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The beam polarization asymmetry in the reaction ep → e′K+� has been investigated in a tree-level effective
Lagrangian model. The model incorporates most of the well-established baryon resonances with spins up to 5

2 , four
less well-established nucleon resonances with larger mass, and the two kaon resonances K�(892) and K1(1270).
The off-shell structure of the electromagnetic vertices was accounted for by the inclusion of electromagnetic
form factors at those vertices. The free parameters of the model were fitted in a previous study to a large pool
of photoproduction data from the CLAS, GRAAL, SAPHIR, and LEPS collaborations and to CLAS data for the
virtual photoproduction structure functions σU , σT , σL, σT T , and σLT . Using this model, results were obtained
for the beam polarization asymmetry structure function σLT ′ and compared with CLAS data. Two new fits to the
combined photoproduction and electroproduction data with the σLT ′ data included were then generated. The first
of these includes contributions from all of the resonances included in the previous study; the second excludes
contributions from the N (2080) and N (2200) resonances. The results of both fits for both photoproduction and
electroproduction observables are compared with the results of the previous fit and the data.
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I. INTRODUCTION

The production of strange baryons from the proton via the
electromagnetic interaction has been a subject of intensive
investigation for the last 25 years. Both the theoretical work
[1–16] and the recent experimental work [17–24] have concen-
trated on the photoproduction reaction, but in the past few years
there has been a renewal of interest in the electroproduction
reaction generated by recent data from the Hall C collaboration
[25] and from the CEBAF large acceptance spectrometer
(CLAS) detector at the Thomas Jefferson National Accelerator
Facility [26–29]. Electroproduction, while more difficult to
study, is a potentially richer source of information than
photoproduction in that it involves virtual photons rather than
real photons and thus brings longitudinal degrees of freedom
into play that are absent in the photoproduction process.
Electroproduction also provides the possibility of studying
hadronic electromagnetic form factors.

The earliest theoretical studies of electroproduction date
from the mid 1970s and were based on a simple Regge
model [30]. More recent studies generally employ an effective
Lagrangian model [1–3,5,8,31,32], but there are also studies
based on updated Regge models [33] and studies based on
chiral frameworks [16,34].

Recently, a new fit to the data for both the electropro-
duction reaction ep → e′K+� and the related photoproduc-
tion reaction γp → K+� was obtained using an effective
Lagrangian model. This model [35] incorporates all of the
well-established baryon resonances with spins up to 5

2 , four
less-well-established nucleon resonances of higher mass, and
the two kaon resonances K�(892) and K1(1270). In the
electroproduction reaction, form factors were included at
each hadron electromagnetic vertex. The model was fitted to
photoproduction data from the CLAS [21–24], SAPHIR [17],
LEPS [18], and GRAAL [19,20] collaborations and to elec-
troproduction data from CLAS for the virtual photoproduction
structure functions σU , σT , σL, σT T , and σLT .

In the present work, we extend the fit of Ref. [35] to include
CLAS data for the structure function σLT ′ . This structure
function is related to the beam polarization asymmetry and thus
may provide information concerning the underlying dynamics
of the reaction that is not attainable from the unpolarized struc-
ture functions alone. Fits that include polarization data also
provide better starting points for investigations of reactions
involving more complex targets such as the deuteron and 3He.

The remainder of this work is organized as follows: in
the next section, we define the matrix element for virtual
photoproduction and discuss the structure functions that are
usually employed to represent the virtual photoproduction
cross section. Section III provides a summary of the virtual
photoproduction reaction model. For a more detailed dis-
cussion of this model, the reader should consult Ref. [35].
Section IV presents details of the fitting procedure, including
a summary of the data fit for both the photoproduction and
electroproduction reactions and a list of the parameters that
are fitted. Three sets of results are presented and discussed in
Sec. V. The first was generated using the fit obtained in Ref.
[35], which did not include σLT ′ data in the fit, so that the σLT ′

results obtained from that fit represent a prediction. The second
set of results was generated from a fit that incorporated all of
the resonances considered in Ref. [35] and which included the
CLAS σLT ′ data in the fit. Two of the resonances included in
that fit, the negative-parity N (2080) and N (2200) resonances,
have disappeared from the most recent particle data tables [36].
In order to ascertain the significance of these two resonances in
the earlier fits, we have also obtained results from a fit in which
contributions from these two resonances have been excluded.

II. VIRTUAL PHOTOPRODUCTION

Within the impulse approximation, the matrix element for
the reaction ep → e′K+� can be expressed in the form

〈F | T̂ | I 〉 = lμhμ

q2
, (1)
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where q is the virtual-photon four-momentum, lμ is the lepton
current given by

lμ = eūM ′ (p′)γμuM (p), (2)

with p (p′) and M (M ′) denoting the incident (final) electron
four-momentum and spin projection, and hμ is the hadron
current given by

hμ = eūM�
(p�)t̂μuMp

(pp). (3)

For experiments where the helicity of the incident electron
is measured, we need the square of this matrix element summed
over the spin projections of the outgoing � and electron and
averaged over the spin projection of the incident proton. After
imposing current conservation,

qμhμ = 0, (4)

and treating the electron kinematics in the extreme relativistic
approximation, this quantity can be reexpressed in terms of
squares of the virtual photoproduction matrix element. In
particular,

