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We report in a systematic way the predictions of the nonrelativistic hypercentral constituent quark model for
the electromagnetic excitations of baryon resonances. The longitudinal and transverse helicity amplitudes are
calculated with no free parameters for fourteen resonances, for both protons and neutrons. The calculations lead
to an overall fair description of data, especially in the medium-Q2 range, where quark degrees of freedom are
expected to dominate.
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I. INTRODUCTION

Various constituent quark models (CQMs) [1] have been
proposed in the recent past after the pioneering work of Isgur
and Karl (IK) [2]. Among them we quote the relativized
Capstick-Isgur (CI) model [3], the algebraic approach (BIL)
[4], the hypercentral CQM (hCQM) [5–7], the chiral Goldstone
boson exchange model (GBE) [8,9], and the Bonn instanton
model (BN) [10].

The ingredients of the models are quite different, but they
have a simple general structure, since they can be split into a
spin-flavor-independent part Vinv, which is SU(6) invariant and
contains the confinement interaction, and a SU(6)-dependent
part Vsf , which contains spin and eventually flavor-dependent
interactions, in agreement with the prescription provided by the
early lattice QCD calculations [11]. For the latter, the hyperfine
interaction is often used [12]. They are all able to reproduce the
baryon spectrum, which is the first quantity to be described,
but a real test of the models is provided by their systematic
and consistent application to the description of other physical
quantities of the nucleon. In this respect it is interesting to
see to what extent and how systematically the various CQMs
have been used; one should not forget that in many cases
the calculations referred to as a CQM are actually performed
using a simple harmonic oscillator (h.o.) wave function for
the internal quark motion in either a nonrelativistic (HO) or
relativistic (rHO) framework.

The photocouplings for the excitation of the baryon reso-
nances have been calculated in various models; among others,
we quote HO [13], IK [14], CI [15], BIL [4], and hCQM [16]
(for a comparison among these and other approaches, see,
e.g., Refs. [16,17]). The calculations are in general able to
reproduce the overall trend, but the strength is systematically
less than the data; such similarity of results coming from
quite different models can be ascribed to the common SU(6)
structure quoted above.

In many cases the models have been applied to the
description of the elastic nucleon form factors. The algebraic
method of BIL [4,18] has been used, assuming a definite charge
distribution along the string connecting quarks, while the CI

model is the basis of a light front calculation by the Rome
group [19] and gives a good description of data, provided
that quark form factors are introduced. The hCQM has been
first applied in the nonrelativistic version with Lorentz boosts
[20,21], showing that the recently observed [22] behavior of
the ratio between the charge and magnetic form factors of the
proton may be ascribed to relativistic effects; the hCQM has
been reformulated relativistically in a point form approach,
and the resulting elastic nucleon form factors are quite good
and further improved by the introduction of intrinsic quark
form factors [23,24]. A good description of the elastic form
factors is achieved also using the GBE [25,26] and the BN [27]
models, both being fully relativistic.

The calculation of the elastic form factors allows to
understand to what extent the ground state is under control,
whereas the study of the Q2 behavior of the excitation to
the baryon resonances provides a sensible test of both the
energy and the short-range properties of the quark structure.
This fact motivates the attention that has been devoted to the
electromagnetic transition form factors (helicity amplitudes).

In the HO framework, there are various calculations of
the transverse helicity amplitudes; among them we quote
Refs. [13,14,28–30], while a systematic rHO approach has
been used by Ref. [31]. A light cone calculation, using
the CI [3] model, has been successfully applied to the �

[32] and Roper excitation [33]. For more recent light cone
approaches, see Ref. [34] and references therein. The algebraic
method, with the assumed charge distribution of the string,
has been also used for the calculation of the transverse helicity
amplitudes. The hCQM, in its nonrelativistic version, leads to
nice predictions for the transverse excitation of the negative
parity resonances [35]. In both cases the theoretical curves
exhibit depletion at low Q2, which is consistent with the results
for the photocouplings.

A systematic description of the helicity amplitudes is
still lacking. In this paper we present the predictions of the
nonrelativistic hCQM [5] for the longitudinal and transverse
form factors for the excitation of fourteen baryon resonances,
in comparison with the most recent experimental data. The
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FIG. 1. (a) The experimental spectrum of the nonstrange three- and four-star resonances [38]. The states are reported in columns with the
same parity P and grouped into SU(6) multiplets. (b) The spectrum given by the SU(6)-invariant part of the Hamiltonian Eq. (9).

curves for the transverse excitation of the negative-parity
resonances have been already published in Ref. [35], but we
report them here also since in the past years new data have been
published. Some of the remaining curves have been presented
at various conferences [36].

II. THE HYPERCENTRAL MODEL

We review briefly the hypercentral CQM, introduced in
Ref. [5], where the free parameters of the quark interaction
have been fixed in order to describe the nonstrange baryon
spectrum. The same parameters have been used for the
calculation of various quantities (photocouplings [16], trans-
verse helicity amplitudes for the excitation of negative parity
resonances [35], and elastic nucleon form factors [21,37]).
These parameters are used for the present calculation of the
longitudinal and transverse helicity amplitudes.

The four- and three-star [38] nonstrange resonances can be
arranged in SU(6) multiplets, indicating that the quark dynam-
ics has a dominant SU(6) invariant part that accounts for the
average multiplet energies [see Fig. 1(a)]. The splittings within
the multiplets are obtained by means of a SU(6) violating
interaction, which can be spin and/or isospin dependent and
can be treated as a perturbation.

