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Effects of deformations and orientations in the fission of the actinide nuclear system 254Fm∗ formed
in the 11B + 243Am reaction
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We have studied the decay of actinide nuclear system 254Fm∗ formed in 11B + 243Am reaction using the
dynamical cluster decay model (DCM), with choices of spherical, quadrupole deformation β2 alone and higher
multipole deformations β2–β4. For β2 deformations, the optimum orientations θ

opt
i are used whereas for higher

multipole deformations the compact orientations θc
i of decaying fragments are taken in to account. Besides

static-β2 deformations, the effects of dynamical-β2 deformations are also explored. The calculated cross sections
find excellent agreement with the available experimental data with spherical as well as deformed choices of
fragmentations, enabling us to account for the role of important nuclear deformation effects in the 11B-induced
nuclear reaction. Spontaneous decay of 254Fm with cold elongated configuration and optimum orientation is also
worked out. The mass distributions of excited fermium isotopes in the neighborhood of 254Fm∗ are also explored.
In addition, the roles of temperature, angular momentum, and fission fragment anisotropies are investigated in
the context of the chosen reaction.
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I. INTRODUCTION

Heavy-ion-induced reactions are appropriate to explore the
dynamics of fusion-fission and related nuclear phenomena.
The factors on which the fusion-fission dynamics depend
are still not fully understood. Some of them are the large
Coulomb repulsion, the entrance channel mass asymmetry,
and deformations and orientations of projectile (P ) and target
(T ). The reactions having large Coulomb repulsion may fail
to form a compound nucleus even if the system overcomes the
fusion barrier. This is because the distance between the centers
of projectile and target at the contact point is larger than that of
nascent fragments at the saddle point [1]. However, the same
is not true for the light projectile-target combinations, as the
difference in the sizes of projectile and target is quite large.
According to the pre-equilibrium fission model [2,3], the mass
asymmetry [α = (AT − AP )/(AT + AP )] is another quantity
that plays an important role in deciding the contribution from
non-compound-nucleus (nCN) fission. In the context of this
model if the entrance-channel mass asymmetry α > αBG, the
Businaro-Gallone (BG) mass asymmetry [4], then nCN is not
expected. However, for α < αBG the nCN contribution is not
ruled out. In the entrance-channel-dependent (ECD) K-state
model of Vorkapic and Ivanisevic [5], target deformation
plays an important role in deciding the contribution from
nCN fission. When the projectile collides with the tip of the
deformed target, compound nucleus formation takes place only
if the composite system lies within the saddle point; otherwise
the compound system is elongated enough that it may escape
into the exit channel without being captured within the saddle
point to form the compound nucleus, resulting in nCN fission
contribution.

Recently, the reaction 11B + 243Am has been studied
experimentally [6], and its mass asymmetry α > αBG suggests
that the nCN contribution should be absent on the basis of the
pre-equilibrium fission model [2,3]. However, the observed

fission fragment anisotropies are anomalous with regard to the
statistical model values [6], and hence the presence of nCN
contribution is anticipated. According to the authors of this
paper [6], the mass asymmetry alone is not enough to decide
the nCN contribution and, following the ECD K-state model
[5], the target deformation should play an important role in
fixing the anomalous behavior of fission fragment anisotropies.
In this paper, we have addressed this question of the role
of target deformation and other aspects of deformations and
orientations of related fission fragments of 254Fm∗ nucleus on
the basis of the dynamical cluster-decay model (DCM) [7–19].
In the reaction under study, the target nucleus 243Am has a static
quadrupole deformation β2 = 0.224, taken from Ref. [20].
The compound nucleus 254Fm∗ is also deformed (β2 = 0.237),
which helps to proceed on its fission path. In DCM, the
static deformations and orientation degrees of freedom of
one or both decay fragments are expected to influence the
fusion-fission probability. We have also used the dynamically
induced deformations since the fusion cross sections are also
expected to differ depending upon whether the deformation is
static or dynamically induced [21].