1

2

∑
M�MpM ′

|〈F |T̂ |I 〉|2 = e2

4m2
eq

2

1

ε − 1

∑
M�Mp

|〈f |t̂γ |i〉|2, (5)

where the transverse photon polarization ε is given by

ε =
(

1 − 2
q2

q2
tan2 �

2

)−1

, (6)

with q denoting the spatial part of the virtual-photon mo-
mentum and � denoting the electron scattering angle in the
laboratory frame. The squares of the virtual photoproduction
matrix element are in turn related to components of the hadron
current, defined by Eq. (3), by the relation

1

2

∑
M�Mp

|〈f |t̂γ |i〉|2

= 1

4

∑
M�Mp

[
(|hx |2 + |hy |2) + ε(|hx |2 − |hy |2) cos 2φ

− 2ε
q2

q2
0

|hz|2 − 1

q0

√
−2q2ε(1 + ε)(hxh

�
z + h�

xhz) cos φ

+ iH
q0

√
−2q2ε(1 − ε)(hxh

�
z − h�

xhz) sin φ

]
, (7)

where φ is the angle between the lepton and hadron planes, and
the helicity of the incident electron H is defined to be +1 or
−1 according to whether the incident electron spin projection
is in the same direction or opposite to its three-momentum.
Note here that the hadron current components are defined with
respect to a coordinate system which has its z axis in the
direction of the virtual-photon three-momentum and its x axis
chosen so that the hadron three-momenta all lie in the xz plane
with the x component of the kaon three-momentum positive.

In terms of the virtual photoproduction matrix elements, the
virtual photoproduction cross section in the K� c.m. system
is given by

dσγ

d	K

= 1

(8π )2

mpm�pK

| q | s

1

2

∑
M�Mp

|〈f |t̂γ |i〉|2, (8)

where s is the square of the K� c.m. energy. This expression
can be decomposed into a set of structure functions according
to the relation

dσγ

d	K

= σT + εσL + εσT T cos 2φ +
√

ε(1 + ε)σLT cos φ

+H
√

ε(1 − ε)σLT ′ sin φ, (9)

where

σT = 1

4
k

∑
M�Mp

(|hx |2 + |hy |2),

σL = 1

2
k

∑
M�Mp

−q2

q2
0

|hz|2,

σT T = 1

4
k

∑
M�Mp

(|hx |2 − |hy |2), (10)

σLT = −1

2
k

∑
M�Mp

1

q0

√
−2q2Re(hxh

�
z),

σLT ′ = −1

2
k

∑
M�Mp

1

q0

√
−2q2Im(hxh

�
z),

with

k = mpm�pK

16π2|q|s . (11)

Because of the difficulty in separating the structure functions
σT and σL experimentally, most of the available data related to
these two structure functions is actually for the combination

σU = σT + εσL. (12)

III. REACTION MODEL

The reaction model for the hadronic current includes three
types of contributions, which are depicted in Fig. 1. These
are usually labelled s-channel, u-channel, or t-channel contri-
butions, according to whether the squared four-momentum
in the intermediate state propagator corresponds to the s,
t , or u Mandelstaam variable. The s-channel contributions
include the Born term with an intermediate proton and
contributions in which an intermediate nucleon resonance is
excited. The u-channel contributions include the Born term
with an intermediate � and terms with either a � baryon or
an intermediate hyperon resonance. Finally, in the t channel,
the Born contribution is supplemented with contributions
involving both K�(892) and K1(1270) exchange.

The general structure of the hadron amplitude t̂μ depends
upon the channel considered. For the s channel, we have

t̂μs =
∑
N�

[V†
K (pK )D(ps)Vγ (q)]μ, (13)

where q is the virtual-photon four-momentum, ps = p� + pK ,
and the V designate the interaction vertices and the D being
the intermediate hadron propagators. The corresponding u-
and t-channel expressions are

t̂μu =
∑
Y �

[V†
γ (q)D(pu)VK (pK )]μ (14)
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FIG. 1. Contributions to amplitude for reaction γp → K+�.

and

t̂
μ
t =

∑
K�

[V†
γK (q, pt )Dt (pt )Vp�(pt )]

μ, (15)

with pu = p� − q and pt = q − pK .
The interaction vertices, as well as the propagators, depend

upon the spin and parity of the intermediate hadron considered.
In this work, we employ the same vertices and propagators as
were discussed in Ref. [35], but in that work, the vertices
were given for the photoproduction reaction. Here we list the
vertices appropriate for the electroproduction reaction.

In the s and u channels, the positive-parity electromagnetic
interaction vertices are given by (with form factors suppressed)

Vμ

γ 1
2

+(q) = eκ

2mB

iσμνqν,

Vμν

γ 3
2

+(q) =
[

g1

2mB

(γ · qgμν − γ μqν)

+ g2

4m2
B

(
p

μ

Bqν − q · pBgμν
)]

γ5,

Vμνα

γ 5
2

+(q) =
[

g1

2mB

(γ · qgμν − γ μqν)

+ g2

4m2
B

(
p

μ

Bqν − q · pBgμν
)]

qα, (16)

where mB and pB are the mass and four-momentum of
the incident proton in the s channel and the mass and

four-momentum of the outgoing � in the u channel. In the
expression for the spin- 1

2 vertex, κ is defined by its relation to
the transition magnetic moment,

μT = eκ

mB + mI

, (17)

where mI is the mass of the intermediate baryon. The Born
terms in both channels have an additional charge contribution
given by

Vμ

charge = eγ μ. (18)

Note that in photoproduction, which involves a physical pho-
ton, current conservation requires that the charge contribution
in the u-channel vanish because the outgoing � is neutral.
Thus in electroproduction, the form factor that multiplies the
u-channel charge contribution must vanish when the incident
photon is on shell.

