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We calculate the charge balance function of the bulk quark system before hadronization and those for the
directly produced and the final hadron system in high energy heavy ion collisions. We use the variance coefficient
to describe the strength of the correlation between the momentum of the quark and that of the antiquark if they are
produced in a pair and fix the parameter by comparing the results for hadrons with the available data. We study
the hadronization effects and decay contributions by comparing the results for hadrons with those for the bulk
quark system. Our results show that while hadronization via quark combination mechanism slightly increases the
width of the charge balance functions, it preserves the main features of these functions such as the longitudinal
boost invariance and scaling properties in rapidity space. The influence from resonance decays on the width of
the balance function is more significant but it does not destroy its boost invariance and scaling properties in
rapidity space either. The balance functions in azimuthal direction are also presented.
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I. INTRODUCTION

The electric charge balance function for the final state
hadrons has been proposed as a probe to study the properties
of the bulk matter system produced in relativistic heavy ion
collisions [1–7]. Measurements have already been carried
out both in the rapidity space [8–10] and in the azimuthal
direction [11]. From the data now available [10,11], we are
already able to see clearly that the charge balance functions
for hadrons produced in high energy heavy ion collisions
are significantly narrower than those for pp collisions at the
same energies and they are narrower for central collisions
than those for peripheral collisions, indicating a strong
local charge compensation in the bulk quark matter system
produced in heavy ion collisions. The data [12] further
show that the charge balance functions have the longitudinal
boost invariance and scaling properties in the rapidity space,
and these properties hold for either transverse momentum
pT -integrated balance functions or those for different pT

ranges.
These features of the experimental data [10–12] are rather

striking and suggest that such studies should be able to give
more insights to the understanding of the properties of the
bulk quark matter system produced in AA collisions. It is thus
natural to ask whether such behavior hold also for the quark
antiquark system before hadronization. It is also important
to see how large the influence from the hadronization and
resonance decay.

In this paper, we propose a simple working model to
calculate the charge balance function for the bulk quark
antiquark system before hadronization. We introduce the
variance coefficient ρ to describe the local correlation in
the momentum distribution for the quark and that for the
antiquark if they are produced in a pair. The parameter
ρ measures the strength of the quark-antiquark momentum
correlation produced in the processes. We study the influence
due to hadronization process including the contributions due

to resonance decay by simulating the hadronization process
using a quark combination model which describe the final
hadron distributions.

The paper is organized as follows. In Sec. II, we study the
charge balance of the quark system before hadronization. In
Sec. III, we study the charge balance function of initial hadron
system as well as final hadron system, and compare them with
that of quark system. Section IV gives a brief summary.

II. CHARGE BALANCE FUNCTION OF THE SYSTEM
OF QUARKS AND ANTIQUARKS

We recall that the balance function is in general defined
as [1]

B(�2|�1) = 1
2 {ρ(b,�2|a,�1) − ρ(a,�2|a,�1)

+ ρ(a,�2|b,�1) − ρ(b,�2|b,�1)}, (1)

where ρ(b,�2|a,�1) is the conditional probability of observ-
ing a particle of type b in bin �2 given the existence of a particle
of type a in bin �1. The label a may, e.g., refer to all positively
charged particles while b refers to all negatively charged ones;
a may also refer to all particles with strangeness −1 while b

refers to those with +1, and so on. For a system consisting of
many particles, the conditional probability ρ(b,�2|a,�1) is
calculated by counting the number N (b,�2|a,�1) of the ab

pairs where a is in bin �1 and b is in bin �2 and the number
N (a,�1) of a in bin �1, i.e.,

ρ(b,�2|a,�1) = N (b,�2|a,�1)

N (a,�1)
. (2)

These numbers can be calculated using the usual two-particle
joint momentum distribution function fab( p1, p2) and single
particle distribution function fa( p) or fb( p), respectively.
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They are given by

N (b,�2|a,�1) =
∫

�1

d3p1

∫
�2

d3p2fab( p1, p2), (3)

N (a,�1) =
∫

�1

d3p1fa( p1). (4)

We see that, if a is locally compensated by b, the balance
function B(�2|�1) should have a very narrow distribution. In
the opposite case, it should be flat. The balance function is
normalized to unity, i.e.,

∑
�2

B(�2|�1) = 1.