Within the DCM, the decay of actinide nuclear system
254Fm∗ formed in the 11B + 243Am reaction over a range
of energies (Elab = 60–72 MeV) [6] is studied by taking
the decay fragments of either spherical or with quadrupole
deformations (β2) and optimum orientation (θopt

i ) [10] and
higher multipole deformations up to hexadecapole (β2–β4)
with compact orientations (θc

i ) [22]. The DCM calculated
cross sections are in reference to experimental data of Ref. [6].
254Fm∗ is a fissile nucleus imparting negligible contribution
to evaporation residue. The spontaneous decay of fermium
is also investigated for comparing the mass distribution of
the decay of 254Fm in hot (temperature T �= 0) and cold
(T = 0) fusion-fission processes. Because 254Fm is a neutron-
rich actinide nuclear system with Z = 100, it also decays
spontaneously [23] with an asymmetric mass distribution, also
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studied earlier within the quantum mechanical fragmention
theory [24], which provides a basis for DCM also. The
mass distributions of various isotopes 250,252,256,258Fm∗ are
also worked out at Elab = 60 MeV within DCM. Also, the
fission fragment anisotropies are calculated within the standard
saddle-point statistical model (SSPM) [25] approach using the
DCM-based parameters.

The paper is organized as follows: The DCM for a hot
and rotating compound system is discussed briefly in Sec. II.
The calculations and results obtained for the decay of 254Fm∗
nucleus are discussed in Sec. III. Finally, a summary of our
results is given in Sec. IV.

II. THE DYNAMICAL CLUSTER-DECAY MODEL (DCM)

The DCM is used for a variety of compound-nucleus-based
nuclear reactions [7–19]. Its basis is the well-known quantum
mechanical fragmentation theory (see, e.g., Refs. [26–28]),
which is worked out in terms of the collective coordinates
of the mass asymmetry η = A1−A2

A1+A2
and charge asymmetry

ηZ = Z1−Z2
Z1+Z2

(1 and 2 stand, respectively, for heavy and
light fragments) and the relative separation R. The multipole
deformations βλi (λ = 2, 3, 4; i = 1, 2) and orientations
θi of two nuclei or fragments are included via the radius
vectors Ri , defined later. In terms of these coordinates, using
� partial waves, the compound nucleus decay or the fragment
production cross section is given by

σ =
�max∑
�=0

σ� = π

k2

�max∑
�=0

(2� + 1)P0P ; k =
√

2μEc.m.

h̄2 ,

(1)

where the preformation probability P0 refers to η motion
and the penetrability P to R motion. Here the compound
nucleus is considered to be formed with a probability equal
to one (an assumption more suitable for higher energies
but extended here also to lower energies) and, in general,
independent of the incoming channel. However, the entrance-
channel effects in DCM enter via the maximum angular
momentum �max or its critical value �crit which depends
on the entrance-channel mass asymmetry ηin [29]. μ =
[A1A2/(A1 + A2)]m = 1

4ACNm(1 − η2) is the reduced mass
and �max is the maximum angular momentum, defined for
light-particles (LP) cross section σLP → 0. m is the nucleon
mass. Equation (1) is also used for the noncompound nucleus,
quasifission process, where the incoming channel does not
loose its identity, and hence P0 = 1 for quasifission.

In Eq. (1), the preformation probability P 0 is given by the
solution of the stationary Schrödinger equation in η, at fixed
R = Ra ,

{
− h̄2

2
√

Bηη

∂

∂η

1√
Bηη

∂

∂η
+ V (η,R, T )

}
ψν(η) = Eνψν(η),

(2)

with ν = 0, 1, 2, 3, . . . referring to ground-state (ν = 0) and
excited-state solutions, with the ground-state P 0 given as

P0 = |ψν= 0[η(Ai)] |2
√

Bηη

2

ACN
. (3)

The mass parameters Bηη(η), used in the calculations of P0,
representing the kinetic energy term, are the smooth classical
hydrodynamical masses [30]. It is worth mentioning here that
at large temperatures (T ), the shell effects are not very impor-
tant and hence smooth classical hydrodynamical masses are
used for simplicity. However, for explicit role of shell effects
in the inertia parameter Bηη(η), one may use shell-corrected
masses like cranking masses as explained in Refs. [31,32]. Ev-
idently, P0 contains the structure information of the compound
nucleus, which enters Eq. (2) via the fragmentation potential,