After removal of the center-of-mass coordinate, the space
configurations of three quarks in the nonstrange baryons are
described by the Jacobi coordinates, �ρ and �λ,

�ρ = 1√
2

(�r1 − �r2), �λ = 1√
6

(�r1 + �r2 − 2�r3). (1)

One can introduce the hyperspherical coordinates, which
are obtained by substituting ρ = | �ρ| and λ = |�λ| with the
hyperradius, x, and the hyperangle, ξ , defined respectively
by

x =
√

�ρ2 + �λ2, ξ = arctg

(
ρ

λ

)
. (2)

Using these coordinates, the kinetic term in the three-body
Schrödinger equation can be rewritten as [39]

− 1

2m
(�ρ + �λ) = − 1

2m

(
∂2

∂x2
+ 5

x

∂

∂x
− L2(�ρ,�λ, ξ )

x2

)
.

(3)

where L2(�ρ,�λ, ξ ) is the six-dimensional generalization
of the squared angular momentum operator. Its eigenfunc-
tions are the well-known hyperspherical harmonics [39]
Y[γ ]lρ lλ (�ρ,�λ, ξ ) having eigenvalues γ (γ + 4), with γ =
2n + lρ + lλ (n is a non-negative integer); they can be
expressed as products of standard spherical harmonics and
Jacobi polynomials.

In the hCQM [5], the SU(6) invariant quark interaction is
assumed to depend on the hyper-radius x only Vinv = V3q(x). It
has been observed that a two-body quark-quark potential leads
to matrix elements in the baryon space quite similar to those of
a hypercentral potential [40]. On the other hand, a two-body
potential that is treated in the hypercentral approximation [41]
and averaged over angles and hyperangle, is transformed
into a potential that depends on x only; in particular, a
power-like two-body potential

∑
i<j (rij )n in the hypercentral

approximation is given by a term proportional to xn. The
hypercentral approximation has been shown to be valid, since
it provides a good description of baryon dynamics, especially
for the lower states [41].

The hyper-radius x is a function of the coordinates of all
the three quarks and V3q(x) has also a three-body character.
There are many reasons supporting the idea of considering
three-body interactions. First of all, three-body mechanisms
are certainly generated by the fundamental multigluon vertices
predicted by QCD; however, their explicit treatment is not
possible with the present theoretical approaches and the
presence of three-body mechanisms in quark dynamics can
be simply viewed as “QCD inspired.” Furthermore, flux
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tube models, which have been proposed as a QCD-based
description of quark interactions [42], lead to Y-shaped three-
quark configurations, besides the standard �-like two-body
ones. A three-body confinement potential has been shown
to arise also if the quark dynamics is treated within a bag
model [43]. Finally, it should be remembered that threee-body
forces have been considered also in the calculations of Ref. [44]
and in the relativized version of the Isgur-Karl model [3].

For a hypercentral potential the three-quark wave function
is factorized,

ψ3q( �ρ, �λ) = ψνγ (x)Y[γ ]lρ lλ (�ρ,�λ, ξ ). (4)

The hyper-radial wave function is labeled by the grand angular
quantum number γ defined above and by the number of nodes
ν; it is obtained as a solution of the hyper-radial equation[

d2

dx2
+ 5

x

d

dx
− γ (γ + 4)

x2

]
ψνγ (x)

= −2m[E − V3q(x)]ψνγ (x). (5)

Equation (5) can be solved analytically in two cases: The
first is the six-dimensional h.o.∑

i<j

1

2
k(�ri − �rj )2 = 3

2
kx2 = Vh.o.(x) (6)

and the hyper-Coulomb (hC) potential

VhC(x) = −τ

x
. (7)

The hC term 1/x has important features [5,45]. First of all,
the negative parity states are exactly degenerate with the first
positive parity excitations. The observed Roper resonance is
somewhat lower with respect to the negative parity baryon
resonance, at variance with the prediction of any SU(6)-
invariant two-body potential, therefore the hypercoulomb
potential provides a good starting point for the description
of the spectrum. Moreover, the resulting form factors have a
power-law behavior, again leading to an improvement with
respect to the widely used harmonic oscillator.

The hypercentral model potential includes a confinement
term that is linear in x:

V (x) = −τ

x
+ αx. (8)

Interactions of the linear type plus Coulomb-like type have
been used for the meson sector, for example, the Cornell
potential, and have been supported recently by lattice QCD
calculations [46]. In this respect, the potential Eq. (8) can be
considered as the hypercentral approximation of the lattice
QCD potential.

The splittings within the multiplets are produced by a
perturbative term breaking SU(6), which can be assumed to be
the standard hyperfine interaction Hhyp [2]. The three-quark
Hamiltonian is then

H = p2
λ

2m
+ p2

ρ

2m
− τ

x
+ αx + Hhyp, (9)

where m is the quark mass (taken equal to 1/3 of the nucleon
mass). The strength of the hyperfine interaction is determined
in order to reproduce the � − N mass difference, and the

remaining two free parameters are fitted to the spectrum,
leading to the following values [5]:

α = 1.16 fm−2, τ = 4.59. (10)

The spectrum given by the SU(6)-invariant part of the
Hamiltoniana Eq. (9) is reported in the right part of Fig. 1. The
degeneracy between the 0+

S and 1−
M states, typical of the hyper-

Coulomb interaction, is removed by the confinement term.
Having fixed the parameters of the potential, the hyper-

radial wave functions for the ground and excited states can
be calculated and therefore one can build up the three-quark
states for the various resonances, taking due account of the
antisymmetry requirements. In fact, the complete three-quark
wave function in general can be factorized in four parts, that
is, the color, spin, flavor (isospin for nonstrange baryons), and
space factors:

3q = θcolor · χspin · �isospin · ψ3q( �ρ, �λ). (11)

The color wave function must be completely antisymmetric
in order to give rise to colorless baryons, and therefore the
remaining factors have to be combined to an overall symmetric
function.

