/ψ (k)

√
mN

EN (k)

√
mN

EN (q)

1√
2q

× 4
√

π√
6

qw

mN

[M2g + M3g] (35)

FIG. 3. (Color online) The total cross section of the γ + p → J/ψ + p reaction as function of the γp invariant mass W . Left: The black
solid and red dashed are the results from using (α0 = 1.25, βc = 0.84 GeV−1; called the PM model) and (α0 = 1.08, βc = 1.21 GeV−1) within
the model which include both the π -exchange and Pomeron-exchange mechanisms. The magenta dotted curve in the insert is the contribution
from the π exchange. Right: The black solid, blue dotted, and green dot-dashed lines are from the PM model, the 2g model of Ref. [13], and
the 2g + 3g model based on Eq. (35). The experimental data are from [30–38].
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with

M2g = A2g

4
√

π

1 − x

RmJ/ψ

ebt/2, (36)

M3g = A3g

4
√

π

1

R2m2
J/ψ

ebt/2, (37)

x = 2mNmJ/ψ + m2
J/ψ

W 2 − m2
p

, (38)

where R = 1 fm, b = 1.13 GeV−2 are taken from Ref. [13]. We
follow Ref. [13] to determine the parameters A2g and A3g by
fitting the data up to only 20 GeV. In the two-gluon-exchange
model (2g), we set A3g = 0 and obtain A2g = 0.028 MeV−2

from the fit. In the 2g + 3g model, the fit is obtained by
choosing A2g = 0.023 MeV−2 and A3g = 2000 MeV−2. The
fits for the 2g and 2g + 3g models are the dotted and dot-
dashed curves in the right-hand side of Fig. 3, respectively.
Clearly, they have differences with that (black solid) of the
PM model, as can be seen more clearly in the insert in the
right-hand side of Fig. 3. Here we also see that the data
in the region near the J/� production threshold are very
limited and uncertain. We will therefore perform calculations
using the PM, 2g, and 2g + 3g models to examine the model
dependence of our predictions. Clearly, precise data in the near
threshold region are needed to make progress.

B. Photoproduction of J/�-nucleus bound states

Following the previous investigations [7,29], we assume
that the interaction between a J/� and a nucleus with mass
number A can be parametrized as a nonrelativistic potential of
the following Yukawa form:

VJ/�,A(r) = −αA

e−μAr

r
. (39)

There exists two different approaches to determine the param-
eters αA and μA for the nucleon with A = 1. We will explain
these in the following two subsections.

1. Pomeron-quark coupling model

Motivated by the previous studies in quantum electrody-
namics, it is assumed in the approach of Ref. [7] that the
J/�-A forward angle scattering amplitude at very high energy
can be related to the matrix element of the potential Eq. (39)
which is understood to be valid only in the region where J/�

moves nonrelativistically. They further assume that the J/�-A
amplitudes can be calculated by using the Pomeron-exchange
model of Dannachie and Landshoff [8]. In the very high energy
approximation, the differential cross section of J/�-A elastic
scattering can be related to the parameters αA and μA of the
potential Eq. (39) by the following relation:

dσ

dt
(J/� A → J/� A) = [2βcFJ/�(t)]2[3Aβu/dFA(t)]2

4π

(40)

= 4πα2
A(−t + μ2
A

)2 , (41)

TABLE I. Parameters for determining the potential Eq. (39) using
the Pomeron-quark coupling model defined by Eqs. (41)–(43). The
predicted binding energies (B.E.) for proton (A = 1), 3He (A = 3),
and 12C (A = 12) are also listed.

A 〈R2
A〉1/2 μA βu/d βc αA B.E.