In the t channel, the positive-parity electromagnetic interac-
tion vertices are given by (again with form factors suppressed)

Vμ

γK = e
(
2p

μ

K − qμ
)
,

Vμν

γK(892) = gγKK�

msc

εμαβνqαptβ, (19)

Vμν

γK(1270) = gγKK1

msc

(
p

μ
t qν − q · ptg

μν
)
,

where pt is the four-momentum of the intermediate kaon or
kaon resonance, and msc is a scaling mass, set equal to 1 GeV,
introduced to make the electromagnetic coupling strengths
dimensionless.

The corresponding expressions for the strong interaction
vertices are

V
K 1

2
+(pK ) = gγ5,

Vμ

K 3
2

+(pK ) = − g

mπ

p
μ

K, (20)

Vμν

K 5
2

+(pK ) = g

m2
π

p
μ

Kpν
Kγ5,

in the s and u channels for positive-parity intermediate baryons
and

Vp�K = g�Kpγ5,

Vμ

p�K(892) =
(

gV
�K�p + gT

�K�p

mp + m�

γ · pt

)
γ μ, (21)

Vμ

p�K(1270) =
(

gV
�K1p + gT

�K1p

mp + m�

γ · pt

)
γ μγ5,

in the t channel. In the s and u channels the interaction vertices
for negative-parity intermediate baryons are just the positive-
parity expressions with the γ5 factor transposed from the strong
interaction vertex to the electromagnetic vertex.

For the spin- 1
2 propagator in the s and u channels, we

employ, in agreement with other authors, a relativistic Breit-
Wigner form,

D
1
2 (p) = γ · p + mI

p2 − m2
I + imI�I

, (22)
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where, as above, mI is the mass of the intermediate baryon, and
the corresponding width �I is nonzero only in the s channel.
The propagators for the higher spin states are then obtained
by multiplying the spin- 1

2 propagator by the appropriate spin
projection operator. Thus,

D
3
2
μν(p) = D

1
2 P

3
2

μν, D
5
2
μναβ(p) = D

1
2 P

5
2

μναβ, (23)

with

P
3
2

μν = gμν − 1

3
γμγν + 1

3

pμγν − pνγμ

mI

− 2

3

pμpν

m2
I

,

P
5
2

μναβ = Rμναβ − 1

5
PμνPαβ − 1

5
(Pμργ

ργ σRσναβ

+Pνργ
ργ σRσμαβ), (24)

where

Rμναβ = 1
2 (PμαPνβ + PμβPνα), (25)

and

Pμν = gμν − pμpν/m2
I . (26)

In the t channel, the kaon propagator is simply

Dt = [
p2

t − m2
I

]−1
. (27)

Multiplication by the spin-1 projection operator,

P 1
μν = −gμν + ptμptν

m2
K�

, (28)

yields the K�(892) and K1(1270) propagators, where now the
label K� refers to either kaon resonance.

The nucleon resonances excited in the s channel generally
lie in kinematic regions where various decay channels are
open. It is thus necessary to include widths in the s-channel
resonance propagators, and these widths are often required
rather far off the resonance mass shell. In this work, we employ
the same dynamical model for the widths that was used in
Ref. [35]. Within that model, the width of each intermediate
nucleon resonance is decomposed into partial widths. The
energy and momentum dependence of each partial width is
generated using an effective Lagrangian model with the re-
quired coupling strengths adjusted to reproduce the empirical
on-shell branching ratios. Decay channels involving more than
two decay products are approximated as two-body decays with
one unstable decay product the mass distribution of which is
represented by a Breit-Wigner distribution function. A more
detailed description of the model, including expressions for
the phase-space factors and the distribution function employed
together with values for all the branching ratios employed, may
be found in Ref. [10].

The width model summarized above is suitable for well-
established resonances where there is enough branching
ratio data to provide reasonably good estimates of the on-
shell partial widths. For the less-well-established nucleon
resonances of higher mass, these data are absent. Hence, for
these resonances, the energy and momentum dependence of
the widths is ignored, and the values given in Ref. [10] adopted.

Because the exchanged photon is off shell, it is necessary
in effective Lagrangian treatments of electroproduction to
include form factors at all the electromagnetic vertices in the

reaction amplitude. Here, we employ the same form factors
as were used in Ref. [35]. In that work, in contrast with
earlier work, a separate form factor was employed for each
intermediate baryon in the s and u channels.

In the Born terms, both charge and magnetic form factors
are required. For the proton, the form factors obtained by Gari
and Krupelmann [37] based on a modified vector dominance
model are employed. Details concerning this model, including
parameter values, can be found in Ref. [32].

For the u-channel Born contribution, the charge and
magnetic form factors are given by the linear combinations

FC(q2) = F�1(q2) − τ�F�2(q2),
(29)

FM (q2) = 1

κ�

[F�1(q2) + F�2(q2)],

where

τ� = q2

4m2
�

. (30)

The form factors F�1 and F�2 are, in turn, expressed as linear
combinations of two other form factors,

F�1(q2) = 1

2
[F1(q2) − F2(q2)],

(31)
F�2(q2) = κ�

2
[F1(q2) + F2(q2)],

which are assumed to have the same functional form,

Fi

(
q2

) = 1

1 + α i

�2
i

�2
i − q2

(
1 + αi

�2
i

�2
i − q2

)
, (32)

but with different values for the parameters αi and �i .
The s- and u-channel contributions with intermediate

resonance states each require just a single electromagnetic
form factor. For these form factors, the expression given by
Eq. (32) is used with separate values for α and � employed
for each resonance.