A. A working model for the two particle joint momentum
distribution functions in the bulk quark matter system

We consider the bulk quark matter system produced in
heavy ion collisions at high energies. We suppose that the
system is composed of Nq quarks and Nq̄ antiquarks. We
denote the normalized momentum distribution of the quarks
and antiquarks by nq( p) and nq̄( p), respectively. In heavy
ion collisions, the bulk matter system consists of new created
quarks, antiquarks, and the quarks from the incident nuclei.
Those quarks from the incident nuclei are referred as the net
quarks and the new born quarks and antiquarks are created in
pairs.

To obtain a charge balance function that is narrower than
that for the completely uncorrelated case, we introduce a
minimum correlation in the two particle joint momentum
distributions in the system. To this end, we construct the
following working model for the two particle joint momentum
distribution for the bulk quark matter system. We assume that
there is no correlation between the momentum distributions of
two different quarks or two antiquarks. The joint distributions
are simply the products of the corresponding single particle
momentum distributions, i.e.,

fq1q2 ( p1, p2) = Nq1Nq2nq1 ( p1)nq2 ( p2)
(
1 − δq1,q2

)
+Nq1

(
Nq2 − 1

)
nq1 ( p1)nq2 ( p2)δq1,q2 , (5)

fq̄1q̄2 ( p1, p2) = Nq̄1Nq̄2nq̄1 ( p1)nq̄2 ( p2)
(
1 − δq1,q2

)
+Nq̄1

(
Nq̄2 − 1

)
nq̄1 ( p1)nq̄2 ( p2)δq1,q2 , (6)

where q1 and q2 denote the flavors of the quarks. For the
qq̄ joint momentum distribution, we introduce a correlation
between the moment distribution of the quark and that of the
antiquark which are produced in the same pair. In this case,
the joint distribution for a quark q1 and an antiquark q2 is
given by

fq1q̄2 ( p1, p2) = Nq1Nq̄2nq1 ( p1)nq̄2 ( p2)

+Nq̄1

[
n

pair
qq̄ ( p1, p2)−nq̄1 ( p1)nq̄2 ( p2)

]
δq1,q2 .

(7)

The single-particle momentum distributions are related to
n

pair
qq̄ ( p1, p2) by

nq̄( p2) =
∫

d3p1n
pair
qq̄ ( p1, p2), (8)

nq( p) = Nq̄

Nq

nq̄( p) + Nnet

Nq

nnet( p). (9)

Hence, as long as we know n
pair
qq̄ ( p1, p2) and nnet( p), we can

calculate the two particle joint momentum distributions for the
qq, q̄q̄, and qq̄ systems.

To calculate n
pair
qq̄ ( p1, p2), we adopt the picture of the hydro-

dynamic theory. Here, we assume the local thermalization and
collectivity in the system [13–15]. Hence, in the co-moving
frame of the fluid cell, due to local thermalization, we take
a Boltzmann distribution for the single quark or antiquark
distribution, i.e.,

n∗
q( p∗) = nth( p∗) = 1

4πm2T K2(m/T )
e−E∗/T , (10)

where the superscript “∗” denotes that these quantities are
in the co-moving frame, K2 is the Bessel function, m is the
mass of the constituent quark (340 MeV for u or d quark
and 500 MeV for strange quark), and E∗ =

√
p∗2 + m2 is

the energy of quark; T is the temperature of the system at
hadronization (take as T = 165 MeV [16]).