(GeV−1) (GeV) (GeV−1) (GeV−1) (MeV)

1 3.9 0.63 1.85 1.85 0.64 –
2.05 1.21 0.47 –
2.05 0.84 0.33 –

3 9.5 0.26 1.85 1.85 0.33 19.86
2.05 1.21 0.23 3.27
2.05 0.84 0.16 0.04

12 12.69 0.19 1.85 1.85 0.73 280.0
2.05 1.21 0.53 165.0
2.05 0.84 0.37 67.0

where t is the momentum-transfer squared, βu/d (βc) is
the Pomeron coupling with the up/down(charmed) quarks,
FJ/�(t) and FA(t) are the form factors for J/� and the nucleus
with mass number A, respectively. They further assume that in
the t → 0 limit, the slope of dσ/dt is mainly determined by
dFA(t)/dt and that FA(t) can be identified with the nuclear
electromagnetic form factor. One then gets the following
relations:

μ−2
A =

∣∣∣∣dFA(t)

dt

∣∣∣∣
t=0

=
〈
R2

A

〉
6

, (42)

αA = [2βc][3Aβu/d ]

4π
μ2

A. (43)

The radius 〈R2
A〉1/2 can be taken from Ref. [39]. The Pomeron-

quark coupling constants can be taken from fits to the data
of meson-nucleon scattering or photoproduction of vector
mesons. Once αA and μA of the potential Eq. (39) are
determined, we can predict the possible J/�-nucleus bound
states. In Table I, we list our results for proton (A = 1), 3He
(A = 3) and 12C (A = 12) for various sets of Pomeron-quark
coupling constants. The first rows in the results for each A are
based on the flavor independent βu/d = βc = 1.85 GeV−1 of
Ref. [7]. The other two results use the Pomeron-quark coupling
constants βu/d = 2.05 GeV−1 determined [28] in the fits to the
data of photoproduction of ρ and ω, and βc determined from
the fits described in Sec. IV A.

With the determined potential parameters αA and μA, the
predicted binding energies (B.E.) for each considered nuclear
system are listed in the last column of Table I. For the A = 1
case, we see that there is no J/�-N bound state. But all three
models predict bound [3He]J/� and [12C]J/� states. In the
left-hand side of Fig. 4, we show the predicted cross sections
of γ + 4He → [3He]J/� + n. Clearly, the predicted cross
sections depend on the Pomeron-quark coupling constants.
Furthermore, their magnitudes depend sensitively on the
binding energy (B.E.) of the predicted [3He]J/� system. As the
binding energy decreases from 19.86 MeV to 0.04 MeV, the
predicted cross sections drop by two orders in magnitude. This
can be understood from the right-hand side of Fig. 4 where we
compare the J/�-3He relative wave functions which are used
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FIG. 4. (Color online) The total cross section of γ + [4He] → 3He[J/ψ] + n as function of γ -4He invariant mass W (left) and the wave
function (right) for J/ψ − 3He system. The black solid, red dashed, and blue dotted-dashed lines are calculated by using the potential Eq. (39)
with A = 3, μA = 0.257 GeV, and αA = 0.33, 0.23, 0.16, respectively.

in predicting the cross sections in the left-hand side. We see
that the wave function (solid black) for B.E. = 19.86 MeV is
much shorter range than the other two cases and hence gives
more cross sections in this large momentum-transfer reaction.
This is explicitly illustrated in Fig. 5 where we show that the
cross section (red dashed curve) calculated from keeping only
the high momentum part (pJ/ψ > 1400 MeV) of the J/�

wave function in the integration in Eq. (32) is very close to the
full calculation (solid black curve).

In Fig. 6, we see that the predicted differential cross sections
are forward peaked, as expected from the Pomeron-exchange
mechanism. In Fig. 7, we show that the predicted cross sections
depend on the γ + N → J/� + N model. Their maximum
values are, however, comparable ∼ 0.1–0.3 pb. Clearly, it is
important to get accurate data of γ + N → J/� + N at low
energies to refine the employed model for making more precise
predictions.