The introduction of SU(6) configurations is beneficial, since
in this way the spin and flavor states are combined to form
a unique SU(6) state, which must share the same symmetry
property with the space wave function. In the appendix we give
the explicit form of the SU(6) configurations describing the
various baryon states. Since the h.o. is a hypercentral potential
as well, the SU(6) configurations are obtained by means of the
same procedure followed in Ref. [2]: By simply substituting
ψh.o.

νγ (x) with ψνγ (x), the eigenfunctions are obtained with the
hypercentral potential of Eq. (8).

The mixing is provided by the hyperfine interaction in
Eq. (9) and the mixing coefficients are obtained by fitting the
observed baryon spectrum. In this way the model is completely
fixed and the knowledge of the states of all resonances
allows systematic calculations of various physical quantities of
interest. This systematic analysis has already been performed
for the photocouplings [16], the transverse electromagnetic
transition amplitudes [35], the elastic nucleon form factors
[20], and the ratio between the electric and magnetic proton
form factors [21]. As far as the transverse electromagnetic
form factors, in Ref. [35] only the negative-parity states have
been considered; however, we have results for the transition to
all resonances.

The three-quark interaction of Eq. (8) has been recently
used in a fully relativistic approach in point form to describe
the elastic electromagnetic form factors of the nucleon [23,24]

In this paper we present the parameter-free calculation of
the longitudinal and transverse transition form factors using the
potential of Eq. (8) with the parameters reported in Eq. (10).

III. THE HELICITY AMPLITUDES

The electromagnetic transition amplitudes, A1/2, A3/2, and
S1/2, are determined by the matrix elementsA1/2,A3/2,S1/2 of
the quark electromagnetic (e. m.) interaction, AμJμ, between
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TABLE I. Photocouplings (in units 10−3 GeV−1/2) predicted by
the hCMQ in comparison with PDG data for proton excitation to N*-
like resonances. The proton transitions to the S11(1650), D15(1675),
and D13(1700) resonances vanish in the SU(6) limit.

Resonance A
p

1/2(hCQM) A
p

1/2(PDG) A
p

3/2(hCQM) A
p

3/2(PDG)

P11(1440) 88 −65 ± 4
D13(1520) −66 −24 ± 9 67 166 ± 5
S11(1535) 109 90 ± 30
S11(1650) 69 53 ± 16
D15(1675) 1 19 ± 8 2 15 ± 9
F15(1680) −35 −15 ± 6 24 133 ± 12
D13(1700) 8 −18 ± 13 −11 −2 ± 24
P11(1710) 43 9 ± 22
P13(1720) 94 18 ± 30 −17 −19 ± 20

the nucleon, N , and the resonance, B, states:

A1/2 =
√

2πα

k

〈
B, J ′, J ′

z = 1

2

∣∣∣∣J+

∣∣∣∣N, J = 1

2
, Jz = −1

2

〉
,

A3/2 =
√

2πα

k

〈
B, J ′, J ′

z = 3

2

∣∣∣∣J+

∣∣∣∣N, J = 1

2
, Jz = 1

2

〉
,

S1/2 =
√

2πα

k

〈
B, J ′, J ′

z = 1

2

∣∣∣∣J0

∣∣∣∣N, J = 1

2
, Jz = 1

2
.

〉

(12)

Jμ is the electromagnetic current carried by quarks and will be
used in its nonrelativistic form [13,14]; k is the virtual photon
momentum in the Breit frame. For the transverse excitation,
the photon has been assumed, without loss of generality, as
left handed. Moreover, the z axis is assumed along the virtual
photon momentum.

In order to compare the theoretical calculations with data,
one has to consider that the helicity amplitudes extracted
from the meson photoproduction contain also the sign of the
πNN∗ vertex. The theoretical helicity amplitudes are therefore
defined up to a common phase factor ζ :

A1/2,3/2 = ζA1/2,3/2, S1/2 = ζS1/2. (13)

The factor ζ is taken in agreement with the choice of Ref. [14],
with the exception of the Roper resonance, in which case
the sign is in agreement with the analysis performed in
Ref. [47].

TABLE II. The same as Table I for neutron excitation.

Resonance An
1/2(hCQM) An

1/2(PDG) An
3/2( hCQM) An

3/2(PDG)

P11(1440) 58 40 ± 10
D13(1520) −1 −59 ± 9 −61 −139 ± 11
S11(1535) −82 −46 ± 27
S11(1650) −21 −15 ± 21
D15(1675) −37 −43 ± 12 −51 −58 ± 13
F15(1680) 38 29 ± 10 15 −33 ± 9
D13(1700) 12 0 ± 50 70 −3 ± 44
P11(1710) −22 −2 ± 14
P13(1720) −48 1 ± 15 4 −29 ± 61

TABLE III. The same as Table I for the excitation to �-like
resonances.

Resonance A
p

1/2(hCQM) A
p

1/2(PDG) A
p

3/2(hCQM) A
p

3/2(PDG)

P33(1232) −97 −135 ± 6 −169 −250 ± 8
S31(1620) 30 27 ± 11
D33(1700) 81 104 ± 5 70 85 ± 2
F35(1905) −17 26 ± 11 −51 −45 ± 20
F37(1950) −28 −76 ± 12 −35 −97 ± 10

In the following we report the results of the calculations for
those resonances which, according to the particle data group
(PDG) classification [38], have an electromagnetic decay with
three- or four-star status. This happens for twelve resonances,
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FIG. 2. (Color online) The P33(1232) helicity amplitudes pre-
dicted by the hCQM (full curves) A3/2 (a), A1/2 (b), and S1/2 (c),
in comparison with the data of Ref. [49] and with the the MAID2007

analysis [50] of the data by Refs. [51,52]. The PDG points [38] are
also shown.
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namely the I = 1
2 states,

P11(1440), D13(1520), S11(1535), S11(1650),
(14)

D15(1675), F15(1680), P11(1710),

and the I = 3
2 ones,

P33(1232), S31(1620), D33(1700),
(15)

F35(19005), F37(1950).