For the joint momentum distribution of the quark and
the antiquark produced in the same pair, we use the co-
variance coefficient ρ to describe the correlation between
them. We recall that for a joint momentum distribution for
a qq̄ system, the covariance coefficient ρ is defined as
ρ = cov( pq, pq̄)/var( pq̄), where cov( pq, pq̄) ≡ 〈 pq · pq̄〉 −
〈 pq〉 · 〈 pq̄〉 and var( pq̄) ≡ 〈 p2

q̄〉 − 〈 pq̄〉2. We take the joint
distribution for the qq̄ system in the co-moving frame of the
qq̄ pair in the Cholesky factorization form, i.e.,

n
pair∗
qq̄ ( p∗

q, p∗
q̄) = 1

2(1 − ρ2)3/2

[
nth( p∗

q)nth

(
p∗

q̄ − ρ p∗
q√

1 − ρ2

)

+ nth( p∗
q̄)nth

(
p∗

q − ρ p∗
q̄√

1 − ρ2

) ]
. (11)

The covariance parameter ρ describes the strength of the
correlation. If ρ = 0, there is no correlation between the
momentum distribution of the quark and that of the antiquark
and we obtain the factorized form. For ρ very close to unity,
we get a maximum correlation between the momentum of
pq and pq̄ , where the probability is nonzero only when
pq = pq̄ . In general −1 � ρ � 1, and ρ > 0 means short-
range compensation of q and q̄ while ρ < 0 means the
opposite.

The joint distribution n
pair
qq̄ ( pq, pq̄) in the laboratory frame is

obtained from n
pair∗
qq̄ ( p∗

q, p∗
q̄). Here, we first make the Lorentz

transformation (β) from the co-moving frame of the fluid cell
to the laboratory frame to obtain n

pair
qq̄ ( pq, pq̄ ,β), then sum up

the contributions from different fluid cells in the system with
different collective velocities, i.e.,

n
pair
qq̄ ( pq, pq̄) =

∫
h(β) n

pair
qq̄ ( pq, pq̄ ,β) d3β, (12)

where h(β) is the so-called velocity function which corre-
sponds to the velocity distribution of the fluid cell in the
system.

The velocity function h(β) is normalized to unity and can be
decomposed into the longitudinal part hL and the transverse
part h⊥. The longitudinal velocity βz is usually replaced by
the rapidity y. The azimuthal dependence is isotropic, we
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integrate it out and obtain,
∫

h(β) d3β = hL(y)h⊥(β⊥) dydβ⊥.
This velocity function h(β) determines, together with the
momentum distribution of the quark and antiquark in the fluid
cell, the single quark spectrum thus the inclusive momentum
distribution of the hadrons after hadronization. In practice, it
is parametrized by fitting the data for the hadron momentum
distributions with the aid of hadronization models. According
to the transparency observed in experiments [17], and because
of that the observed rapidity spectra of hadrons show a roughly
Gaussian shape in the full rapidity range [18], we take the
transverse part as a uniform distribution between [0, βmax

⊥ ]
and parametrize the longitudinal part in a Gaussian-like
form,

hL(y) = 1

2σ
2
a �(1 + 1

a
)
e−|y|a/σ 2

. (13)

The free parameters a, σ , and βmax
⊥ are fixed using the data for

the rapidity and the pT spectra of hadrons. For example, in the
following section of this paper, we just use the results obtained
by fitting the data of rapidity and pT spectra of final hadrons in
central Au + Au collisions at

√
sNN = 200 GeV [18,19] with

the aid of the combination model for hadronization [20,21].
The results are a = 2.40, σ = 2.54, and βmax

⊥ = 0.30 for u

and d newborn quarks and a = 2.36, σ = 2.73, and βmax
⊥ =

0.34 for strange quarks. The numbers of light and strange
(anti)quarks and momentum distribution of net-quarks from
the colliding nuclei have been fixed in Ref. [22].

B. Charge balance function of the bulk quark antiquark system

Having the joint momentum distribution functions, we can
calculate the charge balance function in a straightforward
way. In the following, we present the results in rapidity space
for different transverse momentum intervals. In practice, the
balance function in rapidity space is often rewritten as a
function of the rapidity difference δy = ya − yb between two
particles in a limited window yw, i.e.,

Bab(δy|yw) = 1

2

{
Nba(δy, yw) − Naa(δy, yw)

Na(yw)

+ Nab(δy, yw) − Nbb(δy, yw)

Nb(yw)

}
. (14)

Since quarks of different flavors posses different electric
charges, it is not straightforward to extend the definition of the
the electric charge balance function given by Eq. (1) or Eq. (14)
to the quark-antiquark system. There is no direct extension of
Eq. (14) to such cases. We have many different possibilities at
the quark level, e.g.,