The [12C]J/� can be produced by γ + 13C → [12C]J/� + n.
However, making predictions for the cross sections of this
process is beyond the scope of this paper since the simple

FIG. 5. (Color online) The cross section of γ + [4He] →
[3He][J/ψ] + n as function of γ -4He invariant mass W . The red dashed
curve is obtained from keeping only the contribution from the J/�

wave function with k > 1400 MeV in the integration of Eq. (32).

s-wave description of the nuclei in Sec. III is no longer a
reasonable approximation for nuclei heavier than 4He.

2. Folding model

While all three J/�-N models listed in Table I do not
have bound states, there exist a possibility that adding the
J/�-N interactions from the nucleons in a nucleus could lead
to bound states. To explore this possibility, we follow the usual
nuclear physics approach to construct a folding potential for
the interaction between a J/� and a nuclear system:

VJ/�,A(r) =
∫

vJ/�,N (�r − �r ′)ρA(�r ′)d�r ′, (44)

where vJ/�,N (r) = VJ/�,1(r) as defined by Eq. (39) with A =
1, and the nuclear density is normalized by∫

ρA(�r ′)d�r ′ = A. (45)

For 3He we use ρA(�r) = ρ0e
−r2/b2

with b = 1.32 fm which
is obtained by fitting the 3He charge form factor at
low momentum-transfer. For heavy nuclei, we use the

FIG. 6. The differential cross section of γ + [4He] →
[3He][J/ψ] + n vs the angle of out going N with the center mass
6.9 GeV.
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FIG. 7. (Color online) The total cross section of γ + [4He] →
[3He][J/ψ] + n vs the certain mass of system. The black solid,
red dashed, and blue dot-dashed lines are for the Pomeron and π

exchange, Brodsky’s 2g model, and 2g + 3g model, respectively.

Woods-Saxon form [40]

ρA(�r) = ρ0
1

1 + e(r−R)/t
(46)

with R = 1.1A−1/3 fm and t = 0.53 fm.
Our results using the parameters of Ref. [7] to calculate

vJ/�,N ( �R) in Eq. (44) are listed in the first row of Table II.
We see that the folding model gives 1.62 MeV (7.0 MeV)
for [3He]J/�([12C]J/�) which are much less than 19.86 MeV
(280 MeV) listed in Table I. The predicted cross sections for
γ + 4He → [3He]J/� + n are also found to be much weaker,
close to the blue dot-dashed curve (α3 = 0.16) in Fig. 4.
Clearly, it is difficult to measure such a loosely bound [3He]J/�

state.
To examine the model dependence, we also consider folding

potentials by using three other J/�-N models. Two [4,6]
of them are constructed by using the results from the heavy
quark effective field theory calculation by Peskin [1]. The third
one [5] is from lattice QCD calculation. Their results can also
be written in the Yukawa form of Eq. (39) with A = 1. We find
that these three models do not generate a [3He]J/� bound state
as indicated in Table II. For 12C, the binding energies from
folding model are much weaker than those listed in Table I
from the Pomeron-quark coupling model.

TABLE II. The binding energy of J/ψ-nucleus calculated with
the folding potential defined by Eq. (44) with parameters of vJ/�,N =
−α1

e−μ1r

r
taken from different references. The parameters of Ref. [4]

are obtained from reproducing the scattering length a = −0.24 fm
given in Ref. [4]. (A Gaussian form of the vJ/�,N was used in Ref. [4].)

Model Parameter (MeV) Binding energy (MeV)

α1 μ1 (GeV) [H ]J/� [3He]J/� [12C]J/�

Ref. [7] 0.64 0.63 – 1.62 7.0
Ref. [4] 0.20 0.63 – – 0.91
Ref. [5] 0.10 0.63 – – 0.003
Ref. [6] 0.06 0.63 – – –

C. Photoproduction J/�-(q6) bound states

In Ref. [13], it was suggested that a cc̄ system could interact
strongly with the color octet three-quark [q̄3]8 component
of the six-quark cluster ([q6] = [q3]8[q̄3]8) which could
dominant the short-range part of the deuteron wave function.
The possible attractive force between a J/� and a six-quark
cluster was suggested in the study of Ref. [12] where the
excitation of a hidden charm |qqqqqqcc̄〉 state is introduced
to explain the spin correlation of pp elastic scattering near the
J/� production threshold. Here we examine the condition
under which a bound [q6]J/� color singlet state can be
produced in the γ + 3He → [q6]J/� + N reaction. Unlike the
predictions for the photoproduction of [3He]J/� described
in the previous subsection, very little information on [q6]
and the [q6] − J/� interaction is available. We thus need
to make various assumptions which can only be considered to
be plausible for estimating the production cross sections.