Besides these states, we also considered the states D13(1700)
and P13(1720), which are excited in an energy range
that is particularly interesting for the phenomenological
analysis.

The calculations of the matrix elements of Eqs. (12)
are performed using as baryon states the eigenstates of the
Hamiltonian (9). For each resonance, in the appendix we list
the states in the SU(6) limit; the physical states of the various
resonances are given by the configuration mixing produced by
the hyperfine interaction in Eq. (9).

It should be stressed that, after having fixed the free
parameters [see Eq. (10)], in order to reproduce the baryon
spectrum the baryon states are completely determined and the
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FIG. 3. (Color online) The P11(1440) proton transverse (a) and
longitudinal (b) helicity amplitudes predicted by the hCQM (full
curves), in comparison with the data of Refs. [49,60], and the
MAID2007 analysis [50] of the data by Refs. [51,52,61,62]. The PDG
point [38] is also shown.
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FIG. 4. (Color online) The D13(1520) proton helicity amplitudes
predicted by the hCQM (full curves) A3/2 (a), A1/2 (b), and S1/2 (c),
in comparison with the data of Refs. [49,60], with the compilation
reported in Refs. [65,66] and the MAID2007 analysis [50] of the data
by Refs. [51,52]. The PDG points [38] are also shown.

results for the helicity amplitudes reported in the following
sections are parameter-free predictions of the hCQM.

A. The photocouplings

The proton and neutron photocouplings predicted by the
hCQM [16] are reported in Tables I–III and compared with the
PDG data [38]. The overall behavior is fairly well reproduced,
but in general there is a lack of strength. The proton transitions
to the S11(1650), D15(1675), and D13(1700) resonances vanish
exactly in absence of hyperfine mixing and are therefore
entirely due to the SU(6) violation. The results obtained
with other calculations are qualitatively not much different
[16,17] because the various CQM models have the same SU(6)
structure in common.
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FIG. 5. (Color online) The S11(1525) proton transverse (a) and
longitudinal (b) helicity amplitudes predicted by the hCQM (full
curve), in comparison with the data of Ref. [67] (open diamonds),
[49] (full diamonds), [68] (crosses), [69] (open squares), [70] (full
squares), the MAID2007 analysis [50] (full triangles) of the data by
Ref. [51], and the compilation of the Bonn-Mainz-DESY data of
Refs. [71–74] (stars), presented in Ref. [70]. The PDG point [38]
(pentagon) is also shown.

B. The transition form factors

Taking into account the Q2 behavior of the transition
matrix elements, one can calculate the hCQM helicity
amplitudes [35].

In order to compare results with the experimental data,
the calculation should be performed in the rest frame of the
resonance (see, e.g., Ref. [48]). The nucleon and resonance
wave functions are calculated in their respective rest frames
and, before evaluating the matrix elements given in Eqs. (12),
one should boost the nucleon to the resonance c.m.s. In our
nonrelativistic approach such boost is trivial but not correct,
because of the large nucleon recoil. In order to minimize the
discrepancy between the nonrelativistic and the relativistic
boost when comparing results with the experimental data, we
use the Breit frame, as in Refs. [4,35]. Therefore we use the
following kinematic relation:

�k2 = Q2 + (W 2 − M2)2

2(M2 + W 2) + Q2
, (16)

where M is the nucleon mass, W is the mass of the resonance,
k0 and �k are the energy and the momentum of the virtual
photon, respectively, and Q2 = �k2 − k2

0. For consistency, in
the calculations we have used the values of W given by the
model and not the phenomenological ones.
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FIG. 6. (Color online) The proton helicity amplitudes predicted
by the hCQM for the excitation of S31(1620) (a) and S11(1650) (b),
respectively, in comparison with the data of Ref. [49] (A1/2 open
diamonds, S1/2 full diamonds), [75] (A1/2 open diamonds, S1/2 full
diamonds), the compilation reported in Ref. [65] and the MAID2007

analysis [50] (A1/2 up triangles, S1/2 down triangles) of the data in
Refs. [51,52], and the compilation of the Bonn-Mainz-DESY data of
Refs. [71–74] (crosses) presented in Ref. [70]. The PDG points [38]
(pentagons) are also shown.

The matrix elements of the e.m. transition operator between
any two 3q states are expressed in terms of integrals involving
the hyper-radial wave functions and are calculated numer-
ically. The computer code has been tested by comparison
with the analytical results obtained with the h.o. model of
Refs. [13,14] and with the analytical model of Ref. [45].

C. The excitation to the � resonance

The N − � helicity amplitudes are shown in Fig. 2. The
transverse excitation to the � resonance has a lack of strength
at low Q2, a feature in common with all CQM calculations.
The medium-high-Q2 behavior is decreasing too slowly with
respect to data, similar to what happens for the nucleon
elastic form factors [20,23]. In this case, the nonrelativistic
calculations are improved by taking into account relativistic
effects. Since the � resonance and the nucleon are in the
ground state SU(6) configuration, we expect that their internal
structures have strong similarities and that a good description
of the N − � transition from factors is possible only with a
relativistic approach. Such a feature is further supported by
the fact that the transitions to the higher resonances are only
slightly affected by relativistic effects [20].
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FIG. 7. (Color online) The proton helicity amplitudes predicted
by the hCQM for the excitation of the D15(1675) (a) and D13(1700)
(b), respectively, in comparison with the data of Ref. [49]. The PDG
points [38] are also shown.