V (η,R, T )

=
2∑

i=1

[VLDM(Ai, Zi, T )] +
2∑

i=1

[δUi] exp
( − T 2/T 2

0

)
+VC(R,Zi, βλi, θi, T ) + VP (R,Ai, βλi, θi, T )

+V�(R,Ai, βλi, θi, T ). (4)

VLDM in the above equation is T -dependent liquid drop energy
of Davidson et al. [33] and δU , the “empirical” shell correction
from Myers and Swiatecki [34], is also made T dependent to
vanish exponentially with T0 = 1.5 MeV [35]. VC , VP , and V�

are, respectively, the T -dependent Coulomb, the nuclear prox-
imity [36], and the centrifugal potentials, with the moment of
inertia taken in the complete sticking limit. The deformation ef-
fects are incorporated in Coulomb potential, which is given as

VC(R,Zi, βλi, θi, T )

= Z1Z2e
2/R(T ) + 3Z1Z2e

2
∑

λ,i=1,2

Rλ
i (αi, T )

(2λ + 1)R(T )λ+1

×Y
(0)
λ (θi)

[
βλi + 4

7
β2

λiY
(0)
λ (θi)

]
(5)

with Y
(0)
λ (θi) as the spherical harmonics function. The

centrifugal potential is given by

V�(R,Ai, βλi, θi, T ) = h̄2�(� + 1)

2I (T )
(6)

with I = IS = μR2 + 2
5A1mR1

2(α1, T ) + 2
5A2mR2

2(α2, T ),
the moment of inertia in the sticking limit, or, alternatively,
the one calculated in nonsticking (NS) limit, I = INS = μR2.

The static deformations βλi , taken from Ref. [20], are made
temperature dependent for quadrupole deformation through
the relation [37,38]

β2(T ) = β2(0)e−T/T0 , (7)

where T0 = 1.5 MeV. This temperature dependence of β2 is
consistent with experiments at zero temperature [39].

For the decay of a hot compound nucleus (CN), Ra is
the first turning point of the penetration path(s), used for
calculating the penetrability P , shown in Fig. 1 for the
illustrative case of symmetric fission of 254Fm∗ for spherical as
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FIG. 1. Scattering potentials V (R, �) as a function of R for
fixed �, for the decay 254Fm∗ →127Sb + 127In for the spherical and
254Fm∗ →127Sn + 127Sn for the deformed (β2 and β2–β4) choices of
fragmentations at Ec.m. = 57.40 MeV.

well as for β2 and (β2–β4) deformed choices of fragmentation,

Ra = R1(α1, T ) + R2(α2, T ) + �R(T )

= Rt (α, T ) + �R(T ) (8)

with radius vectors

Ri(αi, T ) = R0i(T )

[
1 +

∑
λ

βλiY
(0)
λ (αi)

]
. (9)

�R(T ) is the only fitting parameter of the model and deter-
mines the first turning point of barrier penetration, referring to
the barrier height actually used. In terms of two-center shell
model, �R(T ) assimilates the neck-formation effects [40–42]
and is therefore called neck length parameter. In terms of Ra ,
�R is the relative separation between two fragments, similar
to that used in scission-point [43] and saddle-point [44,45]
statistical fission models. It takes care of the penetration point
through the potential barrier. The parameter �R, referring to
the potential V (Ra, �) at R = Ra for each �, can also be related
in a simple way to the top of the barrier VB(�) by defining their
difference �VB(�) as the effective lowering of the barrier. This
barrier modification �VB(�) is therefore a built-in feature of
DCM, because of which it can handle the problems related to
fusion hindrance and fusion enhancement across the barrier.
�VB , which relates V (Ra, �) and VB(�), for each �, is defined
as

�VB(�) = V (Ra, �) − VB(�). (10)

Here V (Ra, �) represents the actual barrier used for the
penetration.