In the impulse approximation, as described in Sec. II, we
need the initial N -[q6] wave function in 3He and the final
J/�-[q6] wave function to calculate the cross section of
γ + 3He → [q6]J/� + N . In the following subsections, we
explain our procedure for modeling these two ingredients of
our predictions.

1. Wave function of N-q6 in 3He

We start with a formulation of Refs. [18,42] within which
the Hamiltonian for a two-nucleon system is written as

H = H0 + vNN +
∑

α

h[q6]α↔NN, (47)

where α denotes collectively the total angular momentum
J , the total isospin T , and the parity P , and vNN is
a meson-exchange nucleon-nucleon (NN ) interaction. The
vertex interaction h[q6]α↔NN defines the formation of a six-
quark state [q6]α in NN collisions. The six-quark states [q6]α

are identified with the states predicted by the Bag model
calculations of Mulder [15]. By appropriately choosing the
form of the vertex interaction h[q6]α↔NN , the NN scattering
amplitudes derived from the Hamiltonian Eq. (47) are identical
to those given by using the P -matrix approach of Jaffe and
Low [14] and the compound bag model formulation developed
in Refs. [16,17].

We will make use of the results of Fasano and Lee
[18,19]. They determined the mass Mα of [q6]α cluster and
the interaction h[q6]α↔NN for α =1S0 and 3S1 by fitting the
NN scattering phase shifts up to 1 GeV. Within the simple
s-wave harmonic oscillator model for 3He, the probabilities
P[q6]α of finding the [q6]α-N in 3He are estimated [19] to
be P[q6]1S0 = 0.7% and P[q6]3S1 = 0.06%. For simplicity, we

neglect the small 3S1 component. The bare mass of [q6]
determined in Ref. [18] is M1S0 = 2150 MeV. Here we will
use this information to model the relative wave function of
[q6]α-N which is needed to calculate the cross sections of
γ + 3He → [q6]J/� + N .

We assume that the charge distribution in the region with
the distance r � rc from the center of 3He is completely due to
[q6]α-N components of the wave function. This is illustrated in
Fig. 8. Each rc clearly corresponds to a choice of Pq6 . Within
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FIG. 8. The solid curve is the normalized density distribution
calculated from using Eqs. (50) and (51) with b = 1.35 fm and
lc = 0.5 fm. The dashed line defines rc = 0.29 fm for obtaining the
probability P

[q6]
1S0

= 0.7% for finding the [q6] − N component in
3He by using Eq. (53).

such a model, the charge form factor of 3He is written as

Fc(Q2) = FN3

c (Q2) + Fq6−N
c (Q2). (48)

We next observe that within the conventional nuclear model
[41], the impulse approximation (IA) calculation, which
includes only the one-body nucleon current, of Fc(Q2) is very
close to the data in Q2 � about 10 fm−2 and can be reproduced
very well by the Gaussian distribution of the s-wave harmonic
oscillator wave function. The IA results from Ref. [41] in this
Q2 region are the solid squares in Fig. 9. We next demand
that the s-wave three-nucleon wave function reproduce these
IA results. In addition, the resulting Fc(Q2) in the higher Q2

region must have the similar structure of IA up Q2 ∼ 20 fm−2

although we do not have higher partial wave components of
the three-nucleon wave function. We achieve this by using
the s-wave harmonic oscillator wave function with Jastrow
two-body correlation used in Refs. [43,44]. We write

Fc(Q2) =
∫

e−i �Q·�rρ(�r)d�r (49)

with

ρ(�r1) =
∫

d�r2ρ2(�r1, �r2), (50)

where the two-body density is defined by

ρ2(�r1, �r2) = Ne
− r2

1 +r2
2

b2
(
1 − e

− |�r1−�r2 |2
2l2c

)
,

(51)

N = 1

(
√

πb)6

[
l2
c + b2

]3/2[
l2
c + b2

]3/2 − l3
c

.