B(c1)
q (δy|yw) = − 1

2Nf

∑
a,b

eaebNab(δy, yw)

e2
aNa(yw)

, (15)

B(c2)
q (δy|yw) = − 1

2Nf

∑
a,b

sgn(eaeb)Nab(δy, yw)

Na(yw)
, (16)

where both a and b run over all the quarks and the antiquarks,
Nf is the number of flavor involved. We can also define it as

B(c3)
q (δy|yw) = −1

2

{∑
a,b sgn(eaeb)Nba(δy, yw)∑

a Na(yw)

+
∑

a,b sgn(eaeb)Nab(δy, yw)∑
b Nb(yw)

}
, (17)

where a = u, d̄ , or s̄ while b = ū, d, or s represent the
positively and negatively charged particles, respectively. We
may also define the baryon number balance function for the
quark-antiquark system instead, which is given by

B(b1)
q (δy|yw) = − 1

2Nf

∑
a,b

BaBbNab(δy, yw)

B2
aNa(yw)

, (18)

where the summations over a and b run over all different
flavors of quarks and those of antiquarks, and Ba and Bb stand
for the baryon numbers. We can also define it as

B(b2)
q (δy|yw) = −1

2

{∑
a,b BaBbNba(δy, yw)∑

a B2
aNa(yw)

+
∑

a,b BaBbNab(δy, yw)∑
b B2

bNb(yw)

}
, (19)

where a denotes all the quarks of different flavors and b

all the antiquarks of different flavors, respectively. All these
definitions satisfy

∫
dδyBq(δy|yw) = 1.

We note that so far as the kind of correlations between
the momentum distributions of the quarks and that of the
antiquarks described in the working model presented in Sec. II
A are concerned, all these definitions do not make much
difference. More precisely, in the working model presented
in Sec. II A, only a correlation between the momentum of
the quark and that of the antiquark from the same qq̄ pair
is introduced as given by Eq. (11). There is no correlation
between the quarks and antiquarks from different pairs and
there is no difference between different flavors. In this case,
all the definitions given by Eqs. (15)–(19) are equivalent in the
sense that they are all different suppositions of the correlations
given by Eq. (11) for different flavors and Eq. (11) does not
distinguish between different flavors. The only differences
come from the net-quark contributions where no strange quark
exists. For comparison, we made the calculations using the
different definitions Eqs. (15)–(19) and the results are indeed
similar. In the following part of this section, we show the
results obtained by using Eq. (17).

We first study the case where ρ = 0. In this case, there
is no correlation between the momentum distribution of the
quarks and antiquarks. The balance is obtained only from the
global flavor compensation of the new created quarks and
antiquarks. This is also the minimum compensation in the
produced system. In Fig. 1(a), we show the results of yw = 1
for different rapidity positions with transverse momentum p⊥
integrated. In Fig. 1(b), we show the results for ρ = 0.5 and a
comparison of the results for different values of ρ is given in
Fig. 1(c).
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FIG. 1. (Color online) The electric charge balance function Bq (δy|yw) for the bulk quark system for the same window size as a function
of δy at the covariance coefficient ρ = 0 in (a) and ρ = 0.5 in (b), respectively. A comparison of the results at different values of ρ is shown
in (c).

From the results, we see that in all cases, also for ρ = 0,
the balance function Bq(δy|yw) decrease with increasing δy

showing a local compensation of the electric charge in the
rapidity space for the bulk quark system. It is also clear that
Bq(δy|yw) decreases faster with increasing δy for a larger value
of ρ indicating stronger local charge compensation. We also
see that Bq(δy|yw) does not change much for different rapidity
window with the same window size showing the longitudinal
boost invariance. This holds for different values of the variance
coefficient ρ.

The existence of the approximate boost invariance for the
charge balance function for the bulk quark system can easily
be understood. We note that by looking at the different rapidity
window in the case that the window size is much smaller than
the total rapidity range of the bulk quark system, we are in fact
looking at different fluid cells. Since we do not differentiate
these fluid cells in any significant way, the results should
be similar. This results in similar charge balance function as
indicated by the calculated results shown in Fig. 1. In other
words, the boost invariance of the charge balance function just
reflects the homogeneity of the fluid cell at hadronization in
different rapidity windows.