The T -dependent nuclear radii R0i of the equivalent
spherical nuclei [46] are given as

R0i(T ) = [
1.28A

1/3
i − 0.76 + 0.8A

−1/3
i

]
(1 + 0.0007T 2).

(11)

The compound nucleus temperature T (in MeV) is given by

E∗
CN = aT 2 − T , (12)

with the level density parameter a = ACN/9 used here. It may
be noted here that the shape of the composite system, the
radius vector, depends on the temperature T where the shape
parameter β is considered to be both of static (ground-state)
value [20] and T dependent [Eq. (7)].

The penetrability P in Eq. (1) is the Wentzel-Kramers-
Brillouin (WKB) integral between Ra and Rb,

P = exp

[
−2

h̄

∫ Rb

Ra

{2μ[V (R) − Qeff]}1/2dR

]
, (13)

solved analytically [8], with Rb as the second turning point
satisfying

V (Ra, �) = V (Rb, �) = Qeff(T , �) = Ekin(T ), (14)

where Qeff denotes the effective Q value in WKB intergral
and Ekin is the total kinetic energy. For details, see Ref. [9].

Within the SSPM approach [25], the fission fragment
anisotropy A is related to the total � value (equivalently �max)
of CN, the effective moment of inertia Ieff of the fissioning
nucleus in the transition state, and the temperature T at the
saddle point, as given by

A = 1 + 〈�2〉/4K2
0 , (15)

where K2
0 = T × Ieff/h̄

2 and Ieff is calculated by using the
finite-range rotating liquid drop model [47]. We have also
calculated the fission fragment anisotropy A, using T as the
temperature of the fissioning nucleus, and the �max value
within nonsticking limit for moment of inertia (INS) in the
�-dependent potential V�.

III. CALCULATIONS

We have made a comparative study of the fragmentation
paths of 254Fm∗, using the spherical, the only-β2 deformed,
and the β2–β4 deformed cases, over a wide range of available
incident energies [6]. Also, a comparison of static-β2 with
dynamic-β2 deformation is worked out. The DCM-based
calculations confirm that 254Fm∗ decays mainly via the fission
path and the predicted ER cross sections are negligibly small.
Besides this, the issues related to spontaneous fission, isotopic
dependence, angular momentum, temperature, and fission
fragment anisotropies are also explored.

First of all, we look at the behavior of potential energy sur-
faces calculated on DCM for the three possible fragmentation
paths: (i) spherical, (ii) β2 static with optimum orientations
(θopt

i ), and (iii) higher multipole static deformations (β2–
β4) with compact orientation (θc

i ) in the decay of actinide
compound nucleus 254Fm∗ formed in 11B + 243Am reaction.
Figures 2(a) and 2(b) illustrate the fragmentation potentials
as a function of fragment mass A2 for � = 0 and � = �max

values for these three cases. The optimum orientations θ
opt
i

are uniquely fixed on the basis of the quadrupole deforma-
tion alone of nuclei [10], and compact orientations θc

i for
higher multipole deformations (β2–β4) are calculated as per
prescription in Ref. [22], using hot configurations in both
cases. Figures 2(a) and 2(b) show that the potential surfaces
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FIG. 2. Fragmentation potential as a function of light mass
fragment A2 for the decay of 254Fm∗ formed in 11B + 243Am reaction
channel for spherical as well as deformed considerations at (a) � = 0
and (b) � = �max.

are nearly smooth for the spherical choice of fragmentations
at � = 0 and � = �max, which show enough structure with the
inclusion of deformations, and certain minima (17B, 26Mg,
27Al) are observed to be rather deep for the β2 (static)
deformations with optimum orientations. However, these
deeper minima do not make any significant contributions since
the penetration probability of these fragments is negligibly
small. The emergence of these unexpected minima may be
due to the inappropriate values of optimized β2 deformations
used in the calculations and occur mainly because of the
proximity (V P ) part of the fragmentation potential. We further
notice that at � = 0, the light fragments (representing ER)
are more dominant, whereas with the increase in � value
the fission fragments start appearing such that at � = �max

value the symmetric fission dominates the ER channel. This
aspect is further explored in Fig. 3, showing the preformation
probability P0, obtained by solving the stationary Schrödinger
equation (2) in η coordinate.