As seen in Fig. 9, the solid black curve calculated with
b = 1.35 fm and lc = 0.5 fm can reproduce the impulse
approximation calculation results (solid squares) given in
Ref. [41] up to Q2 ∼ 10 fm−2. At higher Q2, the solid curves
have the similar structure of the IA results. For our present
s-wave calculations, we consider the solid curves in Fig. 9 as
the Fc(Q2) in Eq. (48). Accordingly, the NNN contribution
in Eq. (48) is calculated from

FN3

c (Q2) =
∫ ∞

rc

r2dr

∫
d	re

−i �Q·�rρ(�r) (52)

and the probability P[q6] is defined by

Pq6 =
∫ rc

0
r2dr

∫
d	rρ(�r). (53)

For Pq6 = 0.7% determined in Ref. [18] within the com-
pound bag model of NN scattering, we choose rc = 0.292
fm to calculate Eq. (52) and get the blue dotted curve in the
left-hand side of Fig. 9. In the right-hand side, the blue dotted
curve is from the calculation using Eq. (52) with rc = 0.630
fm which gives Pq6 = 6.3%. Clearly, both results agrees well
with the IA (solid squares) and the solid curve only in the low
Q2 region. Our next task is to model Fq6−N (Q2) such that for
each rc, Fc(Q2) (solid black curve) in Fig. 9 up to Q2 ∼ 15 fm2

can be reproduced, as required by Eq. (48).

FIG. 9. (Color online) The charge form factor Fc(Q2) for 3He. The solid squares are from the impulse approximation (IA) calculation of
Ref. [41]. The dotted blue curves are F N3

c (Q2) calculated from using Eq. (52) with rc = 0.292 fm and Pq6 = 0.7% (left) and rc = 0.630 fm
and Pq6 = 6.3% (right). The red dashed curves are from adding the q6 − N contributions calculated from using Eq. (54) with b∗ = 0.185 fm
(left) and b∗ = 0.414 fm (right).
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TABLE III. The parameters for 6q-N and 6q-J/ψ systems. See
text for the explanations of the notations.

Model q6-N q6-J/ψ

Pq6 rc b∗ 〈r2〉1/2 μq6 αq6 B.E.
(fm) (fm) (fm) (GeV) (MeV)

A1 0.7% 0.292 0.185 0.226 0.6 1.33 498.42
A2 1.0 1.50 389.63
B1 4.0% 0.533 0.346 0.424 0.6 0.83 104.08
B2 1.0 1.05 79.77
C1 6.38% 0.630 0.414 0.507 0.6 0.75 65.84
C2 1.0 0.97 51.33

For simplicity, we assume that Fq6−N
c (Q2) can be calculated

from a normalized Gaussian distribution

Fq6−N
c (Q) = Pq6

∫
e−i �Q·�r

[
1

(
√

πb∗)3
e

−r2

b∗2

]
d�r. (54)

Accordingly, the mean radius of q6-N can be defined by

〈r2〉 =
∫ [

1

(
√

πb∗)3
e

−r2

b∗2

]
r2d�r. (55)

We adjust b∗ for each Pq6 to fit the solid curves in Fig. 9.
We find that if Pq6 is larger than 6.5%, no b∗ can fit the form
factor defined by Eq. (48) in the Q2 < 20 fm−2 region. In
the cluster model of Ref. [21], Pq6 = 4.0% is obtained from
fitting the 3He form factor. The Pq6 = 15% determined in Ref.
[20] by fitting the structure function of 3He(e, e′) is beyond
what our formulation can accommodate. For comparison, we
thus choose three different models with Pq6 = 0.7%, 4%, and
6.38% for our calculations. In Table III, we list rc, b∗, and also
〈r2〉1/2 calculated from using Eq. (55) for these three cases.
Our fits are the red dashed curves in Fig. 9 for Pq6 = 0.7%
(left) and 6.38% (right).