In the t-channel Born term, we make use of a parametriza-
tion based on a relativistic quark model [38]. It is given by

FK

(
q2

) = αK

�2
1

�2
1 − q2

+ (1 − αK )

(
�2

2

�2
2 − q2

)2

, (33)

with αK = 0.398, �1 = 0.642 GeV, and �2 = 1.386 GeV.
For the resonant contributions in the t channel, the form

FK� (q2) = �2
K�

�2
K� − q2

, (34)

is used.
In the absence of form factors, the Born charge

contributions collectively satisfy the current conservation
condition. This collective satisfaction of current conservation
is disrupted when form factors are included. To restore it, it
is necessary to add counter terms to the charge contributions
in such a way that the on-shell limits of these contributions
are not altered. Here we employ the same prescription as was
used in Ref. [35]; namely, the charge contributions to t̂μ are
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TABLE I. Baryon resonances considered in the model.

Resonance I J P

N (1440) 1
2

1
2

+

N (1520) 1
2

3
2

−

N (1535) 1
2

1
2

−

N (1650) 1
2

1
2

−

N (1675) 1
2

5
2

−

N (1680) 1
2

5
2

+

N (1700) 1
2

3
2

−

N (1710) 1
2

1
2

+

N (1720) 1
2

3
2

+

N (1900) 1
2

3
2

+

N (2000) 1
2

5
2

+

N (2080) 1
2

3
2

−

N (2200) 1
2

5
2

−

�(1405) 0 1
2

−

�(1670) 0 1
2

−

�(1820) 0 5
2

+

�(1830) 0 5
2

−

�(1890) 0 3
2

+

�(2110) 0 5
2

+

�(1385) 1 3
2

+

�(1775) 1 5
2

−

�(1915) 1 5
2

+

�(1940) 1 3
2

−

replaced by the expressions

t̂
μ

s,ch = eFC(q2)γ μ + e[1 − FC(q2)]
qμ

q2
γ · q,

t̂
μ

u,ch = eFC(q2)

[
γ μ − qμ

q2
γ · q

]
,

t̂
μ

t,ch = eFK (q2)
(
2p

μ

K − qμ
) + e[1 − FK (q2)]

×
(

2pK · q

q2
− 1

)
qμ. (35)

With the exception of the K�(892) resonance contribution
to the t channel, the spatial parts of the hadronic current
amplitudes discussed above all have the general structure

t̂ = α1 + α2γ5 + α3γ
0 + α4γ

0γ5 + D1γ + D2γ γ5

+D3γ
0γ + D4γ

0γ γ5, (36)

where the vector operators α and the scalar operators D are
momentum-dependent operators that act within the baryon
2 × 2 Pauli spinor space. The corresponding form for the
t-channel K�(892) contribution is

t̂ = α1 + α2γ5 + α3γ
0 + α4γ

0γ5 + β1 × γ + β2 × γ γ5

+β3 × γ 0γ + β4 × γ 0γ γ5. (37)

Detailed expressions for these operators can be found in the ap-
pendix of Ref. [35]. The matrix elements of the t̂ between Dirac
spinors were evaluated numerically, as was done in Ref. [35].

TABLE II. Fit results for the coupling-strength products. For each
hadron, the first set of numbers is from the first of the fits described
here, which incorporates data for σLT ′ . The second set is from the fit
that excludes the N (2080) and N (2200) resonances but incorporates
σLT ′ data, while the third set is from Ref. [35], which does not
incorporate σLT ′ data.

Spin- 1
2 resonances

N (1440) FN� 2.5489 2.6909 3.2545
N (1535) FN� 0.4432 0.4267 0.4375
N (1650) FN� − 0.0699 − 0.0684 − 0.0484
N (1710) FN� 0.0633 0.0690 0.0941
�(1405) F�� − 3.2449 − 3.2050 − 3.2802
�(1670) F�� 4.5245 4.2239 4.4016