Figure 3 clearly shows that the decay of 254Fm∗ follows
a symmetric pattern, independent of the deformation
effects, though a shoulder structure is seen in the spherical
considerations, a signature of asymmetric fission fragments,
which vanishes with the addition of deformation effects. We
note, however, that the contribution of fragments forming the
shoulder is very small. This is depicted in Fig. 4, which shows
the asymmetric to symmetric peak ratio ( Peak2

Peak1
) as a function of

Ec.m.. Peak2 represents the fragments with mass number A2 =
98–114 and Peak1 represents masses A2 = 115–127. It is

FIG. 3. Same as for Fig. 2, but for the preformation probability
P0 as a function of fragment mass Ai (i = 1, 2).

clear from Fig. 4 that the contribution of Peak2 is very small.
It is approximately 0.6% at the lowest energy and increases
to a maximum of 2% at the highest energy. This implies
that the contribution of the asymmetric fragments even for
spherical choice of fragmentation is negligibly small. One
may conclude here that the symmetric fragmentation is
preferred in the decay of 254Fm∗, independent of spherical,
only-β2, or (β2–β4) deformations.

Next, the fission cross sections are calculated, in reference
to experimental data of Ref. [6], within the DCM by fitting the
only parameter of the model, the neck-length parameter �R,

FIG. 4. The ratio of the asymmetric to symmetric fission yields
(P0) as a function of Ec.m. for the spherical choice of nuclei in the
fragmentation process of the decay of 254Fm∗.
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TABLE I. DCM calculated fission cross sections (σfission), compared with experimental data [6] and the predicted ER cross sections (σER),
for the decay of 254Fm∗ formed in 11B + 243Am reaction, considering spherical as well as deformed choice of fragments.

Elab Ec.m. T �Rfission σfission(DCM) σfission σER (DCM) at �Rfission

(MeV) (MeV) (MeV) sph β2 β2–β4 sph β2 β2–β4 (expt.) sph β2 β2-β4

(fm) (fm) (fm) (mb) (mb) (mb) (mb) (mb) (mb) (mb)

60 57.40 1.239 0.9 1.0025 0.929 175.4 175.6 173.4 176.86 3.37×10−7 1.86×10−7 5.56×10−7

63 60.27 1.28 1.0 1.038 0.986 354 356 352 357.96 5.12×10−6 2.47×10−6 3.13×10−6

66 63.142 1.32 1.042 1.0575 1.017 452 450 450 453.41 1.59×10−5 9.22×10−6 7.96×10−6

69 66.012 1.359 1.0589 1.076 1.0618 610 608 606 609.27 2.69×10−5 2.25×10−5 2.72×10−5

72 68.882 1.396 1.074 1.088 1.0775 710 708 710 709.87 4.42×10−5 3.96×10−5 4.78×10−5

which varies as a function of center of mass (c.m.) energy. We
find that for each c.m. energy, the fits can be achieved by the
spherical and deformed considerations within the single neck-
length parameter �R. Figure 5 and Table I show that the DCM
calculated fission cross sections are in excellent agreement
with the experimental data for all three cases. It is further
clear from Table I that the decay is a pure fission decay, with
the almost negligible evaporation residue (ER) cross sections
calculated at the fission fitted �R values. Figure 6 shows the
variation of �R with Ec.m. for the three choices of fragment
shapes. We notice that �R increases with increase in energy,
and that it has higher values for the β2 deformations, compared
to both spherical and β4 deformations.

Another quantity of interest, related to �R, is the variation
of barrier-lowering parameter �VB as a function of Ec.m.,
an important property at near- and sub-barrier energies [48].
Figure 7 shows that �VB is the largest for the case of β2–β4

at near-barrier energies. On the other hand, at above-barrier
energies, the barrier modification is small and comparable for
the three cases.