Once b∗ is determined, we then assume that the relative
wave function of [q6]-N can be described by the harmonic
wave function with the same b∗. This should be reasonable
for making order of magnitude estimates in this work. A more
sophisticated approach should account for the quark charge
distribution in [q6] which is beyond the scope of this work.
Also, the sharp cutoff at r = rc to define FN3

c in Eq. (52)
should perhaps be better modeled. For our present qualitative
estimations, this simple procedure should be sufficient.

2. Wave function of 6q- J/ψ bound state

We follow the procedure of Sec. IV B to assume that the
q6-J/� bound states ([q6]J/�) are also defined by a potential
of Yukawa form

VJ/�,q6 (r) = −αq6
e−μq6 r

r
. (56)

We expect that if a [q6]J/� bound state can be produced, its
size must be small for color field to give strong attractive force.
Thus it is reasonable to assume that the mean radius of [q6]J/�

is close to the value 〈r2〉1/2 of the initial q6-N system listed in
Table III. We find that such a small size can be generated from

choosing μq6 > 0.6 GeV in defining the potential Eq. (56).
Once a value of μq6 is chosen, we then determine the potential
strength αq6 by requiring

〈r2〉 =
∫

|φq6,J/� (�r)|2r2d�r, (57)

where φq6,J/� (�r) is the J/�-q6 relative wave function gener-
ated from the potential Eq. (56), and the values of 〈r2〉1/2 for
various considered cases are listed in Table III. The resulting
αq6 and the binding energies (B.E.) are also listed there. Here
we note that the binding energy increases as the mean radius
〈r2〉1/2 and the corresponding probability Pq6 decrease.

3. The results of γ + 3He → [q6]J/ψ + N

With the wave functions for q6-N and q6-J/� specified in
the previous subsections, we can use the formula in Sec. III,
with trivial changes in notations and spin quantum numbers, to
calculate the total cross section of γ + 3He → [q6]J/ψ + N .
However, we need to multiply the results by the probability
Pq6 of the N -[q6] component in 3He; namely the results from
using Eq. (19) is changed to

dσ

d	
→ P[q6] ×

[
dσ

d	

]
0

, (58)

where [ dσ
d	

]0 is calculated from using Eq. (19) and all
subsequent equations in Sec. III A.

We first consider the case that P[q6] = 0.7% as determined
in Refs. [18,19] from fitting the NN phase shifts up to 1 GeV.
By using the parameters for models A1 and A2 listed in
Table III, we obtain the results shown in Fig. 10. We observe
that with the same small radius 〈r2〉1/2 = 0.226 fm for the
produced [q6]J/ψ system, the predicted cross sections are very
close despite their potential range, measured by 1/μq6 , and
coupling constant αq6 can be very different. The same finding
is also from comparing the predicted cross sections from the
models B1 and B2, and also the models C1 and C2.

In the left-hand side of Fig. 11, we show the dependence
of the predicted cross sections on Pq6 by comparing the cross
sections from three models A1, B1, and C1 listed in Table III.

FIG. 10. (Color online) The total cross section of γ + 3He →
[q6]J/ψ + N as function of the γ -3He invariant mass W . The black
solid and red dashed curves are for the case A1 and A2 in the
Table III, respectively.
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FIG. 11. (Color online) The black solid, red dashed, and blue dotted-dashed lines are from models A1, B1, and C1 of Table III, respectively.
Left: The total cross section of γ + 3He → [q6]J/ψ + N as function of the γ -3He invariant mass W . Right: The differential cross section of
γ + 3He → q6

[J/ψ] + N of the outgoing N at γ -3He invariant mass W = 6.6 GeV.