An important issue in connection with the � resonance is
the possible deformation, which manifests itself in a nonzero
value for the transverse and longitudinal quadrupole strengths.
To this end one considers in particular the ratio

REM = − GE

GM

= −
√

3A1/2 − A3/2√
3A1/2 + A3/2

, (17)

where GE and GM are, respectively, the transverse electric and
magnetic form factors for the N → � transition [53]. If the
quarks in the nucleon and the � are in a pure S-wave state there
is no quadrupole excitation [54]. A deformation can be pro-
duced if the interaction contains a hyperfine term as in Eq. (9)
and both the nucleon and the � states acquire D components.

At the photon point, the experimental value of the ratio
is REM = −0.025 ± 0.005 [38], which is not far from the
value given by Refs. [14,55]. It should be mentioned that, by
taking into account the higher shells and Siegert’s theorem for
a more accurate and reliable calculation, the value R = 0.02
was obtained [56].

In our model the ratio Eq. (17) is about 0.005, which
means that the deformation is very low. This fact is confirmed
by the small theoretical value of the longitudinal quadrupole
transition amplitude S1/2 [see Fig. 2 (bottom)]. As stated above,
the introduction of relativity is expected to be beneficial, but
the discrepancy may be due to a quite different reason.

An alternative approach to baryon resonance physics is
provided by dynamical models (see, e.g., Refs. [57,58] and
references therein). The calculations performed with the DMT
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FIG. 8. (Color online) The D33(1700) helicity amplitudes pre-
dicted by the hCQM (full curve) A3/2 (a), A1/2 (b), and S1/2 (c) in
comparison with the data of Ref. [75] and the MAID2007 analysis [50]
of the data by Ref. [52]. The PDG points [38] are also shown.

model [57] have shown that the N − � S1/2 transition am-
plitude is almost completely determined by the pionic meson
cloud [59]. Actually, for many other transitions, the meson
cloud seems to give important contributions corresponding
to the lack of strength of the hCQM [59]. This leads to
the problem of missing degrees of freedom in the CQM
calculations, but we come back on this topic.

D. The proton excitation to the second resonance region

1. The Roper

Because of the 1
x

term in the hypercentral potential of
Eq. (9), the Roper resonance can be accommodated in the first
resonance region, at variance with h.o. models, which predict
it to be a 2 h̄ω state. The results for the helicity amplitudes
are shown in Fig. 3. There are problems in the low-Q2 region,

065202-7



E. SANTOPINTO AND M. M. GIANNINI PHYSICAL REVIEW C 86, 065202 (2012)

-10

 0

 10

 20

 30

 40

 50

 60

 0  1  2  3  4  5

A
3/

2 
F

15
(1

68
0)

 (
10

-3
 G

eV
-1

/2
)

Q2 (GeV2)

(a)       hCQM
PDG

Maid07
Azn05-2

-50

-40

-30

-20

-10

 0

 0  1  2  3  4  5

A
1/

2 
F

15
(1

68
0)

 (
10

-3
 G

eV
-1

/2
)

Q2 (GeV2)

(b)       hCQM
PDG

Maid07
Azn05-2

-60

-50

-40

-30

-20

-10

 0

 10

 20

 0  1  2  3  4  5

S
1/

2 
F

15
(1

68
0)

  (
10

-3
 G

eV
-1

/2
)

Q2 (GeV2)

(c)       hCQM
Maid07

Azn05-2

FIG. 9. (Color online) The F15(1680) proton helicity amplitudes
predicted by the hCQM A3/2 (a), A1/2 (b), and S1/2 (c), in comparison
with the data of Ref. [75] and the MAID2007 analysis [50] of the data
by Ref. [52]. The PDG points [38] are also shown.

but for the rest the agreement is interesting, especially if one
remembers that the curves are predictions and the Roper has
been often been considered a crucial state, not easily included
into a constituent quark model description. In the past, exotic
explanations of the Roper have been introduced; in particular,
a model of the Roper as a three-quark-gluon structure has been
proposed [63]. However, such model predicts a vanishing value
for the longitudinal excitation [64], a result ruled out by the
data shown in Fig. 3. In the present model, the Roper is a
hyper-radial excitation of the nucleon.

2. The negative-parity states

It should be stressed that, apart from the case of the
D13(1700) and D15(1675) resonances, the transverse helicity
curves are the same as in Ref. [35].
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FIG. 10. (Color online) The proton helicity amplitudes predicted
by the hCQM for the excitation of P11(1710) (a) and P13(1720) (b),
respectively, in comparison with the data of Ref. [75] (A3/2 open
diamond, A1/2 full diamond, A3/2 full box) and the MAID2007 analysis
[50] (A3/2 full up triangle, A1/2 full down triangle, A3/2 open down
triangle) of the data by Refs. [51,52]. The PDG point [38] (pentagon)
is also shown.

The hCQM results for the D13(1520) and the S11(1535)
resonances [35] are given in Figs. 4 and 5, respectively. The
agreement in the case of the S11 is remarkable, the more
so since the hCQM curve was published three years before
the recent Jefferson Laboratory data [49,67,69,70]. In general
the Q2 behavior is reproduced, except for discrepancies at
small Q2, especially in the A

p

3/2 amplitude of the transition
to the D13(1520) state. These discrepancies could be ascribed
either to the nonrelativistic character of the model or to the
lack of explicit quark-antiquark configurations, which may be
important at low Q2. The kinematical relativistic corrections
at the level of boosting the nucleon and the resonance states to
a common frame are not responsible for these discrepancies,
as we have demonstrated in Ref. [37].