Figure 8 shows the role of dynamic-β2 compared with
static-β2 deformations with optimum orientations, for the

FIG. 5. The DCM calculated fission cross sections, compared
with the experimental data [6], for the decay of 254Fm∗ formed in
11B + 243Am reaction as a function of Ec.m. for spherical, only-β2

deformation, and higher multipole deformations up to hexadecapole
(β2–β4) choices of the fragmentation process.

preformation probability P0 as a function of fragment mass
Ai (i = 1, 2) for the decay of 254Fm∗. We notice that the
distribution is symmetric for both the choices of β2 (static
and dynamic), although a small shoulder is formed for the
dynamic-β2 choice of fragmentation, similar to what was
seen in the case of spherical choice of fragmentation for
static β2 (refer to Fig. 3). It may be noted that the angular
momentum �max involved here in the reaction dynamics has
higher values. This is because of the use of sticking moment of
inertia (I S) in the centrifugal potential (V �) term. It is relevant
to mention here that nonsticking (INS) approximation gives
larger centrifugal potential as compared to sticking (I S), at
the same R [11,17]. Therefore, one would expect larger �

values for the use of the I S approach as compared to that for
INS. Since we are using proximity interaction in our model,
the use of I S is more appropriate as structure effects due
to proximity forces are more visible for the use of sticking
choice of moment of inertia. It may be noted that the use of
INS approach in centrifugal potential weakens the (attractive)
nuclear proximity interaction and hence V �(I S) with relatively
lower magnitude is preferred.

We have also calculated the fission cross sections with
dynamic-β2 deformations, by fitting again the neck-length
parameter �R. The two �R’s are compared in Fig. 9(a),

FIG. 6. The fitted neck-length parameter �R for fission decay of
254Fm∗ formed in 11B + 243Am reaction, as function of Ec.m., for
spherical as well as deformed considerations.
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FIG. 7. The barrier-lowering parameter �VB as a function of Ec.m.

for the decay 254Fm∗ →127Sb + 127In for spherical fragments and
254Fm∗ →127Sn + 127Sn for deformed (β2 and β2–β4) fragments.

showing that the static �R values are higher than for dynamic
β2 choice of fragmentations. A similar comparison for �V B

values for β2 static and β2 dynamic is shown in Fig. 9(b),
which clearly depicts that the barrier lowering at near-barrier
energies is greater for the β2-dynamic than for β2-static choice
of fragmentation. At higher energies, however, the difference
becomes minimal and �V B goes to zero in both cases.

It is of further interest to look for the fragmentation behavior
of the various isotopes of fermium. Figure 10 shows the
calculated preformation probability P 0 for various isotopes of
fermium (250−258Fm∗) as a function of fragment mass number
Ai (i = 1, 2). The calculations are made at Elab = 60 MeV
by taking the same value for the neck-length parameter �R

and �max value as for 254Fm∗ at the said energy. Only the

FIG. 8. Preformation probability P0 as a function of fragment
mass number Ai (i = 1, 2) for the decay of 254Fm∗ formed in
11B + 243Am reaction channel at ELab = 60 MeV for β2-dynamic
compared with β2-static deformations of fragments.

FIG. 9. (a) The fitted neck-length parameter �R and (b) the
barrier lowering parameter �VB for fission of 254Fm∗, as a function
of Ec.m., for the β2-static as well as β2-dynamic deformations.

case of β2-deformed fragmentation is considered. We notice
in Fig. 10 that the decay of fermium isotopes still follows the
symmetric distribution when two or four neutrons are added
to or subtracted from 254Fm∗. Although a small hump is seen
for the neutron-deficient 250Fm∗, similar to the one observed in
the case of spherical fragmentation of 254Fm∗, the contribution
of this asymmetric hump is again negligibly small.