We continue to study the dependence of the balance
function Bq(δy|yw) on the window size and/or transverse
momentum. In Fig. 2(a), we show Bq(δy|yw) in the different
rapidity positions with the same window size yw = 1 and
in Fig. 2(b), we show Bq(δy|yw) at different window sizes
yw = 1, 2, 3, 4. We see that Bq(δy|yw) varies with window
size and becomes flatter with increasing window size. This
qualitative feature is naturally expected from the definition
since the balance function is normalized to unity but the range

of the allowed values of δy becomes larger for the larger
window size. This effect can be eliminated by scaling the
balance function Bq(δy|yw) with the factor 1 − δy/|yw| as
suggested in Ref. [2], i.e., we study the scaled balance function,

Bs(δy) = B(δy|yw)

1 − δy/yw

. (20)

In Fig. 2(c), we show the results obtained for the scaled Bs(δy)
of the bulk quark system. We see clearly that the scaled balance
functions fall on one curve showing that they are independent
of the size and position of rapidity window. For comparison,
we also present the balance function in the full rapidity region
(open cross) for the case that the net charge of the system is
taken to be zero. We see that the result is also consistent with
those for the limited rapidity windows so far as the scaled
balance function is studied. This is very nice feature since it
suggests that the scaled balance function for particles in the
limited rapidity window can indeed be regarded as an example
for the charge balance function of the system.

We emphasize that these properties of the balance functions
of the bulk quark system are results of the momentum
distributions of the quarks and antiquarks in the system. These
distributions including the correlations given by Eq. (11)
are results of the local thermalization and collectivity for
the system produced in relativistic heavy ion collisions in
the hydrodynamic theory. These qualitative features for the
charge balance functions for the bulk quark system before
hadronization are consistent with those for the final hadrons as
observed by STAR Collaboration at RHIC [12]. We also note
that these properties are mainly determined by the correlations
given by Eq. (11). They only depend weakly on the single
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FIG. 2. (Color online) The pT -integrated Bq (δy|yw) of the bulk quark system at different rapidity positions with same (a) and different
(b) window sizes, as well as the Bs(δy) (c). Correlation coefficient ρ is taken to be 0.3.
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FIG. 3. (Color online) The Bq (δy|yw) of bulk quark system (top panels) at different rapidity positions with different window sizes as well
as the Bs(δy) (bottom panels) in the different pT (GeV/c) ranges. Correlation coefficient ρ is taken to be 0.3.

quark or antiquark momentum distribution itself. We have
also made calculations using the Fermi-Dirac distribution
instead of the Boltzmann distribution given in Eq. (10) for
the single quark or antiquark momentum distribution. For the
reasons mentioned above and also because E∗ is much larger
than the temperature T so that the difference between the
corresponding Fermi-Dirac and the Boltzmann distribution is
small, the obtained balance functions are essentially the same
in the two cases. The difference is usually less than 1%.

In Fig. 3, we show Bq(δy|yw) and Bs(δy) in different
rapidity windows and in the different pT ranges. We clearly
see that the scaling properties of the balance function still hold
in the different pT ranges. We can also see that the width
of the scaled balance function decreases with increasing pT .
This is because, in general, the quarks and antiquarks with
larger pT come from the fluid cell with larger transverse flow,
which results in a smaller longitudinal rapidity interval and
hence smaller width for the balance function. Such a feature is
consistent with the observation in central Au + Au collisions
at

√
sNN = 200 GeV [12].

III. CHARGE BALANCE FUNCTIONS
OF THE HADRON SYSTEM

With the momentum distribution functions of the bulk quark
system discussed in the last section, we study the charge
balance functions of hadrons produced in the hadronization of
this system. We compare the results obtained for the directly
produced hadrons and those of the final state hadrons with
those for the quarks and antiquarks to study the influence of the
hadronization and resonance decay on the balance functions.