Similar results are obtained for the other negative-parity
resonances (see Figs. 6, 7, and 8).

It is interesting to discuss the influence of the hyperfine
mixing on the excitation of the resonances. Usually there is
a very small difference between the values calculated with
or without hyperfine interaction. In some cases, however
the excitation strength vanishes in the SU(6) limit and
the nonzero final result is entirely due to the hyperfine
mixing of states. This happens for the excitation to the
S11(1650) resonance, for both the transverse and longitudinal
strengths.
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FIG. 11. (Color online) The proton helicity amplitudes predicted
by the hCQM for the excitation of F35(1905) (a) and F37(1950) (b),
respectively. The PDG points [38] (pentagons) are also shown.

The same thing happens for all the three helicity amplitudes
of the D13(1700) resonance, but in this case, at variance with
the S11(1650) state, the hyperfine mixing produces a low exci-
tation strength. Also, in the case of the transverse excitation of
the D15(1675), the strength is given by the hyperfine mixing,
while the longitudinal amplitude S1/2 vanishes also in presence
of a SU(6) violation.

It should be mentioned that the r.m.s. radius of the proton
corresponding to the parameters of Eq. (10) is 0.48 fm, which
is just the value fitted in Ref. [13] to the D13 photocoupling.
The missing strength at low Q2 can be ascribed to the lack of
quark-antiquark effects [35], probably important in the outer
region of the nucleon. In this way the emerging picture in
connection with the resonance excitation is that of a small
confinement zone of about 0.5 fm surrounded by a sort of
quark-antiquark (or meson) cloud.

For the higher negative-parity resonance, the main problem
is the lack of data; however, the comparison with the
hypercentral CQM does not contradict the observations made
above.

E. The proton excitation to the third and fourth
resonance regions

In this region the strength is dominated by the excitation
to the F15(1680) resonance and the results calculated with the
hCQM are shown in Fig. 9.

The situation is similar to that of the D13(1520) resonance.
Here also the A1/2 amplitude is fairly well reproduced, with
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FIG. 12. (Color online) The neutron excitation strength predicted
by the hypercentral CQM, in comparison with the PDG points [38]
(part 1).

possibly some problem in the low-Q2 region, while the A3/2

amplitude exhibits a relevant lack of strength al low Q2. For
the longitudinal amplitude, there is also a lack of strength;
however, new data at medium Q2 are certainly needed.

As for the higher resonances, we note that our model
predicts a second Roper-like state in the third resonance region
(see Fig. 1). Performing the calculations identifying it with
the state P11(1710), we get a relevant excitation strength
[Fig. 10(a)]. The problem of a second Roper state is still
open, since in some analysis there seems to be no evidence
of its existence [38,76]; on the contrary, the presence of a state
P11(1710) is supported by the recent analysis based on the
Dubna-Mainz-Taipei (DMT) dynamical model [77]. In this
energy region, the strength seems to be dominated by the
P13(1720) resonance [Fig. 10(b)], for which few data up to
Q2 = 1 (GeV)2 [75] are available. With these scarce data, a
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FIG. 13. (Color online) The neutron excitation strength predicted
by the hypercentral CQM, in comparison with the PDG points [38]
(part 2).

comparison is preliminary; however, here again there seems to
be a lack of strength, especially for the A3/2 amplitude.

In Fig. 11, the results for the remaining higher resonances
F35(1905) and F37(1950) are shown. For the former, a relevant
excitation strength is predicted for the A3/2 amplitude. We
hope new data will allow a reasonable comparison with the
theoretical quantities.

F. The neutron excitation to the I = 1
2 states

Of course, the proton and neutron excitations to the I = 3
2

states are the same for isospin reasons.
In all the other cases there are both isoscalar and isovector

contributions, which make the neutron strength quite different
from the proton ones, as can be seen in Figs. 12, 13, and 14.

As a general observation, at least one of the neutron helicity
amplitudes is not negligible. Also the longitudinal (charge)
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FIG. 14. (Color online) The neutron excitation strength predicted
by the hypercentral CQM, in comparison with the PDG points [38]
(part 3).

excitation is often relevant, an effect due clearly to the presence
of charged particles moving within the neutron. Particularly in-
teresting is the comparison between the two Roper resonances:
for the P11(1440) state, the excitation is purely transverse,
while the P11(1710) presents comparable longitudinal and
transverse amplitudes, although opposite in sign.

The measurement of the neutron excitation is difficult,
since one has to rely upon targets with bound neutrons, but
experimental information would be highly important in order
to test our knowledge on the internal nucleon structure.

IV. CONCLUSIONS

We have reported the predictions of the hCQM [5] for
the transverse and longitudinal helicity amplitudes regarding
the electromagnetic excitation of various baryon resonances.
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The transverse excitation amplitudes to the negative-parity
resonances have been already presented in Ref. [35]. The
excitations chosen in this paper concern the twelve baryon
resonance that, according to the PDG classification [38],
exhibit a relevant photoexcitation, and the two resonances
D13(1700) and P13(1720), which seem to play a relevant role
in the phenomenological analyses.