We have seen from Figs. 3 and 10 that the mass distribution
is symmetric for the decay of excited 254Fm∗ and its isotopes
252,256,258Fm∗ formed in heavy-ion reactions. However, this
result may not be valid for the spontaneous (T = 0) decay
of 254Fm. Figure 11 shows the preformation probability P0

as a function of fragment mass for the spontaneous decay
of 254Fm for cold elongated configuration with β2-deformed,
optimum orientation approach. It is clear from Fig. 11 that the
mass distribution is asymmetric for the spontaneous decay, in

FIG. 10. Preformation probability P0 as a function of fragment
mass number Ai (i = 1, 2) for 250−258Fm∗ isotopes at Elab = 60 MeV.
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FIG. 11. Preformation probability P0 as a function of fragment
mass number Ai (i = 1, 2) for the spontaneous decay (cold fission)
of 254Fm using β2-deformed cold (T = 0) elongated configuration at
different � values.

contrast to being symmetric for the heavy-ion-induced decay
in Figs. 3 and 10. One can also observe from Fig. 11 that
the angular momentum (�) does not affect the structure of P 0

much. This asymmetric behavior for the spontaneous decay
of 254Fm is consistent with a previous calculation and the
experiments [24].

Finally, the fission fragment anisotropies are calculated
within the SSPM approach using DCM calculated �max values
for the nonsticking limit for the moment of inertia (INS) using
β2-deformed consideration. It is relevant to note here that
the nonsticking moment-of-inertia limit (INS) is preferred for
fission fragment anisotropy calculations and the sticking limit
(IS) for cross sections [17]. In Fig. 12, the DCM calculated
fission fragment anisotropies are shown at �R values the
same as those for fission, which means using the same
�R as that used for cross-section fitting with the sticking
moment-of-inertia limit IS . Statistical model calculations, with
and without (νpre �= 0 or νpre = 0) correction for prefission
neutrons, are also given for comparisons. We notice that the
DCM-calculated fission fragment anisotropies for �Rfission

are comparable with the statistical model calculations without
correcting for prefission neutrons (νpre = 0), but not with the
experimental data. Knowing that �R for INS is larger than for
IS [17], we have also made calculations increasing the �Rfission

by 0.3 fm. As expected, for this choice of �R, calculated
fission fragment anisotropies start approaching the lower limit
of experimental values. Apparently, the best fit for �Rfission

plus a constant or �R for INS could be obtained, but it is not
attempted here.

Lastly, we have also attempted to see the contribution
of competing non-compound-nucleus (nCN) quasifission (qf)
channel in the decay of 254Fm∗. The calculations are done by
taking P0 = 1 for the incident channel 11B + 243Am since the
incoming fragments do not loose their identity in qf process.
The DCM-based qf contribution is maximum up to 3% of the
fission cross section.

FIG. 12. The DCM calculated fission fragment anisotropies for
the case of β2 deformation in 254Fm∗, compared with the experi-
mental data [6] and statistical model calculations (with and without
correcting for prefission neutrons).

IV. SUMMARY

In this paper, we have calculated the fusion-fission exci-
tation functions of 254Fm∗ for the 11B + 243Am reaction,
using the spherical, only-β2, and higher multipole (β2–β4)
deformations with proper compact orientations of fragments.
The nice comparison between the DCM calculated and
experimental fission cross sections at all energies suggests
that the contribution of the competing non-compound-nucleus
qf component is quite small, amounting to a maximum of
up to 3% of the fission cross section. The comparison of
β2-static and β2-dynamic deformation is also worked out
for the fragmentation path of 254Fm∗ nucleus. In the case
of spontaneous decay of 254Fm, an asymmetric fission is
preferred, whereas in the heavy-ion-induced decay of 254Fm∗,
the mass distribution is clearly symmetric, independent of
the deformation effects. The various isotopes of compound
nucleus fermium (250−258Fm∗) also show symmetric behavior
in their fragmentation path. The fission fragment anisotropies,
calculated at �Rfission, are in agreement with the statistical
model calculations, but for �R increased to bring it close to
INS value, the anisotropies start approaching the experimental
data. The neck-length parameter �R is found to be relatively
larger for β2-deformed case and comparable for spherical and
β2–β4 deformations. Although the fragmentation behavior is
influenced due to the inclusion of deformation effects, the
overall fission path remains symmetric for the excited 254Fm∗
and its neighboring isotopes.
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