Spin- 3
2 resonances

N (1520) G1
N� − 0.8056 − 0.8292 − 0.7442

G2
N� − 0.3810 − 0.3994 − 0.5355

N (1700) G1
N� − 0.0498 − 0.0615 − 0.0970

G2
N� − 0.2314 − 0.2801 − 0.0675

N (1720) G1
N� − 0.0074 − 0.0012 − 0.0020

G2
N� − 0.3853 − 0.3815 − 0.3068

N (1900) G1
N� 0.0362 0.0359 0.0210

G2
N� 0.0157 0.0157 − 0.0146

N (2080) G1
N� − 0.0132 − 0.0066

G2
N� − 0.0063 0.0012

�(1890) G1
�� − 1.2877 − 1.3007 − 1.6976

G2
�� − 8.6660 − 8.5795 − 7.9940

�(1385) G1
�� − 0.1478 − 0.1074 0.1278

G2
�� 6.3399 6.5442 5.3970

�(1940) G1
�� 1.6764 1.8796 1.3050

G2
�� 0.0650 0.3311 0.2441

Spin- 5
2 resonances

N (1675) G1
N� − 0.0041 − 0.0046 − 0.0031

G2
N� − 0.0087 − 0.0126 − 0.0095

N (1680) G1
N� 0.0273 0.0274 0.0251

G2
N� 0.0039 0.0035 0.0012

N (2000) G1
N� − 0.0137 − 0.0143 − 0.0172

G2
N� − 0.0085 − 0.0095 − 0.0110

N (2200) G1
N� − 0.0003 − 0.0001

G2
N� − 0.0023 − 0.0004

�(1820) G1
�� − 0.1733 − 0.1725 − 0.1643

G2
�� − 1.3258 − 1.3133 − 1.8779

�(1830) G1
�� − 0.1190 − 0.1166 − 0.0875

G2
�� − 0.4265 − 0.3926 − 0.1653

�(2110) G1
�� − 0.1743 − 0.1560 − 0.1539

G2
�� − 1.2997 − 1.2795 − 1.5859

�(1775) G1
�� 0.1015 0.1001 0.0730

G2
�� 0.4371 0.4068 0.1749

�(1915) G1
�� 0.3496 0.3340 0.3204

G2
�� 2.5639 2.5342 3.4085

t-channel resonances
K(892) GV

K� 3.2244 3.1835 3.2840
GT

K� 1.4557 1.6769 0.9215
K(1270) GV

K� 1.4544 1.5024 1.3698
GT

K� − 1.4401 − 0.9890 − 3.4497

064612-5



OREN V. MAXWELL PHYSICAL REVIEW C 86, 064612 (2012)

TABLE III. Fit results for the electromagnetic form factor
parameters. For each hadron, the first pair of numbers is from the
first of the fits described here, which incorporates data for σLT ′ , the
second pair is from the fit that excludes the N (2080) and N (2200)
resonances but incorporates σLT ′ data, while the third pair is from
Ref. [35], which does not incorporate σLT ′ data.

� α � α � α

Spin- 1
2 resonances

N (1440) 0.3578 4.8705 0.3578 4.8705 1.4572 2.8997
N (1535) 1.7219 4.5155 1.7029 4.5155 1.6180 4.5155
N (1650) 4.4379 − 4.8632 4.4379 − 4.8632 4.6512 − 4.8632
N (1710) 4.0544 4.0269 4.0544 4.0269 2.6098 4.0269
F1(�) 1.2900 4.9810 1.2848 4.9737 1.4653 0.7876
F2(�) 4.9790 − 1.3335 4.9790 − 1.3445 4.7441 − 1.4324
�(1405) 2.2452 − 0.8471 2.2961 − 0.8464 2.8688 − 0.4031
�(1670) 0.3477 − 0.1943 0.3368 − 0.1538 0.2707 − 0.5281
� 1.9481 − 0.9526 1.9300 − 0.9518 1.8314 − 0.8612

Spin- 3
2 resonances

N (1520) 1.7576 3.4965 1.7450 3.4965 1.7213 3.4965
N (1700) 2.3527 − 1.5142 2.4139 − 1.4940 3.7186 − 3.8566
N (1720) 1.3866 3.7758 1.4104 3.7758 1.5354 3.7758
N (1900) 4.8314 − 1.2346 4.8314 − 1.2346 4.6720 − 1.3748
N (2080) 4.1062 2.6698 4.2171 2.6698
�(1890) 0.3723 0.0471 0.3789 0.0208 0.4491 − 0.0360
�(1385) 0.5913 4.3992 0.6027 4.3992 0.7034 4.0338
�(1940) 0.3433 0.0958 0.3449 0.1316 0.2584 2.3431

Spin- 5
2 resonances

N (1675) 1.2338 4.8271 1.2417 4.8271 1.1856 4.8271
N (1680) 1.2083 3.2090 1.2080 3.2090 1.1045 1.0577
N (2000) 1.3310 2.7443 1.2272 2.7443 1.4616 3.6176
N (2200) 4.8669 − 2.8773 3.3698 − 2.8773
�(1820) 1.0939 2.3327 1.0914 2.3351 1.1050 2.4088
�(1830) 0.2271 3.0470 0.2271 3.0470 0.2133 1.6144
�(2110) 0.4807 − 0.4587 0.4831 − 0.4584 0.5460 − 0.4098
�(1775) 0.3071 4.7806 0.3029 4.7806 0.2576 3.0308
�(1915) 1.0007 1.5498 1.0025 1.5652 1.0454 1.6727

�K� �K� �K�

t-channel resonances
K(892) 0.284 0.280 0.211
K(1270) 0.894 0.921 0.672

IV. FITTING PROCEDURE

The nucleon and hyperon resonances considered in the
fits presented here are listed in Table I. In the earlier
photoproduction fit of Ref. [10], a larger set of u-channel
resonances was initially considered, but it was found that
a better fit was achieved with the reduced set of u-channel
resonances employed here.

The set of parameters varied in the fit includes the products
of the coupling strengths at the two interaction vertices in
each resonance contribution to the reaction amplitude. These
products are defined by the relations

FN� = eκpN�g�KN�, F�� = eκ���g��Kp,
(38)

F�� = eκ���g��Kp,

TABLE IV. χ 2 per data point for various sets of data. For each
data set, the first value is from the first fit described here, which
incorporates data for σLT ′ , the second value is from the fit that
excludes the N (2080) and N (2200) resonances but incorporates
σLT ′ data, while the third value is from Ref. [35], which does not
incorporate σLT ′ data.