We observe that as Pq6 decreases, the peak is shifted to higher
energies. Each case has different threshold energy due to
their differences in binding energies, as seen in Table III.
Their magnitudes are comparable despite their Pq6 are very
different. We find that this is due to the fact that the cross
section [ dσ

d	
]0 in Eq. (58) for the model with smaller Pq6 =

0.7% is a factor of about 10 larger than that for the model
with larger Pq6 = 6.38%, since this large momentum transfer
reaction favors the production of [q6]J/� with smaller size
characterized by 〈r2〉1/2 in Table III. The situation is similar to
what we discussed in explaining the results shown in Fig. 4.
Thus the magnitudes of the cross sections from three models at
peak positions are comparable because the factor of about 10
difference in [ dσ

d	
]0 in Eq. (58) is compensated by the similar

factor of about 10 in Pq6 . However, the three models have rather
different energy dependence, as also seen in the left-hand side
of Fig. 11. On the other hand, they are all forward peaked,
as shown in the right-hand side of Fig. 11 for the differential
cross sections at W = 6.6 GeV.

The results shown in Fig. 11 suggest that the upper bound of
the predicted total cross sections of γ + 3He → [q6]J/� + N

is about 2–4 pb.

V. SUMMARY AND DISCUSSIONS

We have presented predictions of the cross sections of
γ + 4He → N + [3He]J/� reaction at energies near the J/�

production threshold. In the impulse approximation, the
calculations have been performed by using several γ + N →
J/� + N models based on the Pomeron-exchange and pion-
exchange mechanisms. The J/� wave functions in [3He]J/�

are generated from various J/�-nucleus potentials which
are constructed by either using a procedure based on the
Pomeron-quark coupling mechanism [7], or folding a J/�-N
potential vJ/�,N into the nuclear densities. We consider vJ/�,N

derived from the effective field theory approach, lattice QCD,
and Pomeron-quark coupling model. The upper bound of the
predicted total cross sections is about 0.1–0.3 pb.

Clearly, our investigations are only for estimating the
cross sections to facilitate the experimental considerations of

possible measurements of [3He]J/� bound states at Jefferson
Laboratory. Several improvements are needed for more quan-
titative predictions. First we need precise data of γ + p →
J/� + p near threshold to distinguish several models we have
considered and also to develop a more sophisticated model.
We also need the data to pin down the J/�-N interaction
for a more realistic calculation of J/�-nucleus potential
such as the folding model considered in this work. One
possibility is to use the π + 2H → p + J/� + n reaction to
extract the J/�-N scattering length, as suggested in Ref. [4].
Alternatively, we can apply the model presented in this paper
to determine the J/�-N interactions by investigating the
γ + 2H → p + J/� + n reaction. Possible experiments on
these two processes will be very useful. We of course also
need to use more realistic wave functions for 3He and 4He
while the s-wave oscillator wave functions employed in this
investigation are reasonably consistent with the charge form
factors calculated from the conventional nuclear models.

Motivated by the previous investigations [12,13] on the
effects due to multiquark clusters in pp and γ + 2H →
J/� + n + p, we have also considered the possibility of the
production of a [q6] − J/� bound state due to a six-quark [q6]
cluster in 3He. The compound bag model of NN scattering
and the quark cluster model of nuclei are used to estimate
the [q6]-N wave function in 3He by imposing the condition
that the sum of the contributions from [q6]-N and NNN

components to the 3He charge form factor must be consistent
with what are predicted by the conventional nuclear models
[41] which explain the data very well. The upper bound of the
predicted total cross sections of γ + 3He → [q6]J/� + N is
about 2–4 pb, depending on the model of γ + N → J/� + N

used in the calculations. If such bound states can be identified,
it will open up a new window for investigating the role of the
gluon field in determining the hadron structure.
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