The comparison between data and theoretical results suffers
from the lack of experimental points for various resonances,
especially at high Q2. However, the model, even if non-
relativistic, is able to give an overall description of present
data, in particular of the medium-high-Q2 behavior of many
amplitudes. At low Q2 there is often a lack of strength,
especially for the transverse A3/2 amplitudes. We recall that
the calculated proton radius provided by the model is about
0.48 fm and that a radius of this size is required for the
description of the e.m. excitation to the F15 and D13 resonances
[13]. The smallness of the proton radius together with the lack
of strength in the low-Q2 region suggest an interesting picture
for the protons (and consequently for hadrons), namely that of
a small core, with radius of about 0.5 fm, surrounded by an
external quark-antiquark (or meson) cloud. The contributions
coming from this external cloud have been pointed out as
a possible origin of the missing strength [7,16,35] and are
obviously lacking in the available CQMs. Their effect is
expected to decrease for medium-high Q2 and therefore it
is not a surprise that CQMs fail to reproduce the strength
at the photon point but give reasonable results for medium
Q2. These considerations are supported by the evaluation
of the pion contributions performed using the Mainz-Dubna
dynamical model [57], which have shown that the importance
of such contributions systematically decreases with increasing
Q2, going rapidly to zero [59].

Another important issue is relativity. The present hCQM is
nonrelativistic and allows us to calculate the three-quark wave
function in the baryon rest frame. The e.m. form factors are
evaluated in the Breit frame [see Eq. (16)], and this implies
that a Lorentz transformation should to be applied to both
the initial and final baryon states. This can be done quite
easily [37], with the result that the helicity amplitudes are
only slightly modified, probably because the high mass values
of the resonances lead to a nonrelevant recoil of the three-quark
states. Such situation is quite different from the elastic form
factor case [20], where the simple application of Lorentz boosts
is important but still not sufficient to obtain a good description
of the experimental data: In fact a fully relativistic theory
is needed, as in Refs. [19,23–27], which uses a relativistic
Hamiltonian for the dynamics of the three-quark system.
Such relativistic formulation should be extended also to the
calculation of the helicity form factors (work in this direction
is in progress); however, because of the above considerations,
the expectation is that the calculated helicity amplitudes should
not differ too much from the nonrelativistic ones and that
the relativistic corrections are not responsible for the lack of
strength at low Q2.

Finally, it should be remembered that a good description
of the elastic form factors in some cases is achieved only by
introducing intrinsic quark form factors [19,23,24]. Presently
the role of these form factors is to parametrize all those

effects that are not included in the theory, namely any intrinsic
structure of the constituent quarks, but also the quark-antiquark
pair or meson cloud contributions. In order to investigate
the role of the constituent quark structure, especially at high
Q2 [78], it would be necessary to separate the two effects. An
important breakthrough in this direction is provided by recent
work [79–83] in which an unquenched constituent quark model
for baryons has been formulated and the quark-antiquark pair
contributions to the spin and the flavor asymmetry in the proton
have been calculated consistently.

The way is now open for a fully relativistic calculation of the
helicity amplitudes in an unquenched CQM and a systematic
study of the influence of the CQ intrinsic structure. However,
the calculations presented in this paper show that, nevertheless,
the CQM with a hypercentral interaction provides a reasonable
basis for an overall description of the helicity amplitudes.

APPENDIX: THE BARYON STATES

The baryon states are superpositions of SU(6)−
configurations, which, according to Eq. (11), can be factorized
as follows:

3q = θcolor · χspin · �isospin · ψ3q( �ρ, �λ). (A1)

As already mentioned in the text, the various parts must
be combined in order to have a completely antisymmetric
three-quark wave function. To this end it is necessary to
study the behavior of the different factors with respect to the
permutations of three objects (that is, with respect to the group
S3). In general, any three-particle wave function belongs to one
of the following symmetry types: antisymmetry (A), symmetry
(S), mixed symmetry with symmetric pair (MS), and mixed
symmetry with antisymmetric pair (MA).

For the color part θcolor one must choose the antisymmetric
color singlet combination.

The three-quark spin states are defined as

χMS = ∣∣[( 1
2 , 1

2

)
1, 1

2

]
1
2

〉
, (A2)

TABLE IV. Combinations (Y[γ ]lρ lλ )S3 of the hyperspherical har-
monics Y[γ ]lρ lλ that have definite S3 symmetry. For simplicity of
notation, in the third column we have omitted the coupling of lρ
and lλ to the total orbital angular momentum L. Each combination is
labeled as LP

S3
, specifying the total orbital angular momentum L, the

parity P , and the symmetry type A, M, or S.

γ LP
S3

(Y[γ ]lρ lλ )S3 S3

0 0+
S Y[0]00 S

1 1−
M Y[1]10 MA

Y[1]01 MS
2 2+

S
1√
2
[Y[2]20 + Y[2]02] S

2+
M Y[2]11 MA

1√
2
[Y[2]20 − Y[2]02] MA

1+
A Y[2]11 A

0+
M Y[2]11 MA

Y[2]00 MA
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TABLE V. Three-quark states with positive parity. The second,
third, and fourth columns show the angular momentum, parity, and
S3 symmetry, LP

S3
, the spin, S, and isospin, T . States are shown in

the last column and are written in terms of the hyper-radial wave
functions, ψνγ , of the hyperspherical harmonics, (Y[γ ])S3 of Table IV,
and of the spin and isospin states.