Data set χ 2 χ 2 χ 2

Photoproduction data 2.852 2.149 2.263
Electroproduction data 4.878 4.356 4.625
σLT ′ data 14.26 11.78 11.48

for the spin- 1
2 resonances in the s and u channels, by

G1
N� = g

pN�

1 g�KN�, G2
N� = g

pN�

2 g�KN�,

G1
�� = g���

1 g��Kp, G2
�� = g���

2 g��Kp, (39)

G1
�� = g���

1 g��Kp, G2
�� = g���

2 g��Kp,

FIG. 2. Differential cross section vs cos(θ ) for (a) W =
1.727 GeV, (c) W = 1.920 GeV, and (e) W = 2.120 GeV, and the
hyperon polarization asymmetry vs cos(θ ) for (b) W = 1.730 GeV,
(d) W = 1.934 GeV, and (f) W = 2.029 GeV, where θ is the c.m.
scattering angle and W is the c.m. energy. The solid curves were
obtained from the first fit described in this work, the dotted curves
were obtained from the fit that excludes the N (2080) and N (2200)
resonances, and the dot-dashed curves are from the fit of Ref. [35].
Cross-section data are from Ref. [23], and polarization data are from
Ref. [21].
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FIG. 3. Cx vs cos(θ ) for (a) W = 1.734 GeV, (c) W = 1.939 GeV,
and (e) W = 2.126 GeV, and Cz vs cos(θ ) for (b) W = 1.734 GeV,
(d) W = 1.939 GeV, and (f) W = 2.126 GeV, where θ is the c.m.
scattering angle and W is the c.m. energy. Curve identification is as
in Fig. 2. Data are from Ref. [24].

for the spin- 3
2 and spin- 5

2 resonances in the s and u channels,
and by

GV
K� = gγKK�gV

�K�p,

GT
K� = gγKK�gT

�K�p, (40)

for the t-channel kaon resonances, where e = 0.3029 is the
dimensionless electric charge.

FIG. 5. σU vs W for (a) cos(θ ) = 0.90 and −q2 = 0.65 GeV2,
(b) cos(θ ) = 0.90 and −q2 = 1.55 GeV2, (c) cos(θ ) = 0.35 and
−q2 = 0.65 GeV2, (d) cos(θ ) = 0.35 and −q2 = 1.55 GeV2,
(e) cos(θ ) = −0.25 and −q2 = 0.65 GeV2, and (f) cos(θ ) = −0.25
and −q2 = 1.55 GeV2, where θ and W are the scattering angle and
energy in the K� c.m. frame, respectively, and q2 is the square of the
virtual-photon four-momentum. The −q2 = 0.65 GeV2 results were
obtained with E = 2.567 GeV and the −q2 = 1.55 GeV2 results with
E = 4.056 GeV, where E is the energy of the incident electron in the
laboratory frame. Curve identification is as in Fig. 2. Data are from
Ref. [27].

For the Born term coupling products and for the u-channel
term with an intermediate �, we employ the same fixed values

FIG. 4. Photon-beam asymmetry vs cos(θ ) for (a) W = 1.702 GeV, (b) W = 1.808 GeV, and (c) W = 1.906 GeV, where θ is the c.m.
scattering angle and W is the c.m. energy. Curve identification is as in Fig. 2. Data are from Ref. [19].
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FIG. 6. σT T vs W for the same values of cos(θ ) and −q2 as in
Fig. 5, where θ and W are the scattering angle and energy in the K�

c.m. frame, and q2 is the square of the virtual-photon four-momentum.
Curve identification is as in Fig. 2. Data are from Ref. [27].

that were used in Ref. [35]; namely,

FCp = eg�Kp = −1.98,

Fp = κpFCp = −3.54,

FC� = FCp = −1.98,
(41)

F� = κ�FCp = 1.44,

F� = 1√
3

1 − 2α

1 − 2
3α

κ��

κ�

F� = 0.934,

FK = FCp = −1.98,

where FCp and FC� are the Born charge coupling products,
and Fp, F�, and FK are the Born magnetic coupling products.
Note that the form factor that multiplies FC� is zero in the
physical photon limit.

In addition to the resonance-coupling products, the fitted
parameters also include the mass and coupling parameters
associated with the electromagnetic form factors given by
Eqs. (32) and (34).

As in Ref. [35], the large number of fitted parameters
required a two-step procedure. Beginning with the fit of Ref.
[35], we first refitted the resonance coupling products to the
full set of photoproduction data considered in Ref. [35] along
with CLAS data [27] for the virtual photoproduction structure
functions defined by Eqs. (9) and (12), including the σLT ′ data
not included in the fit of Ref. [35]. The photoproduction data

FIG. 7. σLT vs W for the same values of cos(θ ) and −q2 as in
Fig. 5, where θ and W are the scattering angle and energy in the K�

c.m. frame, and q2 is the square of the virtual-photon four-momentum.
Curve identification is as in Fig. 2. Data are from Ref. [27].

incorporated consists of CLAS data for the differential cross
section [23]; CLAS [21], SAPHIR [17], and GRAAL [19] data
for the hyperon polarization asymmetry P defined by

P = dσ+
� − dσ−

�

dσ+
� + dσ−

�

, (42)

where the superscripts + and − refer to spin projections above
and below the scattering plane, respectively; GRAAL [19] and
LEPS [18] data for the photon beam asymmetry � defined by

� = dσ⊥
� − σ

‖
�

dσ⊥
� + σ

‖
�

, (43)

where ⊥ and ‖ refer to polarization vectors perpendicular
and parallel to the scattering plane, respectively; and CLAS
[24] data for the double polarization observables Cx and Cz

defined by

Ci = dσ+
� − dσ−

�

dσ+
� + dσ−

�

, (44)

where now the superscripts + and − refer to � spin projections
along and opposite to the i = z or i = x axes, and the incident
photon is circularly polarized with positive helicity. Using
the new set of coupling strength products so obtained, we
then refitted the electromagnetic form factor parameters to the
virtual photoproduction data. The new form factor parameters
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FIG. 8. σLT ′ vs W for the same values of cos(θ ) as in Fig. 5 and for
−q2 = 0.65 GeV2 in panels (a), (c), and (e), and −q2 = 1.00 GeV2

in panels (b), (d), and (f), where θ and W are the scattering angle and
energy in the K� c.m. frame, and q2 is the square of the virtual-photon
four-momentum. Curve identification is as in Fig. 2. Data are from
Ref. [28].

were, in turn, input into a new fit of the coupling-strength
products, and the whole procedure iterated until convergence
of the parameters was obtained.