We describe the hadronization of the bulk quark system
with the (re)combination or coalescence mechanism. Such a
hadronization mechanism is tested by various data and is im-
plemented in different forms such as the quark recombination
model [23,24], the parton coalescence model [25,26], and the
quark combination mode (SDQCM) [20,21]. All these models

are tested against the various features of the hadrons produced
in heavy ion collisions at high energies. Here, in this paper,
we use SDQCM [20,21] for our calculations since this model
takes the exclusive description and is implemented by a Monte
Carlo program so that can be apply to calculate the balance
functions for the directly produced hadrons as well as the final
hadrons after the resonance decays in a very convenient way.
Also, this model guarantees that mesons and baryons exhaust
all the quarks and antiquarks in the deconfined color-neutral
system at hadronization.

We note that the main purpose here is to study the influence
of the hadronization and resonance decay on the charge
balance function by comparing the results obtained before and
after hadronization, we only consider the hadronization of the
bulk quark-antiquark system in the combination mechanism
but do not consider the gluon influence in the following.
Gluon contribution might have significant influence on the
hadronization and charge balance function as well. However,
it is still unknown how to take such contribution into account
in the combination mechanism and such study should be an
interesting topic in the future.

A. Charge balance functions in rapidity space

We insert the momentum distributions including the cor-
relations given by Eq. (11) to determine the momenta of
the quarks and antiquarks before hadronization. We then
apply the quark combination rules as implemented in the
Monte Carlo program of SDQCM [21] to calculate the
momentum distribution of the directly produced hadrons.
Those resonances will decay accordingly and the momentum
distributions are simulated also in the program by using the
material from the particle data group [27].

In Fig. 4, we show the results for the pT -integrated balance
functions for the directly produced hadrons. Here, in Fig. 4(a),
we see the results in different rapidity windows with the same
width yw = 1, while in Fig. 4(b) and 4(c), we see the results at
different window sizes as well as the scaled function Bs(δy).
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FIG. 4. (Color online) The pT -integrated B(δy|yw) of initial hadron system at different rapidity positions with same (a) and different
(b) window sizes, as well as the Bs(δy) (c). Correlation coefficient ρ is taken to be 0.3.

In Fig. 5, we show the corresponding results in different pT

ranges.
From these results, we see that both the longitudinal boost

invariance and rapidity scaling for the balance functions are
held for the hadrons directly produced in the quark combina-
tion mechanism, either for the pT -integrated quantities or those
for different pT ranges. This is in fact not surprising because
the formation of hadrons in this hadronization mechanism
is realized by the combination of two or three nearest
quarks/antiquarks in momentum space. This means that the
combination happens locally and does not destroy the locality
nature of the charge balance of the system.

We further study the resonance decay contributions by
calculating the balance functions for the final hadrons where
decays of the resonances are taken into account. We show the
corresponding results in Figs. 6 and 7.

From Figs. 6 and 7, we see that both the boost invariance
in rapidity space and the scaling property are still preserved
after the contributions from the resonance decays are taken
into account. Together with those results given in Figs. 4 and
5, these results show clearly, although there are definitely
influences from hadronization and resonance decay on the
form of the charge balance functions, these effects do not
significantly influence the boost invariance and the scaling in
rapidity space.

The influences from hadronization and resonance decay to
the balance function can be studied more quantitatively by
calculating the averaged width of the balance function, which
is defined as

〈δy〉 =
∫ yw

0 B(δy|yw) δy dδy∫ yw

0 B(δy|yw)dδy
. (21)

We note that the averaged width 〈δy〉 is in general a
characterizing quantity describing the radius of charge balance
of the system. For the final hadron system in heavy ion
collisions, it can be sensitive to different effects such as delayed
hadronization or hadron freeze-out [1,28], possibly highly
localized charge balance at freeze-out [29], transverse flow
[3,31], multiplicity effect [30,32], and hadronic weak decay.
Here, by comparing the results for the balance functions of the
quark-antiquark system with those for the initial hadrons and
those for the final hadrons, we can study the magnitudes of the
influences of hadronization and those from resonance decay.