Resonance LP
S3

S T SU(6) configurations

P11 0+
S

1
2

1
2 ψ00Y[0]00�S

0+
S

1
2

1
2 ψ10Y[0]00�S

0+
S

1
2

1
2 ψ20Y[0]00�S

0+
M

1
2

1
2 ψ22

1√
2
[Y[2]00�MS + Y[2]11�MA]

2+
M

3
2

1
2 ψ22

1√
2
[ 1√

2
(Y[2]20 − Y[2]02)φMS + Y[2]11φMA]χS

P13 2+
M

1
2

1
2 ψ22

1√
2
[ 1√

2
(Y[2]20 − Y[2]02)�MS + Y[2]11�MA]

2+
M

3
2

1
2 ψ22

1√
2
[ 1√

2
(Y[2]20 − Y[2]02)φMS + Y[2]11φMA]χS

0+
M

3
2

1
2 ψ22

1√
2
[Y[2]00φMS + Y[2]11φMA]χS

2+
S

1
2

1
2 ψ22

1√
2
[Y[2]20 + Y[2]02]�S

F15 2+
M

1
2

1
2 ψ22

1√
2
[ 1√

2
(Y[2]20 − Y[2]02)�MS + Y[2]11�MA]

2+
M

3
2

1
2 ψ22

1√
2
[ 1√

2
(Y[2]20 − Y[2]02)φMS + Y[2]11φMA]χS

2+
S

1
2

1
2 ψ22

1√
2
[Y[2]20 + Y[2]02]�S

F17 2+
M

3
2

1
2 ψ22

1√
2
[ 1√

2
(Y[2]20 − Y[2]02)φMS + Y[2]11φMA]χS

P31 2+
S

3
2

3
2 ψ22

1√
2
[(Y[2]20 + Y[2]02]χSφS

0+
M

1
2

3
2 ψ22

1√
2
[Y[2]00χMS + Y[2]11χMA]φS

P33 0+
S

3
2

3
2 ψ00Y[0]00χSφS

0+
S

3
2

3
2 ψ10Y[0]00χSφS

0+
S

3
2

3
2 ψ20Y[0]00χSφS

2+
S

3
2

3
2 ψ22

1√
2
[Y[2]20 + Y[2]02]χSφS

2+
M

1
2

3
2 ψ22

1√
2
[ 1√

2
(Y[2]20 − Y[2]02)χMS + Y[2]11χMA]φS

F35 2+
M

1
2

3
2 ψ22

1√
2
[ 1√

2
(Y[2]20 − Y[2]02)χMS + Y[2]11χMA]φS

2+
S

3
2

3
2 ψ22

1√
2
[Y[2]20 + Y[2]02]χSφS

F37 2+
S

3
2

3
2 ψ22

1√
2
[Y[2]20 + Y[2]02]χSφS

χMA = ∣∣[( 1
2 , 1

2

)
0, 1

2

]
1
2

〉
, (A3)

χS = ∣∣[( 1
2 , 1

2

)
1, 1

2

]
3
2

〉
, (A4)

The antisymmetric combination is absent because there are
only two states at disposal for three particles.

Similarly one can define the isospin states
φMS, φMA, and φS.

If the interaction is spin and isospin (flavor) independent,
one has to introduce products of χ− and φ− states with definite

TABLE VI. Three-quark states with negative parity. Notation as
in Table V.

Resonances LP
S3

S T States

S11 1−
M

1
2

1
2 ψ11

1√
2
[Y[1]10�MA + Y[1]01�MS]

1−
M

1
2

1
2 ψ21

1√
2
[Y[1]10�MA + Y[1]01]�MS

1−
M

3
2

1
2 ψ11

1√
2
[Y[1]10φMA + Y[1]01φMS]χS

1−
M

3
2

1
2 ψ21

1√
2
[Y[1]10φMA + Y[1]01φMS]χS

D13 1−
M

1
2

1
2 ψ11

1√
2
[Y[1]10�MA + Y[1]01�MS]

1−
M

1
2

1
2 ψ21

1√
2
[Y[1]10�MA + Y[1]01]�MS

1−
M

3
2

1
2 ψ11

1√
2
[Y[1]10φMA + Y[1]01φMS]χS

1−
M

3
2

1
2 ψ21

1√
2
[Y[1]10φMA + Y[1]01φMS]χS

D15 1−
M

3
2

1
2 ψ11

1√
2
[Y[1]10φMA + Y[1]01φMS]χS

1−
M

3
2

1
2 ψ21

1√
2
[Y[1]10φMA + Y[1]01φMS]χS

S31 1−
M

1
2

3
2 ψ11

1√
2
[Y[1]10χMA + Y[1]01χMS]φS

1−
M

1
2

3
2 ψ21

1√
2
[Y[1]10χMA + Y[1]01χMS]φS

S33 1−
M

1
2

3
2 ψ11

1√
2
[Y[1]10χMA + Y[1]01χMS]φS

1−
M

1
2

3
2 ψ21

1√
2
[Y[1]10χMA + Y[1]01χMS]φS

S3− symmetry. Here we give the explicit forms only for the
case that both factors have mixed symmetry, the remaining
ones being trivial:

�S = 1√
2

[χMAφMA + χMSφMS], (A5)

�MS = 1√
2

[χMAφMA − χMSφMS], (A6)

�MA = 1√
2

[χMAφMS + χMSφMA], (A7)

�A = 1√
2

[χMAφMS − χMSφMA], (A8)

The symmetry properties of the space wave function

ψ3q( �ρ, �λ) = ψνγ (x)Y[γ ]lρ lλ (�ρ,�λ, ξ ) (A9)

are determined by the hyperspherical part only, since the
hyperradius x is completely symmetric. In Table IV we report
the combinations of the hyperspherical harmonics having
definite S3 symmetry.

In Tables V and VI, we give the explicit form of the three-
quark states with positive and negative parities, respectively. In
these tables the hyper-radial wave functions ψνγ are solutions
of the hyper-radial equation (5); their form depends of course
on the hypercentral potential.
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