At each step, we minimized the χ2 per degree of freedom
defined by the relation

νχ2 =
∑ (Ycalc − Yexpt)2

σ 2
, (45)

where the sum is over the data points included in that step,
Ycalc and Yexpt are the calculated and experimental values
of the observable, respectively, σ 2 is the squared statistical
uncertainty in Yexpt, and the number of degrees of freedom ν is
just the difference between the number of data points included
in the sum and the number of parameters included in that step
of the iteration procedure. The degree of convergence of the
procedure was measured by comparing the χ2 values obtained
in successive iterations. In practice we found that the procedure
converges quite well after only two iterations. We also tried
varying the starting parameters, but that did not significantly
improve the final fit.

FIG. 9. σU vs cos(θ ) for (a) W = 1.725 GeV and −q2 =
0.65 GeV2, (b) W = 1.750 GeV and −q2 = 1.55 GeV2,
(c) W = 1.875 GeV and −q2 = 0.65 GeV2, (d) W = 1.950 GeV
and −q2 = 1.55 GeV2, (e) W = 2.050 GeV and −q2 = 0.65 GeV2,
and (f) W = 2.150 GeV and −q2 = 1.55 GeV2, where θ and W are
the scattering angle and energy in the K� c.m. frame, and q2 is the
square of the virtual-photon four-momentum. The −q2 = 0.65 GeV2

results were obtained with E = 2.567 GeV and the −q2 = 1.55 GeV2

results with E = 4.056 GeV, where E is the energy of the incident
electron in the laboratory frame. Curve identification is as in Fig. 2.
Data are from Ref. [27].

V. NUMERICAL RESULTS AND DISCUSSION

Table II lists the coupling-strength parameters obtained in
the two fits reported here along with those reported in Ref. [35].
The corresponding values obtained for the electromagnetic
form factor parameters are listed in Table III.

A brief examination of the contents of Table II indicates
that the coupling strengths obtained in the three fits are quite
similar. Among the nucleon resonances, the largest differences
occur for the less-well-established resonances of higher mass,
where in a couple of cases, there are sign differences between
the present fits and the fit of Ref. [35]. There are also
some sizable differences for some of the hyperon resonance
couplings but, as discussed in Refs. [10,35], the u-channel
parameters obtained in fits of electromagnetic strangeness
production are highly correlated, so that differences in
u-channel parameters obtained in different fits should not
be invested with too much significance. In general, the
differences between the two fits obtained in this work, both
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FIG. 10. σT T vs cos(θ ) for the same values of W and −q2 as in
Fig. 9, where θ and W are the scattering angle and energy in the K�

c.m. frame, and q2 is the square of the virtual-photon four-momentum.
Curve identification is as in Fig. 2. Data are from Ref. [27].

of which incorporate the σLT ′ data, are smaller than the
differences between either fit and the fit of Ref. [35].

Table III indicates that the form factor parameters obtained
in the three fits, like the coupling parameters, are quite similar.

One measure of the relative quality of the three fits
is exhibited in Table IV. Here we have tabulated the χ2

per data point for the photoproduction data alone, for the
electroproduction data excluding the σLT ′ data and for the
σLT ′ data alone for all three fits. We define the χ2 per data
point by Eq. (45), but with the quantity ν on the right-hand
side of that equation replaced by just the total number of data
points of each type.

A perusal of the values in this table yields several conclu-
sions. All three fits are of comparable quality, which is not
surprising given the similarities among the parameter values,
but the fits described here are clearly somewhat better than
that of Ref. [35]. Comparing the three different data sets, it is
obvious that the photoproduction data is fit more successfully
than the electroproduction data and that the σLT ′ is not fit as
well as the rest of the electroproduction data. It is interesting
that exclusion of the N (2080) and N (2200) resonances slightly
reduces the quality of the overall fit, but slightly improves the
fit to the σLT ′ subset of data.

In the remainder of this section, three sets of results are
presented. The first set, represented by the dash-dotted curves
in each figure, was obtained with the fit of Ref. [35], which did

FIG. 11. σLT vs cos(θ ) for the same values of W and −q2 as in
Fig. 9, where θ and W are the scattering angle and energy in the K�

c.m. frame, and q2 is the square of the virtual-photon four-momentum.
Curve identification is as in Fig. 2. Data are from Ref. [27].

not incorporate the σLT ′ data. The other two sets were obtained
with the fits reported here, which did incorporate the σLT ′ data.
In each figure, the solid curves represent results from the fit
with all resonances included, while the dotted curves represent
results from the fit with the N (2080) and N (2200) resonances
excluded.

The first three figures provide a sampling of our photopro-
duction results. In Fig. 2 the differential cross section and the
hyperon polarization asymmetry P are plotted as functions
of cos(θ ), the cosine of the c.m. scattering angle, for several
values of the c.m. energy W . The two double-polarization
observables, Cx and Cz, are shown as functions of cos(θ ) in
Fig. 3 and the photon beam asymmetry � as a function of
cos(θ ) in Fig. 4.