In Fig. 8(a), we show the results for the averaged width
〈δη〉 of the balance function for the directly produced hadrons
as the function of ρ, compared with that for the quarks and
antiquarks and that for the final hadrons. Here, we show
the results for pseudorapidity η in order to compare with
the experimental data now available [11]. We choose also the
same pseudorapidity and pT regions as the experiments [11],
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FIG. 5. (Color online) The B(δy|yw) of initial hadron system (top panels) at different rapidity positions with different window sizes as well
as the Bs(δy) (bottom panels) in the different pT (GeV/c) ranges. Correlation coefficient ρ is taken to be 0.3.
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(b) window sizes, as well as the Bs(δy) (c). Correlation coefficient ρ is taken to be 0.3.

i.e., |η| < 1, 0.1 � |δη| � 2.0, and 0.2 < pT < 2.0 GeV/c.
In Fig. 8(a), the data of 〈δη〉 in central Au+Au collisions
at

√
sNN = 200 GeV [11] is shown as a band area. We

see clearly that, in all three cases, the averaged width 〈δη〉
decreases with the increasing ρ. We see also that the 〈δη〉
for the directly produced hadron system decreases with the
increasing ρ in exactly the same way as that for the bulk quark
system does. The difference between 〈δη〉 for the directly
produced hadron system and that for the bulk quark system
is almost a constant 0.04 for all the different values of ρ. This
is because, as mentioned above, the combination of quark(s)
and/or antiquark(s) in neighbor areas does not change the
electric charge balance in any essential way. However, the
formation of electrically neutral hadrons may delay the charge
balance in momentum space. We take a quark and an antiquark
from a given qq̄ pair as an example. As given by Eq. (11),
their momentum distributions possess a correlation measured
by the covariance coefficient ρ. If both of them enter into the
respectively charged hadrons in the combination process, the
correlation will pass to the hadronic level. However, if one of
them enters into an electrically neutral hadron, the correlation
will be lost in the charged hadrons. This will decrease the local
charge balance at the hadron level.

From Fig. 8(a), we also see that the resonance decay
contributions change 〈δη〉 significantly. It is also interesting to
see that these contributions strengthen the local charge balance
for relatively small values of ρ but weaken the balance for
larger values of ρ. This indicates that the decay contributions
dilute the balance functions quite significantly. To see where
these different behaviors come from, we calculate the averaged
width 〈δy〉 for those hadrons from resonance decay separately.
We note that the influence of resonance decay to the charge
balance function is in general different for hyperon decay
from that for vector-meson decay. The decay of the hyperons
such as 
 → pπ and �0 → 
π produces a pair of charged
daughter particles with quite narrow rapidity interval, e.g.,
about one-third for 
 → pπ and �0 → 
π , due to the small
amount of energy released in the decay process. This leads also
to a smaller 〈δη〉 for the charge balance function. However, in
vector meson decay such as ρ0 → π+π− and K∗0 → K+π−,
the energy released is much larger leading to a much larger
rapidity difference between the daughter particles, e.g., up
to 1.7 for ρ0 → π+π− and 1.3 for K∗0 → K+π− in the
rest frame of parent particle. To study this effect in a more
quantitative manner, we calculate the averaged width 〈δη〉
of the balance function only for the daughter particles from
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FIG. 7. (Color online) The B(δy|yw) of final hadron system (top panels) at different rapidity positions with different window sizes as well
as the Bs(δy) (bottom panels) in the different pT (GeV/c) ranges. Correlation coefficient ρ is taken to be 0.3.
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FIG. 8. (Color online) In (a), we see the averaged widths 〈δη〉
of the balance functions for the quark and antiquark, the directly
produced and the final hadron systems as functions of ρ. In (b),
we see the averaged widths 〈δη〉 of the balance functions for the
daughter hadrons from all the resonance decays, those for the daughter
hadrons from the meson decays and those from the baryon decays,
respectively. The band area represents the experimental of 〈δη〉 for
charged particles in central Au+Au

√
sNN = 200 GeV [12].

baryon or meson decay, respectively. The results are shown in
Fig. 8(b). Here, we see clearly that the averaged width 〈δη〉
for the daughter particles from baryon decay is indeed much
smaller than those from meson decay. We see also that the
charge balance for the daughter particles from baryon decays
is dominated by the decay effect which leads to an averaged
width of about one-third. However, for those from meson
decays, the charge balance is dominated by the effect from
the mother particles.