As the curves in these three figures indicate, the differences
in the photoproduction observables obtained in the three fits
are quite modest. The largest differences occur at the lowest
energy shown, where the fits obtained here seem to yield
better descriptions of the data for the hyperon polarization
asymmetry P , the photon-beam asymmetry �, and the double-
polarization observable Cx than the fit of Ref. [35]. The fits also
yield somewhat different results for the double-polarization
observable Cz at all three energies shown, but none of the
fits are clearly superior for this observable. In general, the
two fits obtained here yield curves that are closer together
than either set of curves is with the curves generated from the
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FIG. 12. σLT ′ vs cos(θ ) for (a) W = 1.725 GeV and −q2 =
0.65 GeV2, (b) W = 1.725 GeV and −q2 = 1.00 GeV2,
(c) W = 1.825 GeV and −q2 = 0.65 GeV2, (d) W = 1.825 GeV
and −q2 = 1.00 GeV2, (e) W = 1.975 GeV and −q2 = 0.65 GeV2,
and (f) W = 1.975 GeV and −q2 = 1.00 GeV2, where θ and W are
the scattering angle and energy in the K� c.m. frame, and q2 is the
square of the virtual-photon four-momentum. Curve identification is
as in Fig. 2. Data are from Ref. [28].

fit of Ref. [35]. However, this is not always true, as seen in
the higher-energy results for P and the double-polarization
observables.

Our results for the virtual photoproduction structure
functions in the electroproduction experiment are presented
in the remaining figures. Figures 5–8 show the structure
functions σU , σT T , σLT , and σLT ′ as functions of W for
various values of cos(θ ) and −q2, the negative of the
squared virtual four-momentum. In Figs. 9–12, the same
structure functions are depicted as functions of cos(θ ) for
various values of W and −q2. Figure 13 shows the struc-
ture functions σT and σL as functions of cos(θ ) for three
different energies and −q2 = 1.00 GeV2, which is the only
value of −q2 for which data exist for these two structure
functions.

As for the photoproduction observables, the results obtained
for the electroproduction observables in the three fits are quite
similar. The main differences occur in the structure functions
σU and σT T at the higher −q2 value and larger energies. There
are also some differences in the σU results at back angles and in
the σLT ′ results at forward angles, especially at the higher −q2

value. The similarities in the σLT ′ results obtained in the three

FIG. 13. σT vs cos(θ ) (left-side panels) and σL vs cos(θ ) (right-
side panels) for −q2 = 1.0 GeV2 and W = 1.750 GeV [panels (a)
and (b)], W = 1.850 GeV [panels (c) and (d)], and W = 1.950 GeV
[panels (e) and (f)], where θ and W are the scattering angle and energy
in the K� c.m. frame, and q2 is the square of the virtual-photon
four-momentum. Curve identification is as in Fig. 2. Data are from
Ref. [27].

fits is rather surprising since in the two fits obtained here, the
σLT ′ data was included in the fits, while in the fit of Ref. [35]
it was not. This seems to indicate that a single quantitative fit
to the unpolarized structure functions and the electron beam
asymmetry structure function is difficult to achieve in this
model.

It is worth noting that, in contrast with the unpolarized
structure functions, σLT ′ involves the imaginary part of a
product of two hadronic current components. Because there
is just one phase associated with all the components of the
hadronic current for a given resonance, the product of any
two current components for a single resonance is a real
quantity. Hence, the structure function σLT ′ arises entirely
from interferences between different resonances or between
resonance and Born contributions. To the extent that there are
deficiencies in an effective Lagrangian representation of the
Born terms, these deficiencies will manifest themselves most
prominently in σLT ′ .

In contrast with the photoproduction results, there are a few
instances where the electroproduction results generated with
the two fits reported here are rather different. In fact, for some
of the structure functions, the fit that excludes the N (2080)
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and N (2200) resonances yields results that are closer to those
obtained with the fit of Ref. [35], especially at the higher −q2

value and larger energies.
Due to the similarities among the three fits, most of the

discussion in Ref. [35] regarding the quality of the fit reported
there applies equally well here. In general, the fit to the
data is best for the structure function σU . As seen in Fig. 9,
the angular distributions for this structure function reproduce
the data at least semiquantitatively. The energy dependence
of the σU data is not as well reproduced with significant
discrepancies between 1.72 and 1.85 GeV at the lower −q2

value and for energies above 2.22 GeV at the higher −q2

value.
The fits to the other structure functions are of generally

lower quality than the fit to σU . For both σT T and σLT , the fits
are better at the higher −q2 value. At the lower −q2 value,
the fits fail to yield the observed energy dependencies and
the observed dip in the angular distribution of σT T at forward
angles is not reproduced.

The model has the most difficulty reproducing the σLT ′

data. For this structure function, the energy dependence given
by the fit is not correct at either −q2 value, and at the two

lower-energy values, the calculated angular distributions lie
below the data.

In summary, we have updated a previous fit of recent
kaon photoproduction and electroproduction data that was
based on an effective Lagrangian model supplemented with
electromagnetic form factors. We have presented three sets
of results, one set obtained with the original fit that did not
include the CLAS data for the electron beam asymmetry
structure function and the other two obtained with fits that do
incorporate that extra data. The three fits yield similar results
over most the kinematic range considered, even for the virtual
photoproduction structure function σLT ′ which was included
in the fitted data in two of the fits but not in the third.

In addition to the structure functions defined by Eq. (9),
there also exist CLAS data for other structure functions related
to the polarization of the outgoing � hyperon with either an
unpolarized or polarized incident electron [29]. The low count
rates associated with these structure functions required the
use of rather wide kinematical bins, so that comparisons with
model calculations or fits employing these data will necessitate
the performance of cross-section–weighted averages. Investi-
gations in this direction are currently in progress.
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