B. Charge balance in the azimuthal direction

The charge balance in the azimuthal direction for hadrons
in high energy heavy ion collisions can be sensitive to jet
production. Experimental studies have already been carried
out by the STAR Collaboration for hadrons of different pT

regions [11]. It is thus also interesting to see how the charge

balance function behaves for the bulk quark matter system and
the resulting hadrons.

The balance function of hadrons in the azimuthal direction
is defined similarly to that in rapidity,

Bba,azi(δφ, φ) = 1

2

{
Nba(δφ, φ) − Naa(δφ, φ)

Na(φ)

+ Nab(δφ, φ) − Nbb(δφ, φ)

Nb(φ)

}
, (22)

where, the quantity Nba(δφ, φ) is defined as the number of
pairs of particles with the particle a flying at an angle φ

(measured with respect to the reaction plane) and the particle
b at an angle between φ and φ + δφ. In the following we study
the azimuthally averaged balance function:

Bab,azi(δφ) =
∫ 2π

0
dφBab(δφ, φ). (23)

Having the Monte Carlo program at hand, the extension
of the calculations mentioned above to azimuthal direction is
straightforward. We show the results obtained for the quark,
the directly produced hadron, and the final hadron system at
different ρ values in Fig. 9. Comparison with the available
data [11] is also given in the figure.

From the results for the bulk quark system [Fig. 9(a)], we
see clearly that the dependence of the quark charge balance
function on the variance parameter ρ is quite obvious. For ρ

close to unity, the momentum of the quark and that of the
antiquark produced in the pair are closely correlated, and we
see a sharp peak at δφ = 0. For ρ = 0, there is no correlation
and the balance function is almost a flat function showing only
the influence from the global charge compensation.

Comparing the results in Fig. 9(b) with those in Fig. 9(a), we
see that the charge balance functions in the azimuthal direction
for the directly produced hadron system are slightly broader
than the corresponding results for the quark system, showing a
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FIG. 9. (Color online) Balance function Bazi(δφ) of the quark-antiquark system (a), the directly produced hadron system (b), and the final
hadron system (c) as functions of δφ in the pseudorapidity region −1 < η < 1 and 0.2 < pT < 2.0 GeV/c. A comparison of the results for the
final hadron system at ρ = 0.5, 0.6, and 0.7 and the experimental data for all charged particles with 0.2 < pT < 2.0 GeV/c in central Au + Au
collisions at

√
sNN = 200 GeV in Ref. [11] is given in (d).
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slightly loose correlation. This is similar to the case in rapidity
space studied in the last subsection. However, the influences
from the resonance decays are quite significant in the azimuthal
direction. We see quite significant differences between the
results for the final hadrons and the corresponding results for
the hadron system before resonance decay. We see in particular
that the very much pronounced peak at δφ = 0 is smoothed by
the decay influences. This is also obvious since such a strong
correlation can be destroyed by the resonance decay because of
the transverse momentum conservation in the decay processes.
From Fig. 9(c), we see that the data [11] are well be described
except for the peak at δφ = 0. This peak could be an indication
of jet contribution which is not included in our calculations.

IV. SUMMARY

In summary, we have calculated the charge balance func-
tions of the bulk quark system before hadronization, those
for the directly produced and the final hadron system in
relativistic heavy ion collisions. The momentum distributions
for the quarks and the antiquarks in the bulk quark system
are taken as determined in the hydrodynamic picture with

local thermalization and collectivity. A correlation between
the momentum distribution of the quark and that of the
antiquark is introduced if they are from the same new
produced qq̄ pair and the correlation strength is described
by the variance coefficient ρ. Our results show that the
charge balance functions for the bulk quark system have
the longitudinal boost invariance and the scaling behavior in
rapidity space. Such properties are preserved by the subsequent
hadronization via combination mechanism and the resonance
decay, although both hadronization and resonance decay can
influence the width of the balance function. With the same
inputs, we also studied the balance function in the azimuthal
direction.
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